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Abstract: Post-transcriptional regulatory networks are dependent on the interplay of  

many RNA-binding proteins having a major role in mRNA processing events in mammals. 

We have been interested in the concerted action of the two RNA-binding proteins hnRNP 

A1 and HuR, both stable components of immunoselected hnRNP complexes and having a 

major nuclear localization. Specifically, we present here the application of the  

RNA-immunoprecipitation (RIP)-Chip technology to identify a population of nuclear 

transcripts associated with hnRNP A1-RNPs as isolated from the nuclear extract of either 

HuR WT or HuR-depleted (KO) mouse embryonic fibroblast (MEF) cells. The outcome of 

this analysis was a list of target genes regulated via HuR for their association (either 

increased or reduced) with the nuclear hnRNP A1-RNP complexes. Real time PCR 

analysis was applied to validate a selected number of nuclear mRNA transcripts, as well as 

to identify pre-spliced transcripts (in addition to their mature mRNA counterpart) within 

the isolated nuclear hnRNP A1-RNPs. The differentially enriched mRNAs were found to 

belong to GO categories relevant to biological processes anticipated for hnRNP A1 and 

HuR (such as transport, transcription, translation, apoptosis and cell cycle) indicating their 

concerted function in mRNA metabolism. 
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1. Introduction 

RNA-binding proteins (RBPs) that associate with RNA pol II transcripts (pre-mRNA or hnRNA) 

constitute a large group of cellular proteins that are key components of macromolecular assemblies 

functioning in post-transcriptional events such as splicing, polyadenylation, transport, localization and 

stability/translation of mRNA. This is brought about by the extensive interplay amongst discrete sets of 

RBPs and their associated (pre)- and mRNA-target molecules in the form of ribonucleoprotein (RNP) 

complexes (reviewed in [1,2]). 

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a major group of mostly nuclear RBPs in 

dynamic association with nascent hnRNA (pre-mRNA) and processed mRNA in the form of hnRNP 

complexes [3,4]. Likewise, cytoplasmic mRNP complexes contain mature mRNA bound to a discrete 

group of RBPs, including some exported hnRNP protein species [5]. Other important RNA-protein 

assemblies participating in mRNA processing refer to the spliceosomal small nuclear RNPs (U1, U2, 

U4/U6 and U5 snRNP) [6], as well as to complexes of microRNAs (miRNAs) with their associated 

proteins functioning in translational control [7]. 

The hnRNP proteins comprise a group of over 20 polypeptides in the range of 32 to 110 kDa and 

designated in order of increasing molecular weight as hnRNP A-U [8,9]. They are abundant nuclear 

proteins containing at least one motif for binding to RNA (the RBD/RRM, KH or RGG domains). 

Almost all hnRNP proteins contain multiple isoform types, products of alternative splicing, as well as 

post-translational modifications (phosphorylation, arg-methylation). As they form a network of 

interactions with the RNA and with other protein components, they are considered important gene 

regulators functioning, in addition to mRNA slicing (mainly alternative splicing), in almost every step 

of mRNA biogenesis, and in many other cellular functions [4]. The most abundant members of 

hnRNPs are those of the hnRNP A/B type (mainly hnRNPA1 and A2/B1), with hnRNP A1 considered 

a prototype hnRNP protein [10]. HnRNP A1, like most hnRNPs, binds to nascent transcripts and 

remains associated with the target RNAs through all mRNA processing steps in the nucleus. Due to its 

ability for nucleo-cytoplasmic shuttling, it accompanies mature mRNA through transport to the 

cytoplasm and association with the translated polysomes [11,12]. 

An additional RNA-binding protein of importance to mRNA maturation processes is HuR, a 

ubiquitously expressed and best characterized member of the small family of embryonic lethal 

abnormal vision (ELAV) Hu proteins (HuR, HuB, HuC and HuD) [13]. Like most hnRNP proteins, 

HuR has a major nuclear localization with ability for nucleo-cytoplasmic shuttling [14]. HuR is  

the prototype of a group of RBPs that bind AU-rich elements (AREs) commonly found in the  

3'-untranslated region (UTR) of short-lived mRNAs (like proto-oncogenes, cytokines, and 

lymphokines). AREs regulate stability, translation and localization of the ARE-containing mRNAs 

upon application of stimuli like cell activation, malignant transformation and exogenous stress [15,16]. 



Int. J. Mol. Sci. 2013, 14 20258 

 

 

HuR is found to promote stabilization of its target mRNAs [14], opposite to other ARE-binding 

proteins (e.g., TIA-1 and TIAR) that cause destabilization and degradation of the bound mRNAs [17]. 

Several members of the hnRNPs, such as hnRNP A1, D/AUF1 and L, are also ARE-binding proteins 

that promote decay of bound mRNAs and antagonize the role of HuR [18]. 

Despite the early recognition that under normal cellular growth the bulk (over 90%) of HuR is in 

the nucleus [19,20], it was mostly known for its cytoplasmic functioning in stability/translation of 

target mRNAs. It is only recently that HuR’s participation in nuclear events has been recognized [13]. 

An increasing number of reports indicate the active involvement of HuR in nuclear mRNA processing 

events (splicing and polyadenylation) and in export of target mRNAs to the cytoplasm [21,22]. 

Connected to its multi-faceted role in post-transcriptional events, HuR has an important role in cellular 

physiology as it regulates many cellular processes, including cell cycle, differentiation, apoptosis and 

DNA damage response [23,24].  

A breakthrough in the study of the assemblies of cellular mRNAs with their RNA-binding proteins 

(referred to as the Ribonome) was the application of the Ribonomics platform by Keene’ lab [25]. This 

provided the ground to study, at genome-wide level, the mRNA transcript population associated with a 

specific RBP, ascribed to a particular cell type and growth state. The Ribonomics platform (RIP-Chip 

assay) refers to Ribonucleoprotein (RNP) ImmunoPrecipitation (RIP) followed by microarray (Chip) 

analysis. The first step (RIP assay) is the application on a cell extract of an antibody targeting a 

selected RNA-binding protein and subsequent RNA isolation from the immune pellets. In the second 

step (Chip analysis) the microarray and computational analysis of the isolated RNAs is taking place. 

The RIP-Chip method has been applied to a constantly increasing number of RBP proteins by 

immunoselecting their respective RBP-RNP complexes isolated under conditions that preserve their 

integrity and allows identification of the kinetically stable RBP-RNP-mRNA population [26].  

RBP-specific RNA transcripts have been also investigated, using high stringency conditions on the 

immunoselected RBP-RNP complexes to eliminate any associated proteins [26]. Advanced methods 

are currently applied to yield, in addition, the binding sites at nucleotide resolution of the target 

mRNAs. These refer to the Cross-Linking and ImmunoPrecipitation (CLIP) assays and the modified 

iCLIP method that provide information on the stably as well as transiently RBP protein interacting 

mRNAs [27–29]. A modified method named Photoactivatable ribonucleoside-enhanced CLIP  

(PAR-CLIP) is in use that also permits detection of the RBP-binding sites on the target mRNA [30]. 

The basis of the RIP-Chip application in the present study stems from our recent reports for the 

existence of a broad range of interactions between HuR and hnRNP proteins existing within 

endogenous hnRNP/mRNP, as well as HuR assemblies, as they are obtained from extracts of 

mammalian (human/mouse) cell origin [31,32]. Specifically, we relied on our findings for the ability of 

HuR to associate in an RNA-dependent manner with immunoselected hnRNP A1-RNP (and hnRNP 

C1/C2-RNPs) nuclear complexes, as well as with cytoplasmic hnRNP A1-associated mRNPs. As we 

have been interested in the nuclear role of HuR, we performed the current follow up study aiming at 

mapping the sub-population of mRNA transcripts that were stably associated with the nuclear hnRNP 

A1-RNP complexes in the presence or absence of co-precipitated HuR. The RIP-Chip platform was 

applied on HuR-containing and HuR-lacking hnRNP A1-RNP complexes, as obtained from the nuclear 

fractions of HuR Wild Type (WT) and HuR Knock-Out (KO) Mouse Embryonic Fibroblast (MEF) 

cells [33]. We present here our findings on the identification of RNA transcripts having a differential 
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expression level in the nuclear RNA population and, subsequently, the hnRNP A1-RNP-bound targets 

for the HuR WT and HuR KO cells. The combined microarray and bioinformatics analysis also 

provided interesting Gene Ontology (GO) categories ascribed to the tested cell line. The application of 

Real Time quantitative (RT-q) PCR on selected mRNA targets assisted in validating the microarray 

data and, furthermore, in detecting the presence of spliced and pre-spliced mRNAs in the isolated 

hnRNP A1-RNP complexes. Through these findings, a novel definition of the HuR-dependent pattern 

of hnRNP A1-RNP-associated transcripts is provided. 

2. Results  

2.1. Ribonomic Profiling of hnRNP A1-RNP Complexes Isolated from Nuclear Extracts of  

HuR-Containing and HuR-Lacking MEF Cells 

The general strategy applied in the present study was based on our previous identification of  

hnRNP A1 (as well as hnRNP C1/C2) as associating with HuR [31,32] and we focused on the 

identification, amongst the plethora of reported HuR targets, of those that were in stable association 

with hnRNP A1-RNP complexes pre-existing in the nuclear extracts of mammalian cell origin. To 

apply the Ribonomics approach, hnRNP A1 was the protein of choice as a prototype, abundant protein 

component of hnRNP complexes [34] sharing with HuR a major nuclear localization and ability to 

shuttle between the nuclear and cytoplasmic cellular compartments [11,12,14]. To this end, we 

selected the cellular system of cultured mouse embryonic fibroblast (MEF) cells by taking advantage 

of the availability of a cell derivative completely devoid of HuR (HuR KO) [33]. The use of paired 

MEF cells either HuR WT or HuR KO, thus, provided a suitable experimental system to compare 

within purified nuclear hnRNP complexes any co-selected RNA species. Nuclear extracts, prepared 

under conditions that prevent dissociation of endogenous hnRNP complexes, were subjected to RNA 

immunoprecipitation (RIP assay) using the monoclonal 4B10 antibody targeting hnRNP A1, which is 

known to co-precipitate with A1 all other stably associated hnRNP components, including any 

additional RBPs, like HuR [31,35]. The subsequent identification of co-selected RNAs (pre- and 

mRNA transcripts, and also any non-coding RNAs) will, thereafter, be considered as potential target 

RNAs associated with endogenous hnRNP A1-RNP complexes, in the presence or absence of  

co-precipitated HuR. 

2.1.1. RNA Immunoprecipitation (RIP) Assay 

MEF nuclear extracts were first incubated with a mouse IgG2 fraction (same isotype of the 4B10 

hnRNP A1 antibody) that served as control IP (IgG-co) and, then, with the equivalent amount of the 

4B10 antibody. Triplicate experiments were performed on an equal number of HuR WT and HuR KO 

cells. The immunoselected nuclear hnRNP A1-RNPs and their respective IgG-control assays from 

either HuR WT or HuR KO cells, together with an aliquot of the nuclear extract taken prior to IP, were 

the basis of obtaining the RNA population for subsequent microarray analysis. 

To test the specificity and efficiency of the anti-hnRNP A1 IP reactions, in direct comparison to the 

IgG-control assays, and to verify the presence or absence of co-precipitated HuR we applied western 

blotting analysis on an aliquot of the immunoselected nuclear RNP complexes. A representative 
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picture referring to one of the triplicate IPs on HuR WT and HuR KO nuclear extracts is shown 

(Figure 1). In HuR WT cells hnRNP A1 was detected with high specificity and efficiency in the  

anti-hnRNP A1 pellets, alone, as was also the case of the co-selected HuR. As anticipated, in the HuR 

KO cells there was a complete lack of HuR in the nuclear extract and, therefore, in the corresponding 

hnRNP A1-RNP complexes. Despite the lack of quantitative estimates, a gross comparison of input 

and precipitated (α-A1) protein levels, made within the same western blot, indicated roughly 

comparable amounts of hnRNP A1 in the nuclear extract and the immune pellets alike, in HuR WT 

and HuR KO extracts. This appeared to be the case of another major protein of hnRNP complexes;  

the hnRNP L. 

Figure 1. Verification of the specificity and efficiency of the anti-hnRNP A1 

Immunoprecipitation (IP) reactions. IPs were performed on nuclear extracts obtained from 

both HuR WT (a) and HuR KO (b) MEFs by applying either the mouse monoclonal  

anti-hnRNP A1 (4B10) antibody or the mouse IgG2 purified immunoglobulin of same 

isotype as the anti-hnRNP A1 antibody that served as control IP (IgG-co). Proteins present 

in the input and immune pellets were resolved by SDS-PAGE and transferred to 

nitrocellulose. Western blotting was performed using mouse monoclonal antibodies against 

HuR, hnRNP A1 and L. The cross-reacting mouse IgG light (IgGL) and heavy (IgGH) 

chains are also marked. A representative picture referring to one of the triplicate IP assays 

is shown. 

 

The RNA-extraction protocol was applied to all immune pellets (hnRNP A1-RNP and IgG-control 

assays) of HuR WT and HuR KO cells to obtain any tightly associated RNA transcripts, as well as to 

the nuclear extracts for the total nuclear RNA. Based on the estimated amount (OD260) of the isolated 

RNA from the triplicate experiments, the percentage (about 8%) of RNA isolated from the hnRNP  

A1-RNP pellets relative to their respective total RNA was similar between HuR WT and HuR KO 

cells. Contrary, a much lower amount of RNA (much below 0.2%) was obtained from the IgG-control 
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nuclear pellets, indicative of a highly specific IP reaction with practically undetected RNA background 

levels. This too low amount of isolated nuclear IgG-control RNA (alike in HuR WT and HuR KO cell 

cultures) could not meet the requirement of microarray analysis and was, thereafter, excluded from  

any further analysis. Instead, we relied on the total nuclear RNA expression levels in HuR WT and 

HuR KO cells in order to estimate the relative enrichment of the RNA transcripts within the 

immunoselected hnRNP A1-RNP complexes. 

2.1.2. Microarray (Chip) Analysis 

The isolated total nuclear RNA along with the hnRNP A1-RNP-associated RNA transcripts from 

either HuR WT or HuR KO cells were subjected to microarray analysis by the application of the 

Illumina MouseWG-6 platform combined with bioinformatics.  

Table 1. Top up- and down-regulated genes in HuR KO vs. HuR WT MEFs as indicated 

by microarray analysis on total nuclear RNA. Expression-fold changes and relevant  

p-values following t-test analysis are shown. 

 
Gene 

Symbol 
Definition p-value Fold increase/decrease 

U
p

-r
eg

u
la

te
d

 g
en

es
 

Pitx2 paired-like homeodomain transcription factor 2, 
transcript variant 2 

0.00503 90 

Psmd8 proteasome (prosome, macropain) 26S subunit,  
non-ATPase, 8 

0.00007 53 

Gm15698 predicted gene,transcription elongation factor B 
(SIII), polypeptide 2, non-coding RNA. 

0.00363 23 

Glrx1 Glutaredoxin 0.00080 21 

Parm1 prostate androgen-regulated mucin-like protein 1 0.00021 21 

Gfpt1 glutamine fructose-6-phosphate transaminase 1 0.00050 17 

Csprs cytokine receptor-like factor 1 0.00041 15 

Thumpd1 THUMP domain containing 1 0.00002 13 

Sorbs2 sorbin and SH3 domain containing 2 0.00298 13 

Mef2c myocyte enhancer factor 2C 0.00551 12 

D
ow

n
-r

eg
u

la
te

d
 g

en
es

 

Xlr4a X-linked lymphocyte-regulated 4A 0.00200 81 

Mmp3 Matrix metallopeptidase 3 0.00006 71 

Cyp7b1 cytochrome P450, family 7, subfamily b, 
polypeptide 1 

0.00143 69 

Rsad2 radical S-adenosyl methionine domain containing 2 0.00161 49 

Osr2 odd-skipped related 2 (Drosophila) 0.00032 48 

Tomm22 translocase of outer mitochondrial membrane 22 
homolog (yeast), nuclear gene encoding 
mitochondrial protein 

0.00012 42 

Atf4 Activating transcription factor 4 0.00098 32 

Mmp13 matrix metallopeptidase 13 0.00397 31 

Usp18 ubiquitin specific peptidase 18 0.00562 24 

Mmp10 matrix metallopeptidase 10 0.00190 23 
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We first compared the expression level of the detected total nuclear RNA transcripts between HuR 

KO and HuR WT cells by statistical analysis coupled to fold change filtering. In particular, t-test was 

performed (p-value < 0.05 and FDR < 0.05) and after setting a baseline of two-fold change in their 

expression level in KO vs. WT cells, we obtained a number of 529 differentially expressed transcripts, 

which are presented in the Table S1. This list of transcripts contained 261 up-regulated and  

268 down-regulated RNAs. In Table 1 the priority lists of most up- and down-regulated genes in the 

nuclear extract of HuR KO/HuR WT cells are shown. 

The differentially expressed RNA transcripts in the total nuclear RNA population in HuR WT and 

KO cells were subjected to Gene Ontology (GO) analysis on the basis of Biological Processes (BPs); a 

restricted number of BPs were likely to be affected by the HuR’s absence. More specifically, in the 

case of the up-regulated transcripts the prominent GOs referred to regulation of transcription, cell cycle 

and oxidation-reduction while discrete GO categories were ascribed for the down-regulated transcripts, 

affecting BPs like development, transport and apoptosis. 

We then proceeded to the identification of RNA transcripts associated with the hnRNP A1-RNP 

complexes in nuclear extracts of either HuR KO or HuR WT cells, aiming to identify enriched 

transcripts in the IP reactions, as compared to the input RNA (t-test: p-value < 0.05 and FDR < 0.05). 

To assign any of these transcripts as true target genes of the immunopurified complexes, we 

considered that their enrichment, calculated as the relative abundance in the IP reaction compared to 

the corresponding expression level in total nuclear RNA, should be above 2. In this way, we have 

directly related the association of the hnRNP A1-RNP transcripts to their expression level in the total 

nuclear RNA population. As anticipated, Gapdh mRNA, serving as an abundant mRNA and a reported 

non-target of HuR and of hnRNP A1-RNP complexes [17,36] was identified as a low contaminant  

(<2 fold) in our isolated hnRNP A1-RNPs, in HuR KO and WT cells alike. 

Following the application of a high stringency enrichment score (IP vs. total nuclear RNA > 2), we 

obtained 601 nuclear transcripts stably associated with HuR WT hnRNP A1-RNPs and 731 transcripts 

in the HuR KO complexes. These numbers corresponded to 2.1% and 2.4% of the total genes on the 

IlluminaBeadChip platform for HuR WT and HuR KO cell types, respectively. The targets with the 

highest enrichment scores depicted an up to 5-fold increase in the IP reaction as compared to total 

RNA. Moreover, as seen in Table 2, a larger number of hnRNP A1-RNP-associated transcripts in the 

high range of 4 to 5-fold change were seen in the case of HuR KO compared to HuR WT RNP 

complexes (22 and 3 transcripts, respectively). 

2.2. Differential Association of Target RNA Transcripts with hnRNP A1-RNP Complexes in Nuclear 

Extracts of HuR-Containing and HuR-Lacking MEFs 

Thus far, the microarray data analysis provided a list of hnRNP A1 targets in HuR-containing (WT) 

and HuR-lacking (KO) nuclear RNP complexes. This allowed us to proceed to estimates of their 

differential association in the two cell types. We stress again that as target genes we considered those 

with a relative abundance in IP pellets, as compared to total RNA, greater than 2-fold. As a 

representative case of this normalization effect we refer here to the Gbp2 mRNA; its expression level 

was significantly affected in the HuR KO compared to HuR WT cells while it had the same degree of 

enrichment in the IP pellets of the two cell types (see Table S2 and sub-section 2.3.). If we had not 



Int. J. Mol. Sci. 2013, 14 20263 

 

 

normalized for its nuclear expression level, Gbp2 mRNA would have appeared, instead, with a reduced 

association in the HuR KO IP pellets as a result of its reduced expression. 

Table 2. List of the most enriched hnRNP A1-RNP-associated transcripts (fold change 

enrichment >4) in HuR WT and HuR KO MEFs. 

 Gene Symbol Definition p-value Enrichment 

T
op

 T
ar

ge
ts

 in
 

H
u

R
 W

T
 Ppp1r11 protein phosphatase 1, regulatory (inhibitor) 

subunit 11 
0.00041 4.90 

Pdcd5 programmed cell death 5 0.00412 4.78 

Auh AU RNA binding protein/enoyl-coenzyme A 
hydratase 

0.00822 4.26 

T
op

 T
ar

ge
ts

 in
 H

u
R

 K
O

 

Serf1 small EDRK-rich factor 1 0.00029 5.52 

Gm4832 predicted gene Gm4832 0.00018 5.38 

Dynlt3 dynein light chain Tctex-type 3 0.00361 5.18 

Ccnh cyclin H 0.00072 5.03 

Spp1 secreted phosphoprotein 1 0.00006 5.01 

Uchl5 ubiquitin carboxyl-terminal esterase L5 0.00004 4.97 

Mrps18c mitochondrial ribosomal protein S18C 0.00002 4.84 

Hspe1 heat shock protein 1 (chaperonin 10) 0.00008 4.83 

Ndufa2 NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, assembly factor 2 

0.00047 4.81 

Tnfaip8 tumor necrosis factor, alpha-induced protein 8 0.00781 4.81 

Etfa electron transferring flavoprotein, alpha 
polypeptide 

0.00035 4.76 

Rps3a ribosomal protein S3a 0.00271 4.66 

Dazap2 DAZ associated protein 2 0.00008 4.53 

Cfdp1 craniofacial development protein 1 0.00169 4.52 

Rexo2 REX2, RNA exonuclease 2 homolog  
(S. cerevisiae) 

0.00016 4.45 

Naca nascent polypeptide-associated complex alpha 
polypeptide 

0.00021 4.41 

Gnpda2 Glucosamine-6-phosphate deaminase 2 0.00008 4.34 

1810022K09Rik RIKEN cDNA 1810022K09 gene 0.00000 4.22 

Auh AU RNA binding protein/enoyl-coenzyme A 
hydratase 

0.00258 4.19 

Hspa8 Heat shock protein 8 0.00126 4.16 

Cox20 COX20 Cox2 chaperone 0.00121 4.04 

Ppp1r11 protein phosphatase 1, regulatory (inhibitor) 
subunit 11 

0.00287 4.01 

This first analysis of target genes for HuR WT and HuR KO cells is shown in the Venn diagram 

(Figure 2a) that indicated the presence of distinct groups, common and exclusive. We note that as 

common transcripts we considered those ascribed with an equal or differential association level in the 

hnRNP A1-RNPs of the two cell types. The percentage of the exclusive group of target genes was 

higher in HuR KO (49%) relative to HuR WT cells (40%).  
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In order to address the RNA targets related to HuR, we performed hierarchical clustering on  

the union of the identified hnRNP A1-RNP-associated transcripts in HuR WT and HuR KO cells 

(Figure 2b). This direct comparison showed that the bulk of identified transcripts had a relatively high 

enrichment level (>1 in log2 scale) in both cell types, indicative of their stable association with the 

isolated RNP complexes that was independent of the presence or absence of HuR. Clearly, however, 

there were two distinct groups of RNA transcripts affected by HuR (showing either increased or 

reduced association). In line with the data presented in the Venn diagram, there was a larger group of 

transcripts having increased association with the hnRNP A1-RNPs in HuR KO and reduced in HuR 

WT cells, compared to the reverse case. 

Figure 2. hnRNP A1-RNP-associated RNA targets in nuclear extracts of HuR WT and 

HuR KO MEFs (a) Venn Diagram representing the comparison of target genes between the 

two cell types following microarray data analysis; (b) Hierarchical clustering on the union 

of the identified RNA targets in HuR WT and HuR KO cells, depicting their differential 

association with hnRNP A1-RNP complexes in both cell types. Their expression fold 

change in total RNA is shown in a separate heat map on the right. 

 

The identity of all associated RNAs in HuR KO against HuR WT cells, based on the degree of their 

enrichment (in the range between 4 to 0.1 fold changes), is presented in Table S2. For the sum of  

973 target genes in both cell types, an estimated number of 670 (over 50%) were in the range of 1.40 

to 0.70 and were considered as RNA transcripts practically non-affected by the absence of HuR. 

Furthermore, 336 and 160 transcripts had a fold change in their enrichment over 1.40 or below 0.70 

and were taken to represent target genes with increased or reduced association, respectively. This was 

again in line with the data on the hierarchical clustering presented in Figure 2b, showing a larger 
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fraction of RNA transcripts with increased association in the HuR-lacking compared to  

HuR-containing hnRNP A1-RNP complexes. 

In an effort to further investigate the influence of HuR’s presence on the regulation of the target 

genes, we compared the list of differentially expressed transcripts in total RNA presented in Table S1 

to the one of hnRNP A1-RNP-associated targets presented in Table S2. Only 29 common genes were 

found. Even when relaxing the statistical criteria while retaining the expression fold change cut off at 

the level of 2-fold, the number of common genes remains small, as only 88 genes characterized as 

hnRNP A1-RNP targets displayed a significant alteration at the level of gene expression (Table S3). 

For a more detailed bioinformatic analysis, we provide for the entire list of the identified targets their 

expression fold change in the total nuclear RNA population of HuR KO vs. HuR WT cells, represented 

by the separate heat map in Figure 2b. By all means of comparison, we deduced that only a small 

fraction (<10%) of the target genes associated with the IP pellets of HuR KO and HuR WT cells were 

affected by the absence of HuR at the level of gene expression in the total nuclear RNA population. 

For the purpose of gaining further insight concerning the biological functionalities of RNA 

transcripts in association with the immunopurified hnRNP A1-RNP complexes in HuR WT and HuR 

KO cells, the list of identified targets were subjected to GO analysis focused on the GO category of 

“Biological Processes” (BPs). The GOs ascribed to the nuclear hnRNP A1-RNP-associated target 

genes separately for the HuR WT and HuR KO cells are given in Table 3. A larger number of GOs 

were provided for the RNP-associated targets compared to those of differentially expressed transcripts 

in total nuclear RNA. Of special interest was the finding that most of the annotated nuclear transcripts 

appeared to affect BPs relevant to those anticipated for hnRNP A1 and HuR biological  

functioning [1,2,13,24]. With respect to HuR WT cells, we note the prominent presence of BPs related 

to post-transcriptional (such as translation, RNA splicing, mRNA processing, transport), as well as 

transcriptional events. In the case of HuR KO cells, of special interest was the appearance of unique 

cases of BPs, such as apoptosis, cell cycle, DNA repair, cell division and mitosis. 

2.3. Validation by RT-qPCR of Selected mRNA Targets: Presence of Spliced and Pre-Spliced mRNAs 

in Isolated hnRNP A1-RNP Complexes 

The validity of the microarray data in defining target genes associated with HuR-containing and 

HuR-lacking hnRNP A1-RNP complexes was tested by RT-qPCR. We selected for validation 8 target 

genes with likely relevance to hnRNP A1 and/or HuR biological function shown in Table 4. These 

referred to transcription and RNA processing factors, genes involved in DNA repair, immune 

response, cell cycle regulation and development. The mRNAs of the target genes selected for 

validation had a differential hnRNP A1-RNP association level (either increased or reduced) or a minor 

change in HuR KO/HuR WT cells, as depicted in Table 4 by their ratio of enrichment (see also  

Table S2). 
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Figure 3. Validation of RIP-Chip data (a) RT-qPCR on RNA isolated from hnRNP A1 IPs 

and total nuclear extracts was performed to calculate the enrichment of mRNA for 8 target 

genes in HuR WT and HuR KO cells, namely Hoxc10, Rad23a, HnRNP A1, Gbp2, Ccnh, 

Mea1 and Tceal5 and compared to the microarray analysis; (b) Gapdh mRNA was used for 

normalization. The signal for Tceal5 mRNA transcript in HuR WT cells remained at the 

background level. Values represent the mean of three independent experiments performed 

in triplicates and error bars the standard deviations; (c) Fold change in expression of the 

selected genes in HuR KO as compared to HuR WT cells as determined by RT-qPCR on 

total nuclear RNA from the two cell types. Values and error bars are as described above. 

Genes with an expression fold change <1 correspond to down-regulated genes and are 

graphically shown in the opposite direction; (d) Agarose gel electrophoresis of the products 

of two RT-qPCR reactions, namely for Tceal5 and Mea1 transcripts, indicating that Tceal5 

mRNA was undetected in HuR WT cells even after extension of the reaction cycles. The 

amplicon corresponding to Mea1 is shown as a positive control.  

 

In the RT-qPCR reaction, the gene specific pair of primers (File S1) was designed to span an  

exon-exon junction and to yield the spliced product, alone. The RNA obtained from the triplicate 

experiments on HuR WT and HuR KO cells was used to estimate the actual mRNA levels of the 

selected target genes both in the total nuclear RNA population and in the RNA fraction associated with 

the hnRNP A1-RNP complexes (IPs). The level of Gapdh mRNA was used as an internal  

non-target normalization index in the qPCR reaction. On the basis of the estimated mRNA enrichment 



Int. J. Mol. Sci. 2013, 14 20267 

 

 

in IP reactions by RT-qPCR (Figure 3a), as well as by microarray analysis (Figure 3b), a good 

correspondence could be inferred for the validated genes. In both cases, the enrichment of hnRNP A1 

mRNA targets in the RNP complexes was obtained in relevance to the expression level of the validated 

gene in the total nuclear RNA and they thus reflected upon any change in their association state. In 

sum, six genes showed an increased (Ccnh, Tceal5, Ccnc) or reduced (Hoxc10, Rad23a, Mea1) 

association with the HuR-lacking hnRNP A1-RNP complexes, while two (hnRNP A1, Gbp2) had 

minor changes in their association state in the two cell types. In addition, an indication of the changing 

ratio in the expression level of the validated mRNAs in total nuclear RNA in HuR KO vs. HuR WT 

cell is presented (Figure 3c). As seen, three mRNAs had major changes in their expression level, either  

up-regulated (Rad23α) or down-regulated (Hoxc10 and Gbp2), while the rest had a relatively slight 

increase in HuR KO. The direct comparison between the hnRNP A1-RNP-associated mRNAs and 

their expression level in the nuclear RNA population brought up some interesting findings. In HuR 

WT, in contrast to HuR KO, cells the Tceal5 mRNA was considered a non-target transcript (below the 

baseline level) by microarray analysis and was, also, totally undetected by RT-qPCR (both in the total 

nuclear RNA and the IP pellets) (Figure 3d). A first indication of the low expression of Tceal5 gene in 

HuR WT cells was its detected p-value (>0.01) based on the microarray data, suggesting that it could 

be characterized as absent. However, Tceal5 mRNA was clearly identified in HuR KO cells and, 

moreover, had a high affinity for the respective hnRNP A1-RNP complexes (Figure 3a,b). Another 

case of interest was that of Rad23α mRNA, that while highly induced in the nuclear RNA of HuR KO 

cells, had a reduced affinity for the corresponding RNP complexes. Of the two mRNAs  

down-regulated in the HuR KO nuclear RNAs, Hoxc10 had a parallel significant reduction in the 

isolated hnRNP A1-RNPs while the affinity of Gbp2 mRNA, as also mentioned above  

(sub-section 2.2.), was practically unaffected. Of the remainder validated genes with a relatively small 

change in their nuclear mRNA levels between the two cell types (Ccnh, Ccnc and hnRNP A1), we 

point to a disproportional increase in Ccnh mRNA affinity for the HuR-lacking RNP complexes 

(compare histograms in Figure 3a–c). 

The early loading of the hnRNP proteins on the nascent RNA pol II transcripts of pre-spliced 

mRNAs has been well documented [1,2]. This is also the case of HuR that binds pre-mRNA  

forms [37] and, as inferred from our previous findings, has the ability to associate (in addition to RNA 

processed low-salt-released nuclear hnRNPs) with the nuclear matrix-bound and chromatin-released 

hnRNP A1-RNP complexes; the latter anticipated to represent more nascent transcripts [31]. We, thus, 

searched for the presence, within the immunoselected nuclear hnRNP A1-RNPs of the pre-mRNA 

forms corresponding to three of the validated mRNA transcripts (Tceal5, Ccnh and Gbp2). RT-qPCR 

assays were repeated on the nuclear RNA population and the immunoprecipitated RNAs of HuR WT 

and HuR KO cells by designing pairs of RNA primers (File S1) so that one primer  

per pair aligned within an exon and the other in the neighboring intron to amplify the unspliced,  

pre-mRNA product. As seen in Figure 4a, the pre-mRNA form of the tested genes was clearly 

identified, in the RNA pool and the IP pellets of both cell types. Control reactions without reverse 

transcriptase were performed to exclude the amplification of contaminated DNA. This finding, 

therefore, indicated the integrity and stability of our immunopurified nuclear hnRNP A1-RNP 

complexes by their ability to sustain binding of both pre- and spliced mRNAs. 



Int. J. Mol. Sci. 2013, 14 20268 

 

 

An unexpected finding of the above assay was the detection of the Tceal5 pre-mRNA in both  

HuR-lacking and HuR-containing cells, in clear opposition to the absence of its mature mRNA in HuR 

WT cells (compare Figures 3c and 4a). The schematic diagram of Figure 4b, outlines the Tceal5 gene 

organization consisting of three exons (E1–E3). Exons E1–E2 and the two intervening sequences  

(I1 and I2) are located at the 5' end, while exon E3 contains the open reading frame (ORF) and the 

3'UTR of the gene. In the spliced mRNA, the joined E1–E2 exons form the major part of a 5'UTR 

region. The pair of primers pE1/pI1 that corresponded to the first exon (E1) and intron (I1) was 

initially used to detect the Tceal5 pre-mRNA product shown in Figure 4a. Moreover, the application of 

a second pair of primers located in intron I2 and exon E3 (pI2/pE3) was able (as in the case of the 

pE1/pI1 pair) to amplify a Tceal5 pre-mRNA product, as shown in Figure 4b upon the parallel 

application of both pair of primers. Based on the above, we have confirmed the association of Tceal5 

pre-mRNA with the hnRNP A1-RNP complexes in both HuR WT and HuR KO, with the spliced 

mRNA being unique to the HuR KO cells. The simplest way to interpret this interesting finding is to 

hypothesize a post-transcriptional regulatory mechanism operating on the Tceal5 gene, at the level of  

pre-mRNA splicing. 

Figure 4. Detection of pre-mRNAs of Tceal5, Gbp2 and Ccnh in hnRNP A1 IPs.  

(a) RT-PCR using primers specific for the unspliced transcripts were used to detect the  

pre-mRNA forms of the tested genes, as identified both in the total nuclear RNA and in the 

IPs of HuR WT and HuR KO cells. Control reactions in the absence of reverse 

transcriptase, to exclude the amplification of contaminated DNA, are also shown;  

(b) Schematic representation of the Tceal5 gene organization, showing the position of the 

primers used to amplify the Tceal5 pre-mRNA. RT-qPCR verification, using two different 

pairs of primers, of the Tceal5 pre-mRNA in IPs and total nuclear RNA in both cell types 

(in contrast to the spliced transcript detected only in HuR KO cells; Figure 3d). 
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Table 3. Gene Ontology (GO) Analysis; the hnRNP A1-RNP targets identified in HuR WT 

and HuR KO MEFs were submitted to GO analysis, elucidating over-represented GO BP 

terms. p-value represents the hypergeometric test p-value score for each GO term. 

Enrichment represents the ratio of the number of times a GO term occurs in each list of 

target transcripts to the number of times this GO term exists in the list of the  

Illumina BeadChip. 

 GO Annotation p-value Enrichment

T
ar

ge
ts

 in
 H

u
R

 W
T

 

Translation  0.00000000001 32/228 

protein transport 0.00000000039 26/435 

protein folding 0.00000000234 12/99 

intracellular protein transmembrane transport 0.00000000797 9/56 

RNA splicing 0.00000002600 14/166 

transport 0.00000007535 49/1500 

metabolic process 0.00000014388 26/574 

mRNA processing 0.00000014604 15/216 

transcription 0.00000115190 44/1412 

response to oxidative stress 0.00000167931 6/40 

oxidation reduction 0.00000416171 22/527 

protein catabolic process 0.00000510429 5/31 

regulation of transcription, DNA-dependent 0.00000672647 44/1512 

electron transport chain 0.00001006502 8/94 

translational initiation 0.00001094670 4/21 

T
ar

ge
ts

 in
 H

u
R

 K
O

 

translation 0.00000000006 32/228 

transcription 0.00000000007 68/1412 

protein transport 0.00000000008 36/435 

regulation of transcription, DNA-dependent 0.00000000009 71/1512 

Ubiquitin-dependent protein catabolic process 0.00000000016 30/441 

apoptosis 0.00000003281 23/354 

transport 0.00000009805 56/1500 

cell cycle 0.00000053421 23/412 

vesicle-mediated transport 0.00000090952 12/134 

response to DNA damage stimulus 0.00000377796 13/176 

DNA repair 0.00000923405 12/165 

small GTPase mediated signal transduction 0.00004585070 12/192 

oxidation reduction 0.00009243521 22/527 

cell division 0.00040989564 11/209 

Mitosis 0.00095668335 8/140 

intracellular protein transport 0.00134751563 8/147 

mRNA processing 0.00184940082 10/216 

RNA splicing 0.00308169664 8/166 

metabolic process 0.00382078845 19/574 
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Table 4. List of mRNA targets selected for validation by RT-qPCR. The fold change in 

enrichments, observed in HuR KO as compared to HuR WT cells, is shown in the last 

column, where values close to 1 (1.4–0.7) indicate similar enrichments between the two  

cell types. 

Gene 
Symbol 

Definition Features 
Ratio of Enrichments 

KO/WT 

Tceal5 
transcription elongation 
factor A (SII)-like 5 

Relief of transcription arrest by 
pol II; chromatin modification 

3.52 

Ccnh 
cyclin H Transcription-coupled repair; 

meiotic progression;  
embryonic development 

2.77 

Gbp2 
guanylate binding protein 
2 

Member of GTPases;  
immune effector 

1.23 

Hoxc10 
homeo box C10 Embryonic development;  

cellular transformation 
0.55 

Rad23a 
RAD23a homolog  
(S. cerevisiae) 

DNA damage response; 
proteasome degradation;  
oxidative stress 

0.57 

HnRNP A1 
heterogeneous nuclear 
ribonucleoprotein A1 

Prototype hnRNP protein; RNA 
processing (splicing and  
nuclear export) 

1.84 

Ccnc 
cyclin c Cell cycle progression  

and apoptosis 
2.38 

Mea1 Male-enhanced antigen 1 Mouse spermatogenesis 0.38 

3. Discussion 

Our present study is the first report on the application of a holistic approach to identify the  

HuR-dependent pattern of hnRNP A1-RNP-associated RNA transcripts, using Ribonomics on  

HuR-containing and HuR-lacking MEF cells. By taking into account that the bulk of cellular HuR, as 

for most of hnRNPs, resides in the nucleus [19,20] and that the cytoplasmic role of HuR has been, so 

far, mostly scrutinized [13,17], we focused here on mapping the sub-population of mRNA transcripts 

in stable association with nuclear hnRNP A1-RNP complexes in the presence or absence of  

co-precipitated HuR. 

Several reports already exist on the application of the RIP-Chip platform on immunoselected either 

hnRNP- [36] or HuR- [38,39] RNP complexes (as well as hnRNP- and HuR- RNP assemblies [37,40]), 

in a number of cellular systems and under different growth states. Since so far, the hnRNP A1 as well 

as HuR mRNA targets have been tested on RNAs obtained from whole-cell lysates or cytoplasmic 

extract of a variety of mammalian cell types [36,37,39], our study is unique in this aspect as it focused 

on the nuclear compartment, alone. The most relevant to our work report is that of Katsanou et al., [33] 

that provided a list of mRNAs with a differential expression in whole cell extracts obtained from HuR 

WT and HuR KO MEF cells. Having used in the present study the same MEF cells, we stress again the 

novelty of our approach to determine the sub-population of HuR-dependent RNA transcripts 

associated with nuclear hnRNP A1-RNP complexes. Considering the fact that in the above report [33] 

the RNA population subjected to microarray analysis was obtained from a whole cell extract, which is 
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anticipated to be mostly enriched in the cytoplasmic mRNA pool, we performed a comparison between 

the lists of significantly differentiated genes reported in [33] and our present study (Table S1). The 

number of common genes was limited, as only 22 genes exhibited altered expression in both studies. 

This could be due to the aforementioned different origin of the examined RNA, but also to the 

different cut offs applied in each study. For this reason, we applied the lower fold change cut off of 1.5 

used by Katsanou et al. [33] (instead of 2) and less strict statistical criteria; the number of genes 

exhibiting altered expression in both studies raised to 102, which corresponds to 28% of the 

differentiated genes reported in [33].  

The Biological Processes affected by the absence of HuR, as indicated by the GO analysis of these 

genes, mainly relate to development, regulation of transcription and immune response. 

As our main effort was to define the RNA components of hnRNP A1-RNP complexes from HuR 

WT and KO cells, we have not looked into any possible alterations in the protein composition of the 

isolated complexes. Nonetheless, we have commented in the Results on the apparent absence of major 

changes in the nuclear level of hnRNP A1 in the HuR-containing vs. HuR-lacking cells. An indirect 

support of the above claim was also provided by the microarray-based quantitative estimates of hnRNP 

A1 mRNA itself, as similar amounts were found between HuR WT and HuR KO nuclear extracts and 

in the respective IP pellets. The existence of other type of translational as well as post-translational 

(e.g., protein phosphorylation or methylation) effects cannot be excluded. We also inferred from 

Figure 1 that a relatively small fraction of the nuclear HuR protein was associated in an  

RNA-dependent manner with the isolated hnRNP A1-RNP complexes. HuR (and hnRNP A1 alike) are 

well known multifunctional proteins participating in several macromolecular assemblies by forming 

protein-RNA as well as protein-protein interactions [2,13]. As also illustrated by RIP-Chip and iCLIP 

studies [22,41,42], the HuR RNA targets represent a large portion of the transcriptome (about 15%). 

We conclude from the above that the HuR-dependent RNA targets of the hnRNP A1-RNP assemblies 

reported in the present work represent a minor sub-fraction of the total HuR-bound nuclear targets. 

With respect to the differential gene expression in HuR KO vs. HuR WT nuclear extracts, special 

reference is made to the genes up-regulated in HuR KO with a role in transcription, proteasome 

assembly, cell signaling and myogenesis. In the down-regulated RNA transcripts we note the high 

ranking of matrix metallopeptidases and ubiquitin specific peptidases functioning in the degradation of 

extracellular matrix and progression of inflammatory responses, as well as the members of the 

cytochrome P450 family having a role in detoxification. After normalizing for the expression level of 

RNA transcripts in the nuclear pool of HuR WT and HuR KO cells, the nature of the mRNA targets 

and their degree of enrichment in the hnRNP A1-RNPs of either cell type have been clearly linked to 

their affinity for the isolated RNP complexes. As seen in the priority list of the top HuR WT and HuR 

KO RNA targets (Table 2), only the AU RNA binding protein coenzyme A hydratase exhibited high 

affinity (fold change enrichment >4) in both HuR WT and HuR KO cells. The great majority of the 

targets had a high enrichment in HuR KO cells and included genes relevant to the discrete GOs 

uniquely seen in the HuR KO cells, with special reference to those affecting the ubiquitin-dependent 

protein catabolic process, apoptosis, cell cycle, DNA repair, cell division and mitosis. It is worth 

noting here a recent study [43] where the GO analysis of HuR-interacting transcripts revealed an 

unexpected striking enrichment for members of the ubiquitin ligase conjugation pathway that led the 

authors to suggest a new role of HuR in the regulation of protein degradation. Regarding DNA repair, 
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it is worthwhile mentioning that Rad23a, a critical enzyme in Nucleotide Excision Repair [44], and 

Ccnh, a major component of TFIIH in Transcription Coupled Repair [45], are mRNAs targets strongly 

enriched in the hnRNP A1-RNP complexes of HuR KO cells. These findings are in line with the 

emerging role of RNA-binding proteins, including HuR and members of the hnRNPs (hnRNP B1, 

C1/C2, K), in the cellular response to genotoxic stress via modulation of the capacity of the DNA 

repair enzymes [46–49] and they thus deserve further investigation. 

By all relevant reports, HuR and hnRNP proteins can simultaneously associate on common nuclear 

as well as cytoplasmic RNPs, through their joined binding (via RNA-dependent associations) on  

non-overlapping sites of the target RNA [37,50]. Along these lines are our current findings that 

amongst the target genes bound to nuclear hnRNP A1-RNP complexes in the HuR WT MEF cells, we 

have identified many known mRNA targets (by themselves or as members belonging to the same 

family) of either hnRNP A1 or HuR. We refer here to the hnRNP A1-associated mRNAs Mki67, 

serpine1, Whsc1, Tax1bp1, as well as the hnRNP A1 mRNA itself, a known hnRNP A1 mRNA  

target [36,51] in human keratinocytes Colo 16 cells [10] and K562 cells [36]. Among the reported 

HuR-associated targets are members of the Rad, Cdk and Cd family [37,52]. Based on this small group 

of examined transcripts, the validity of our experimental approach to ascribe the sum of the identified 

mRNAs as true targets of nuclear HuR-containing hnRNP A1-RNP particles in MEF cells has gained 

additional support.  

The absence of HuR had an overall greater impact on the hnRNP A1-RNP-bound RNA compared 

to its presence as supported by all findings (see also Venn diagram and Heat map in Figure 2). 

Currently, a possible way to interpret these findings would be that the lack of hnRNP A1-RNP-associated 

HuR may affect the turnover and overall RNA processing of a number of bound transcripts, and 

consequently lead to their nuclear retention. Given the recently strengthened participation of HuR in 

nuclear functions, involving splicing, polyadenylation [21,22,42], as well as its implicated role in 

mRNA export [53–55], we consider the possibility of a blockade or reduced rate in the nuclear 

processing for a subset of HuR-dependent pre-mRNA targets that remained bound to hnRNP A1-RNPs 

in the absence of HuR and do not exit the nucleus. In support of the above, the splicing of pre-mRNA 

is known to be coupled with mRNA export and defects in splicing can lead to nuclear sequestration 

and mRNA decay [53,56]. Thus, in the HuR KO cells nuclear retention of specific mRNA  

cargoes could take place. Considering the many alternate functions of HuR, and not only its 

stability/translational activity in the cytoplasmic compartment, defects in pre-mRNA splicing and/or 

polyadenylation events or changes in ARE-mediated properties might be involved in altering mRNA 

export activity of HuR KO cells. Overall, the recognition of a significant change in the associated 

RNA transcripts (Table S2) is suggestive of a dynamic composition of hnRNP A1-RNPs in relation to 

HuR’s presence that is expected to affect, directly or indirectly, the many cellular functions regulated 

by HuR. We should also consider at this point the possibility that this rather drastic reprogramming of 

gene expression in the absence of HuR may be related, to a greater or lesser degree, to the cellular 

adaptation rather than being related directly to HuR deficiency. As this pivotal study opens new fields 

of analysis worth investigated in future studies, we believe that such relevant questions can be 

experimentally approached. 

In addition to the cytoplasmic functioning of HuR in regulating the stability, translation or both of 

the bound mRNAs [15,16], its potential for a greater than initially anticipated nuclear impact in  
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post-transcriptional regulatory processes is currently gaining a lot of attention. Based on studies with 

individual mRNAs, HuR has been initially implicated in regulating alternative pre-mRNA splicing and 

cleavage/polyadenylation events [13,21,42,57,58]. At a transcriptome-wide level, the recently applied 

combined methods of PAR-CLIP and RIP-Chip assays unraveled a surprisingly large number of  

RNA-HuR interactions occurring in introns (1/3 of all associations) with many of them in the 

proximity of 3' splice sites [22,41,42]. Direct comparison of the two methods showed an extensive 

overlap of the identified HuR targets and, furthermore, led to the conclusion that the RIP-Chip method 

can indeed identify authentic targets of cellular HuR. 

We have commented in the Results on the detection of the pre-mRNA version for few RT-qPCR 

validated mRNA transcripts within the immunoselected hnRNP A1-RNPs. This indicates that not  

only the processed mRNAs but also their pre-spliced forms have an affinity for the isolated hnRNP 

A1-RNP assemblies from the nuclear extracts. A particular, distinct case in support of a direct or 

indirect (via another interacting component) involvement of HuR in nuclear mRNA processing was 

that of the Tceal5 mRNA transcript, a member of the Tceal family functioning as RNA polII 

elongation factors. As also outlined in the Results, Tceal5 pre-mRNA, although associated with 

hnRNP A1-RNP complexes in both HuR WT and HuR KO cells, did not process to mature mRNA in 

the presence of HuR. Most likely, removal of HuR from the RNP complexes released this blockage, 

which suggests a post-transcriptional regulatory mechanism of HuR via competition with hnRNP 

proteins, possibly at the level of splicing. Similar to Tceal5, additional cases of HuR’s participation in 

the regulation of gene expression at the post-transcriptional level might be unraveled in future studies. 

Finally, in our present study we have chosen to work on two essential multifunctional RBP proteins; 

HuR a known major modulator in inflammation as well as cancer and hnRNP A1 a prototype hnRNP 

protein involved in splicing (mainly alternative splicing) that also exhibits altered expression in 

carcinogenesis. We believe that expanding the current study on MEF cells to include other cell types, 

such as macrophages and epithelial cell cultures, could possibly provide for new biological markers for 

disease diagnosis and prognosis, as well as novel molecular targets for therapeutic intervention. 

4. Experimental Section  

4.1. Experimental Cellular System 

The initial construction of the HuR knockout (KO) mouse embryos and the isolation of Mouse 

Embryonic Fibroblast (MEF) cells from the E12.5 stage of either HuR WT or HuR KO  

embryos has been described before, as is their maintenance in cell culture [33]. HuR WT and HuR KO 

MEF cells were the kind gift of DL Kontoyiannis (Dept. of Immunology, Alexander Fleming 

Biomedical Sciences Research Centre, Vari, Greece) and were maintained in exponential growth in  

D-MEM medium supplemented with 15% heat-inactivated FCS. The main phenotype of the HuR KO 

MEF cell culture, compared to the HuR WT, was their reduced growth rate (over twice the generation 

doubling time of HuR WT cells) and the requirement of plating at higher cell density  

upon sub-culturing. 
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4.2. Nuclear Extract Preparation 

Nuclear extracts were obtained from MEF cells using the classical protocol of Dreyfuss et al. [34] 

that is also known to preserve the integrity of isolated RNP complexes. Specifically, a frozen cell 

pellet of about 3 × 107 cells was resuspended in 750 µL buffer A (10 mM Tris-HCl, pH 7.5, 100 mM 

NaCl, 2.5 mM MgCl) in the presence of 1 mM PMSF and 0.5% Triton X-100. The cell suspension was 

allowed to stay on ice for 5 min with gentle shaking and cell lysis followed by homogenization in a 

glass homogenizer with 10 strokes, on ice. The homogenate was centrifuged at 4000 rpm, 10 min at  

4 °C in an Eppendorf centrifuge and the supernatant (representing the cytoplasmic extract) was 

removed. The nuclear pellet was, thereafter, resuspended in half the volume (350 µL) of buffer A 

without Triton X-100 and with the addition of 2 µg/mL protease inhibitor mix (leupeptin, pepstatin, 

aprotinin) (Sigma-Aldrich, St. Louis, MO, USA). After sonication (2 × 5 s) on ice, the resulted lysate 

was layered on top of two volumes of a 30% sucrose cushion in the same buffer used for nuclei 

suspension and centrifuged at 5000 rpm, 15 min at 4 °C. The new supernatant (nuclear extract) was 

carefully collected from the top of the sucrose cushion and immediately frozen in liquid nitrogen. A 

similar extraction protocol was performed on triplicate experiments for HuR WT and HuR KO cells, 

alike. Protein estimates with the BioRad reagent were performed on a small aliquot of the nuclear 

extract. The total nuclear protein corresponding to the 3 × 107 cell pellet of either HuR WT or HuR KO 

cultures was about 2.5–3.0 mg. 

4.3. RNA Immunoprecipitation Coupled with Microarray Analysis—RIP-Chip Assay 

4.3.1. RNA Immunoprecipitation (RIP) Step 

Fractionated nuclear extracts from the triplicate experiments (each containing about 3 × 107 cells) 

were subjected to immunoprecipitation (IP) assays applying the basic procedure used before [31] 

slightly modified according to the protocol of Baroni et al. [59]. All steps took place at 0 to 4 °C, 

starting with the preparation of antibody coated protein A-sepharose (PAS) bead matrix  

(Sigma-Aldrich, St. Louis, MO, USA). 10 µg of either the mouse monoclonal anti-hnRNP A1 (4B10) 

antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA), or the mouse IgG2 purified 

immunoglobulin of same isotype as the anti-hnRNP A1 antibody that served as control IP was 

incubated with 50 µL packed volume of PAS in 1 mL buffer A, overnight at 4 °C with gentle rocking, 

followed by extensive washing of the beads (4× in 1 mL buffer A) and short spinning at 4000 rpm in 

an Eppendorf centrifuge (Eppendorf, Hauppauge, NY, USA). Thereafter, the quickly thawed nuclear 

extracts were first clarified at 13,000 rpm, 10 min to remove any insoluble material and, then, brought 

to a final volume of 1 mL in buffer A with the addition of PMSF, EDTA, DTT, RNase out and 

placental RNase inhibitor at the amounts indicated in Baroni et al. [59]. Before IP, pre-clearing of the 

nuclear extracts was performed to reduce unspecific binding by 30 min incubation with PAS beads 

been pre-coated with 6 µg IgG2. After a quick spin to discard beads, extracts were transferred to a 

clean tube and a 100 µL (1/10th) aliquot removed and stored for subsequent RNA extraction. The 

remainder (900 µL) of the extract was mixed with the pre-coated PAS-IgG2 bead matrix and incubated 

for 2 h at 4 °C, with rocking. The PAS-IgG2 pellets were collected by a quick spin and kept on ice, 

while the resulted supernatant was transferred to the matrix of the anti-hnRNP A1 beads and incubated 
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for an additional period of 2 h at 4 °C. After a final spin to obtain the anti-hnRNP A1 immune pellets, 

all IPs (including those of control IgG2) were extensively washed in NT2 buffer (50 mM Tris-HCl, pH 

7.4, 150 mM NaCl, 1 mM MgCl2, 0.05% NP-40) with 1 mM PMSF, 5 times with a 5 min interval  

in between. 

4.3.2. RNA Extraction Step 

The immune pellets (IPs) and stored nuclear aliquots were subjected to RNA extraction. First, the 

washed immune pellets were resuspended in 100 µL NT2 buffer and 1 mM PMSF and an aliquot 

(1/20th) removed and stored for protein resolution and western blotting. Similarly, an aliquot 

corresponding to 1/50th of the total extract applied per IP reaction was also stored (see 

immunoblotting). The remaining main portion of immune pellets and nuclear extracts were subjected 

to proteinase K digestion, quickly spun to remove the empty beads, and processed through the RNA 

extraction protocol using the RNeasy Mini Kit column (Qiagen, Duesseldorf, Germany) following the 

manufacturer’s instructions. On-column DNA digestion (RNase-Free DNase Set, Qiagen, Duesseldorf, 

Germany) was used to ensure the absence of DNA from the samples. The quantification and quality 

analysis of RNA was performed on a Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). 

4.3.3. Microarray Hybridization and Data Analysis 

Synthesis of cDNA and biotinylated cRNA was performed with the Illumina TotalPrep RNA 

Amplification Kit (Illumina, San Diego, CA, USA) using 500 ng of total or immunoprecipitated RNA. 

Hybridization was performed onto Illumina MouseWG-6_V2_Expression BeadChips (Illumina, San 

Diego, CA, USA) according to manufacturer’s instructions. Three biological replicates were used for 

each condition. The raw data were analyzed using GeneArmada software [60]. Briefly, background 

corrected values were normalized by Quantile method and log2 transformed. Probesets with a 

detection p-value > 0.01 in all tested conditions were not considered. Significantly enriched probe sets 

in IP samples as compared to total nuclear RNA in HuR KO and HuR WT cells were identified by  

t-test and characterized as hnRNP A1-RNP targets by applying the following thresholds:  

p-value < 0.05, False Discovery Rate (FDR) < 0.05 and a fold change >2. Similarly significantly 

differentiated genes in total nuclear RNA of HuR KO as compared to HuR WT cells were identified by 

t-test with the aforementioned thresholds. Probe sets not annotated with a RNA RefSeq were not 

considered for further analysis. The mouse platform contained 45281 probes corresponding to 30,855 

different RNAs, mostly mRNAs but also a low percentage of non-coding RNAs. This is expected to 

provide whole-genome transcript coverage. GO-based analysis was performed with the web 

application StRAnGER [61] on the branch of GO concerning Biological Processes. The p-value cutoff 

of the hypergeometric test was set at 0.01. 

4.4. Immunoblotting 

Protein analysis was performed on an aliquot of nuclear extracts and immune pellets. Samples were 

directly mixed with SDS sample buffer and subjected to SDS-PAGE (10% polyacrylamide gel). 
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Following transfer to nitrocellulose, the immunoblotting protocol used to detect the antigen-antibody 

reactions on the membrane was applied as before [31]. 

4.5. Real-Time PCR Analysis (RT-qPCR) 

For the real time PCR assays on selected mRNA transcripts, 250 ng RNA obtained from the 

immunopurified hnRNP A1-RNP complexes or total nuclear RNA was reverse-transcribed using 

Superscript III (Invitrogen, Carsland, CA, USA) reverse transcriptase and an oligo-dT primer 

according to the manufacturer’s instructions. In the case of pre-mRNA targets the reverse transcription 

step was performed with random hexamer primers. Real-time PCR reaction products were synthesized 

with the application of appropriate primer pairs and quantified by the incorporation of SYBR Green I 

(iQ SYBR Green Supermix, Biorad, Hercules, CA, USA) on an iQ5 Real-Time PCR Detection System 

(Biorad, Hercules, CA, USA) using Gapdh mRNA as an internal control for normalization. All assays 

were performed in triplicate in a 25 µL reaction. Specificity of the amplified PCR product was 

assessed through a melting curve analysis and agarose gel electrophoresis of a small aliquot of the 

reaction and staining with ethidium bromide. For each qPCR reaction set a standard curve was 

obtained using serial dilutions of total nuclear RNA and calculations were performed according to the 

Relative Standard Curve Method as in Applied Biosystems technical notes (Guide to Performing 

Relative Quantitation of Gene Expression Using Real-Time Quantitative PCR). 

The list of synthesized primers that were applied in qPCR reactions are provided in File S1. For 

mRNAs one primer per pair was designed to span an exon-exon junction, while for  

pre-mRNAs one primer was designed to anneal to an exon and its pair to an intron. 

5. Conclusions 

Our present study aimed at investigating the nuclear role of HuR in the context of its association 

with endogenous hnRNP complexes. To this extent, we report here on the novel application of the 

Ribonomics (RIP-Chip) platform on hnRNP A1-RNP complexes immunoselected from the nuclear 

extracts of HuR-lacking and HuR-containing mouse embryonic fibroblast (MEF) cells. This led to the 

identification of HuR-dependent RNA transcripts in stable association with nuclear hnRNP A1-RNP 

complexes as a specific sub-fraction of the total HuR-bound nuclear targets. Amongst the identified 

RNA transcripts were some known hnRNP A1 as well as HuR mRNA targets, proving the validity of 

our experimental approach. The nature and degree of enrichment of the detected RNA targets in the 

immunopurified hnRNP A1-RNPs have been linked to their affinity for the isolated RNP complexes 

by normalizing for their expression level in the nuclear pool of either HuR WT or HuR KO cells. All 

findings, in particular those that were based on the presence of specific GO categories and on the  

RT-qPCR validated mRNA targets (including some unspliced pre-mRNA forms), led to the 

recognition of a significant change in the HuR-lacking (KO) RNA transcript population, compared to 

HuR-containing (WT) cells. This reflected upon a dynamic composition of hnRNP A1-RNPs in 

relation to HuR’s presence that is likely to affect, to a greater or lesser degree, the many anticipated 

nuclear functions regulated by HuR. 
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