ORIGINAL RESEARCH

Genetic Variants Associated With Systolic Blood Pressure in Children and Adolescents

Mindy M. Pike ^(b), PhD; Jonathan Schildcrout ^(b), PhD; Scott Baldwin ^(b), MD; Todd Edwards ^(b), PhD; Loren Lipworth, ScD; Cassianne Robinson-Cohen ^(b), PhD

BACKGROUND: Genetics, along with lifestyle and behavioral characteristics, play an important role in hypertension in adults. Our aim was to identify genetic variants associated with blood pressure in childhood and adolescence.

METHODS AND RESULTS: We conducted a candidate single-nucleotide polymorphism (SNP) analysis and genome-wide association study among 9778 participants aged <18 years in BioVU, the Vanderbilt University Medical Center biobank. The outcome was childhood blood pressure percentile from age 0 to 18 years. For the candidate SNP analysis, a total of 457 previously identified SNPs were examined. Linear regression was used to test the association between genetic variants and median systolic blood pressure (SBP) percentile. Adjusted models included median age, self-reported sex, race, the first 4 principal components of ancestry, and median body mass index *Z* score. Analyses were conducted in the overall cohort and stratified by age group. A polygenic risk score was calculated for each participant, and the association between polygenic risk score and median SBP percentile in childhood was examined using linear regression. In the overall candidate SNP analysis, 2 SNPs reached significance: *rs1018148 (FBN1; P=*1.0×10⁻⁴) and *rs11105354 (ATP2B1; P=*1.4×10⁻⁴). In the postpuberty age group, 1 SNP reached significance: *rs1018148 (FBN1; P=*2.2×10⁻⁵). In the genome-wide association study of all participants, no SNPs reached genome-wide significance. Higher polygenic risk score was associated with higher SBP percentile (β , 0.35 [95% CI, 0.10–0.60)], and there was a significant interaction with age (*P* for interaction<0.01).

CONCLUSIONS: These findings suggest that genetic variants play an important role in SBP in childhood and adolescence and provide evidence for age-specific genetic associations with SBP.

Key Words: childhood = genome-wide association study = single-nucleotide polymorphism = systolic blood pressure

In the United States in 2016, 13.3% of children aged 8 to 17 years had elevated blood pressure and 4.9% had hypertension, according to the American Academy of Pediatrics.¹ Genetic variation, along with lifestyle and behavioral characteristics, plays an important role in hypertension among adults. Between 2% and 3% of the variation in hypertension is explained by known common genetic variants.² Major progress has been made in finding genetic variants for blood pressure and hypertension in adults, but minimal evidence exists for early age or age-specific genetic associations.

Previous studies have explored whether genetic variants associated with blood pressure among adults

were also associated with blood pressure in children and adolescents by using adult-based genetic risk scores. Although these genetic risk scores were associated with blood pressure in children, the studies additionally showed that the scores explained less variance in childhood blood pressure than in adult blood pressure. Recent evidence suggests that blood pressure levels change with age and that a possible interaction between age and genetic variants exists.^{3,4}

To date, only one genome-wide association study (GWAS) of blood pressure has been conducted in individuals aged <18 years, where 2 novel genetic variants were identified: *rs1563894* in gene *ITGA11* during

Correspondence to: Mindy M. Pike, PhD, Division of Epidemiology, Vanderbilt University Medical Center, 2525 W End Ave, Suite 600, Nashville, TN 37203. Email: mmpike4@gmail.com

Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.122.027993

For Sources of Funding and Disclosures, see page 10.

^{© 2023} The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

JAHA is available at: www.ahajournals.org/journal/jaha

CLINICAL PERSPECTIVE

What Is New?

- Among a population of children aged <18 years with existing genotype data, we identified 2 single-nucleotide polymorphisms associated with systolic blood pressure percentile measured during childhood that were previously associated with adulthood systolic blood pressure.
- A multiancestry adult-based polygenic risk score was associated with systolic blood pressure percentile in childhood, and the association changed with age.

What Are the Clinical Implications?

- These findings serve as a comparison for genetic variants already identified in children, adolescents, and adults, and they provide evidence for age-specific genetic associations with blood pressure.
- Understanding blood pressure during early life is important to reduce cardiovascular consequences in adulthood.

Nonstandard Abbreviations and Acronyms

PRS polygenic risk score

- SBP systolic blood pressure
- VUMC Vanderbilt University Medical Center

prepuberty and *rs872256* in gene *VLDLR-AS1* during puberty.⁵ Although this study provides evidence for age-specific genetic associations, the study was limited by power and was restricted to individuals of European ancestry.

To investigate whether genetic variants associated with systolic blood pressure (SBP) in adulthood are associated with blood pressure in children, we conducted a candidate single-nucleotide polymorphism (SNP) analysis and GWAS in participants from Vanderbilt University Medical Center's (VUMC's) DNA repository, BioVU. We stratified analyses by age to examine the interaction between age and genetic variants. We additionally investigated the performance of a multiancestry adult-based polygenic risk score (PRS) on blood pressure among children.

METHODS

Requests to access the data set from qualified researchers trained in human subject confidentiality protocols may be sent to VUMC BioVU Team at biovu@ vumc.org. The summary GWAS data can be accessed by request to the corresponding author and will be available at the GWAS Catalog (https://www.ebi.ac.uk/ gwas/).

Study Population and Design

We conducted a candidate SNP analysis and GWAS among non-Hispanic White and Black participants in BioVU, the VUMC biobank of DNA from discarded blood collected during routine clinical testing and linked to deidentified electronic medical records. BioVU as a resource, including its ethical, privacy, and other protection, has been described previously.^{6,7} We included individuals aged <18 years with genotype data available and with 2 outpatient blood pressure measurements on different days in the medical record. Our study included 9778 participants. The study was approved by the Institutional Review Board of VUMC, and informed consent was waived, as all patients consented to participate in BioVU at the time of consent to treatment.

Genotyping and Imputation

SNPs were genotyped on the Illumina Infinium Expanded Multi-Ethnic Genotyping Array chip (Illumina Inc, San Diego, CA), which contains >2 million SNPs and covers 65.7% of GWAS catalog SNPs. Imputation with reference to the 1000 Genomes phase 3 was performed using the Michigan Imputation Server.⁸ SNPs with minor allele frequency <0.05 or Hardy-Weinberg equilibrium P<10⁻⁶ were excluded.

Statistical Analysis

The outcome of interest was childhood and adolescent blood pressure percentile. All blood pressure measurements were restricted to outpatient visits. Median SBP percentile was estimated for each participant from age 0 to 18 years, using the 2017 American Academy of Pediatrics Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents, based on age, sex, and height.⁹ We selected for replication (candidate SNP analysis) 457 SNPs previously reported to be associated with SBP from 3 large GWASs in adults and 2 SNPs previously identified in a GWAS on childhood and adolescent blood pressure, *rs1563894* and *rs872256*.^{5,10–12}

Linear regression was used to test the association between genetic variants and median SBP percentile. Adjusted models included median age, self-reported sex, race, the first 4 principal components of ancestry, and median body mass index (BMI) *Z* score. BMI *Z* score was created from the World Health Organization Child Growth Charts based on age and sex.¹³ SNPs were examined under an additive model as 0, 1, or 2 minor alleles. Analyses were stratified by race and then meta-analyzed using $\ensuremath{\mathsf{METAL}}^{14}$

Analyses were additionally stratified by age group: 0 to 3, 4 to 7, 8 to 12, and 13 to 18 years. For these analyses, median SBP percentile was created for each participant within the given age group. Participants could contribute to >1 age group if blood pressure measurements were present at multiple ages within an individual. Linear regression was used to test the association between genetic variants and median SBP percentile in each age group. Adjusted models included self-reported sex, race, the first 4 principal components of ancestry, and median BMI *Z* score for each participant during the time he or she qualified for the age group. Age-stratified analyses were stratified by race and meta-analyzed using METAL.¹⁴

A GWAS was also conducted to examine the association between all available SNPs and median SBP percentile. Analyses were conducted in the overall participant group (ages 0–18 years) and stratified by age group. All analyses were initially stratified by race and meta-analyzed. Adjusted models included median age (for overall analysis only), self-reported sex, race, the first 4 principal components of ancestry, and median BMI *Z* score. The interaction between age and each SNP was also examined in additive models in which median SBP percentile was regressed against each SNP, including a multiplicative interaction term between median age and each SNP, and adjusting for self-reported sex, race, the first 4 principal components of ancestry, and median BMI *Z* score.

To adjust for multiple comparisons in the candidate SNP analysis, q values were calculated using the Benjamini-Hochberg procedure, and a false discovery rate P<0.05 was considered significant.¹⁵ A P of 5×10^{-8} was considered significant for the GWAS, and P< 5×10^{-6} was deemed borderline significant. PLINK 1.9 was used for all genetic analyses, and R version 3.6.2 was used to produce all Manhattan and quantilequantile plots.^{16,17}

PRS Analysis

A PRS was calculated for each participant from imputed genetic data using a multiancestry score for SBP in adults, using PRS-CS (Polygenic Risk Score-Continuous Shrinkage).¹⁸ The association between PRS and median SBP percentile in childhood was examined using linear regression. Adjusted analyses included median age, sex, race, median BMI *Z* score, and the first 4 principal components of ancestry. A second adjusted model additionally included childhood hypertension medication use and childhood presence of diabetes. Childhood diabetes was defined as use of a diabetes medication for those aged <18 years or the presence of an *International Classification of Diseases*,

Table 1.Participant Characteristics of Children Aged<18 Years With Genetic Data Available</td>

Value (N=9778)
11 (5 to 15)
7393 (75.6)
2385 (24.4)
4488 (45.9)
5290 (54.1)
0.62 (-0.24 to 1.69)
2881
3174
4294
5139
1095 (11.2)
301 (3.1)
84.5 (66.5 to 94)
-1.95 (-3.05, 0.09)

Values are listed as number, number (percentage), or median (interquartile range); participants can belong to >1 age group.

Tenth Revision (ICD-10), diagnosis code for diabetes (E08–E13) for those aged <18 years. We also examined the interaction between median age and PRS using a likelihood ratio test by including a multiplicative age^*PRS interaction term in the model. Analyses were stratified by age group. In participants with available blood pressure measurements aged >18 years, we additionally examined the association between PRS for each participant and adulthood median SBP. Adjusted analyses included median age, race, sex, and the first 4 principal components of ancestry. A P=0.05 was considered statistically significant. PGS Calculator was used to calculate PRS for each participant.¹⁹

RESULTS

The median (interquartile range) age of participants aged 0 to 18 years was 11 (5–15) years. Most participants were White participants (75.6%) and female (54.1%). A total of 11% were on hypertension medications in childhood, and 3% had diabetes during childhood. The median (interquartile range) SBP percentile during childhood was the 84.5 (66.5–94) percentile. In the age-stratified groups, there were 2881, 3174, 4294, and 5139 participants in the 0 to 3, 4 to 7, 8 to 12, and 13 to 18 years age groups, respectively (Table 1).

In the candidate SNP analysis for the overall group of participants, 2 SNPs reached significance based on

						rauneu ny Age	duoip		
Nearest gene	rs Identifier	Chromosome	Base pairs	Effect allele	Other allele	Frequency	β Value	P value	FDR P value
Overall (n=9778)									
FBN1*	rs1018148	15	48903126	A	C	0.92	2.26	1.0×10 ⁻⁴	0.03
ATP2B1*	rs11105354	12	90 026523	A	ŋ	0.84	-1.52	1.4×10 ⁻⁴	0.03
SYT1	rs7963801	12	79685226	T	U	0.66	1.00	1.9×10 ⁻³	0.23
LOC105375921	rs72688070	ω	81 393 697	U	T	0.78	1.10	2.2×10 ⁻³	0.23
LINC02356	rs10774624	12	111 833 788	ŋ	A	0.62	0.97	2.8×10 ⁻³	0.23
Aged 0-3 y (n=2859)									
LOC107985892	rs6731373	2	68503044	U	А	0.68	-1.58	1.9×10 ⁻³	0.77
JPH2	rs6031431	20	42 795 152	A	U	0.54	-1.36	9.5×10 ⁻³	0.90
LOC105369687	rs60691990	12	20368269	T	U	0.72	-1.33	1.1×10 ⁻²	0.90
FBN2	rs6595838	£	127 868 199	U	A	0.62	1.44	1.1×10 ⁻²	0.90
ARHGAP29	rs17396055	-	94730954	U	A	0.72	-1.23	1.9×10 ⁻²	0.90
Prepuberty: aged 4-7 y (n=3	142)								
PLEKHA7	rs414992	11	16894090	U	T	0.87	-2.23	3.0×10 ⁻³	0.71
SLC7A1	rs9508495	13	30146201	U	Τ	0.64	1.72	8.6×10 ⁻³	0.71
CRK	rs12941318	17	1 333 598	T	U	0.55	1.32	1.1×10 ⁻²	0.71
FRYL	rs13141523	4	48789269	A	G	0.59	1.30	1.2×10 ⁻²	0.71
DUSP16	rs736107	12	12627410	G	A	0.70	1.40	1.2×10 ⁻²	0.71
Puberty: aged 8-12 y (n=426	33)								
SELENOKP3	rs9401090	9	119 113 317	T	U	0.75	1.61	1.1×10 ⁻³	0.32
SLC39A8	rs13107325	4	103 188 709	U	Τ	0.94	2.96	1.5×10 ⁻³	0.32
LINC01169	rs1440371	15	66941084	U	A	0.73	-1.42	2.7×10 ⁻³	0.36
LOC107985892	rs6731373	2	68503044	G	A	0.68	-1.34	3.4×10^{-3}	0.36
DGKZ	rs72910063	11	46345134	С	Τ	0.90	1.85	1.5×10 ⁻²	0.75
Postpuberty: aged 13–18 y (r	n=5133)								
FBN1*	rs1018148	15	48903126	A	С	0.92	3.78	2.2×10 ⁻⁵	9.2×10 ⁻³
CYP2C19	rs199562446	10	96587751	U	Τ	0.89	2.67	5.1×10 ⁻⁴	0.11
PTPN11	rs11066320	12	112 906 415	A	ß	0.67	-1.56	1.9×10 ⁻³	0.22
LINC02356	rs10774624	12	111 833 788	G	A	0.62	1.54	2.1×10 ⁻³	0.22
LOC105379003	rs3121685	5	65662133	С	Т	0.59	1.39	2.9×10 ⁻³	0.25
Frequency refers to effect al FDR indicates false discover *SNP reaches FDR significar	lele frequency; adjusted mo y rate; SBP, systolic blood p nce (FDR P<0.05).	dels included median a pressure; and SNP, sing	ge, self-reported se Ile-nucleotide polym	x, race, the first 4 pr iorphism.	incipal components	of ancestry, and me	dian body mass	index Z score.	

Figure 1. Manhattan plot for the genome-wide association study of all participants (N=9778).

the false discovery rate *P* value (Table 2). Every additional *A* allele at *rs1018148*, intronic in the fibrillin-1 gene (*FBN1*), was associated with 2.26 higher median SBP percentile from age 0 to 18 years (*P*=1.0×10⁻⁴). At *rs11105354*, intronic in ATPase plasma membrane Ca²⁺ transporting 1 (*ATP2B1*), every additional *A* allele was associated with a –1.52 lower median SBP percentile from age 0 to 18 years (*P*=1.4×10⁻⁴). In the age-stratified analyses, no SNPs reached the level of significance for SBP percentile in the 0 to 3, 4 to 7 year, or 8 to 12 years age groups. In the postpuberty age group, 13 to 18 years, 1 SNP reached significance (Table 2). The variant, *rs1018148* in gene *FBN1* (chromosome position, 15:48903126), was significantly

associated with median SBP percentile from age 0 to 18 years with a β of 3.78 (*P*=2.2×10⁻⁵). Table 2 shows the top 5 associations between the candidate SNPs and SBP percentile for each age group and in the overall population. The 2 SNPs previously associated with adolescent blood pressure, *rs1563894* and *rs872256*, were not significant in our study.

In the GWAS of all participants, no SNPs reached genome-wide significance (Figures 1 and 2). Borderline SNPs (P<5×10⁻⁶) are listed in Table 3. In the agestratified GWAS, no SNPs reached genome-wide significance (Figures 3 and 4). Table 3 shows the borderline associations between all SNPs and SBP percentile in each age group. No significant interactions

Figure 2. Quantile-quantile plot for the genome-wide association study of all participants (N=9778).

Table 3. Borderline Associations Between All SNPs and Median SBP Percentile, Overall and Stratified by Age Group

Nearest gene	rs Identifier	Chromosome	Base pairs	Effect allele	Other allele	Frequency	β Value	P value
Overall (n=9778)								
RPL21P110	rs4119478	13	73254212	С	Т	0.67	1.65	9.7×10 ⁻⁸
AGBL1	rs16977994	15	87343422	А	G	0.90	-2.39	1.2×10 ⁻⁶
UMAD1	rs73057784	7	7896705	G	С	0.83	1.91	2.0×10 ⁻⁶
DNER	rs7576516	2	230523831	С	Т	0.63	1.43	2.3×10 ⁻⁶
KRTAP2-1	rs112999280	17	39206388	G	A	0.94	-3.50	2.5×10 ⁻⁶
LOC107985960	rs4972502	2	173 202 455	G	A	0.82	1.78	2.8×10 ⁻⁶
LOC124901312	rs10947677	6	37516612	Т	G	0.59	1.41	3.2×10 ⁻⁶
ACMSD	rs3739030	2	135599381	G	A	0.53	-1.56	3.9×10 ⁻⁶
Aged 0–3 y (n=2859)							-	1
DLGAP2	rs73549740	8	1635301	G	С	0.93	-6.46	2.4×10 ⁻⁷
OOEP	rs80270200	6	74 080 171	С	Т	0.94	5.05	8.9×10 ⁻⁷
TRIB1	rs10956249	8	126473499	С	Т	0.80	2.89	9.9×10 ⁻⁷
CEP89	rs62125057	19	33453527	G	A	0.94	4.81	1.5×10 ⁻⁶
ZNF516	rs7239053	18	74 191 792	С	Т	0.65	2.36	2.3×10 ⁻⁶
DKK3	rs11022109	11	12024916	G	A	0.95	9.35	2.7×10 ⁻⁶
PHACTR1	rs1223546	6	13 162 331	Т	С	0.82	2.81	3.5×10 ⁻⁶
TM4SF18	rs9881688	3	149043923	Т	A	0.65	2.30	3.6×10 ⁻⁶
SOGA3	rs61743738	6	127 796 867	A	С	0.95	-6.28	3.6×10 ⁻⁶
LOC105370344	rs1535989	13	106022722	A	G	0.88	-3.49	3.7×10 ⁻⁶
LOC105373716	rs6714953	2	160090633	G	С	0.89	-3.59	4.7×10 ⁻⁶
Prepuberty: aged 4–7	y (n=3142)			1	I	1	1	
LOC105377428	rs188276693	4	133 042 109	G	Т	0.94	5.38	1.1×10 ⁻⁷
LOC105373831	rs6710639	2	199465662	Т	С	0.95	-7.11	2.3×10 ⁻⁶
LOC107986914	rs1011158	8	9104831	G	A	0.55	-2.71	3.2×10 ⁻⁶
ARHGAP15	rs2381456	2	144 184 895	А	G	0.91	-3.95	3.8×10 ⁻⁶
PLPPR1	rs74306891	9	103871552	G	A	0.92	6.27	4.1×10 ⁻⁶
PPP2R2D	rs72861371	10	133 761 971	Т	G	0.90	-4.23	4.6×10 ⁻⁶
LOC124903591	rs62025144	15	79859443	С	G	0.92	4.71	4.7×10 ⁻⁶
Puberty: aged 8–12 y (n=4283)				-			
TIMP2	rs2005542	17	76884226	Т	A	0.90	3.37	1.4×10 ⁻⁶
DAPP1	rs34849574	4	100662056	Т	A	0.69	2.69	2.4×10 ⁻⁶
LOC107987108	rs7855801	9	109276620	Т	G	0.53	-2.32	2.6×10 ⁻⁶
RNU6-710P	rs76955518	9	114771595	G	A	0.95	7.31	2.7×10 ⁻⁶
ACACA	rs9286331	17	35444733	Т	С	0.71	2.91	3.8×10 ⁻⁶
SDK1	rs77562169	7	4283744	С	A	0.92	3.83	4.3×10 ⁻⁶
ADAMTS9	rs4309722	3	64656286	С	A	0.69	2.16	4.6×10 ⁻⁶
CLDN16	rs62278659	3	189975841	Т	С	0.92	-3.99	4.9×10 ⁻⁶
Postpuberty: aged 13-	-18 y (n=5133)							
DSCAM	rs2989339	21	41 392 326	Т	С	0.58	2.25	5.21×10 ⁻⁷
HCFC2	rs7312227	12	104496274	А	G	0.76	-2.55	8.0×10 ⁻⁷
SEMA3A	rs1228863	7	83998413	А	G	0.95	-5.36	8.9×10 ⁻⁷
SHANK3	rs9616945	22	51 148 424	G	A	0.88	-3.54	2.3×10 ⁻⁶
LOC105369719	rs11050949	12	30708253	С	Т	0.66	2.22	2.6×10 ⁻⁶
NDUFV2	rs7243018	18	9071523	А	С	0.58	2.09	2.6×10 ⁻⁶
ALDH1A2-AS1	rs2704190	15	58371251	Т	С	0.83	-2.67	3.6×10 ⁻⁶
LOC105372064	rs112656296	18	33331408	G	A	0.87	-3.02	4.0×10 ⁻⁶
FBN1	rs1036477	15	48914926	А	G	0.79	-3.85	4.2×10 ⁻⁶
LOC105374902	rs6928965	6	6894948	G	A	0.90	-3.70	4.3×10 ⁻⁶

Top associations were defined as $P < 5 \times 10^{-6}$; frequency refers to effect allele frequency; adjusted models included median age, self-reported sex, race, the first 4 principal components of ancestry, and median body mass index Z score.

SBP indicates systolic blood pressure; and SNP, single-nucleotide polymorphism.

Figure 3. Manhattan plots for age-stratified genome-wide association study: 0 to 3 years (A), 4 to 7 years (B), 8 to 12 years (C), and 13 to 18 years (D).

between SNPs and age were detected (Table S1). No SNPs reached genome-wide significance in racestratified analyses (Table S2).

In the PRS analysis, we examined the association between PRS and median SBP percentile during childhood (aged 0–18 years). After adjustment for median age, sex, race, median BMI *Z* score, the first 4 principal components of ancestry, hypertension medication, and diabetes, higher PRS was associated with higher SBP percentile (β , 0.35 [95% CI, 0.10–0.60]) (Table 4). In addition, in unadjusted analyses, a 1-unit increase in PRS was associated with a median adulthood SBP increase of 0.26 (95% CI, 0.03–0.49). This association was no longer significant after adjustment for covariates (Table S3).

The interaction term between age and PRS was significant (*P* for interaction: <0.01), with a stronger association with higher age, which is consistent with analyses stratified by age group. The association between PRS and median SBP percentile for each age group was examined (Table 4). After adjustment, there was no association between PRS and SBP percentile in the 0 to 3 and 4 to 7 years age groups. In the age group of 8 to 12 years, higher PRS was associated with higher SBP (β , 0.43 [95% CI, 0.05–0.82]). In the 13 to

18 years age group, higher PRS was associated with higher SBP (β , 0.54 [95% Cl, 0.16–0.92]).

DISCUSSION

In the current study, we have identified 2 SNPs associated with SBP percentile measured during childhood that were previously associated with adulthood SBP. We originally hypothesized that genetic variants in childhood would differ from genetic variants associated with SBP in adulthood and that the genetic variants associated with SBP in children would have stronger associations because of the shorter time period for environmental influence; however, we did not find any novel genetic variants associated with SBP percentile during childhood. One genetic variant, rs1018148 (FBN1), was associated with SBP percentile in the overall cohort and in the postpuberty period (aged 13-18 years). The other variant, rs11105354 (ATP2B1), was associated with SBP percentile in the overall cohort. We did not find any SNPs reaching genome-wide significance with SBP percentile, overall or stratified by age group. We additionally investigated the performance of a multiancestry adult-based genetic risk

Figure 4. Quantile-quantile plots for the age-stratified genome-wide association study: 0 to 3 years (A), 4 to 7 years (B), 8 to 12 years (C), and 13 to 18 years (D).

score on SBP among children and found that PRS was associated with SBP percentile in childhood and adolescence overall and in puberty and postpuberty age groups.

One SNP, rs1018148, was associated with childhood SBP percentile in the overall cohort and in the postpuberty age group (aged 13-18 years) and is in the FBN1 gene, which is a protein-coding gene. Fibrillin 1 contributes to the formation of the elastic fibers in the heart valves and the aorta during development.²¹ FBN1 has been shown to be associated with Marfan syndrome and stiff skin syndrome.^{22,23} Traits associated with FBN1 include height, BMI, aortic measurement, and systolic and diastolic blood pressure in adults.²⁴ An SNP in the ATP2B1 gene was significant based on the false discovery rate P value in the overall cohort. ATP2B1 is also a protein-coding gene, and the protein is responsible for primary ion transport ATPases.²⁵ This gene has been shown to be associated with diseases, such as nephrotic syndrome and spinocerebellar ataxia, and traits, such as pulse pressure measurement, mean arterial pressure, hypertension, coronary artery disease, and systolic and diastolic blood pressure.²⁶

The current study is one of few GWASs of blood pressure in children at different ages. One other

GWAS of blood pressure in children was conducted in the Early Genetics and Lifecourse Epidemiology Consortium in 23689 participants.⁵ The authors found 2 novel loci associated with SBP in prepuberty and postpuberty and reached genome-wide significance: rs1563894 (ITGA11) during prepuberty and rs872256 during puberty. In our study, these 2 SNPs were not associated with SBP in any age group in the candidate SNP analysis. The previous GWAS was conducted in only European participants, whereas our study included White and Black participants from the southeastern United States. Our sample size was also smaller compared with the Early Genetics and Lifecourse Epidemiology Consortium, which is a possible reason the findings from the previous GWAS were not replicated in our study.

An objective of the study was to examine the interaction between age and genetic variants. In preadolescent children, secondary hypertension is more common, whereas primary or essential hypertension is more common in adolescents.^{27,28} Genetic variants may differ with increasing age because of this. A limitation of using electronic health record data is that we were unable to differentiate between secondary hypertension and essential hypertension. Although diagnosis codes were available, the data were not

	Unadjusted	Model 1	Model 2
Overall*	0.17 (0.04 to 0.31)	0.38 (0.13 to 0.63)	0.35 (0.10 to 0.60)
Aged 0–3 y (N=2881)	-0.23 (-0.44 to -0.01)	0.01 (-0.41 to 0.42)	0.00 (-0.42 to 0.42)
Aged 4-7 y (N=3174)	-0.06 (-0.29 to 0.16)	0.16 (-0.28 to 0.60)	0.15 (-0.29 to 0.58)
Aged 8–12 y (N=4294)	0.22 (0.02 to 0.41)	0.46 (0.08 to 0.84)	0.43 (0.05 to 0.82)
Aged 13–18 y (N=5139)	0.53 (0.33 to 0.72)	0.58 (0.20 to 0.96)	0.54 (0.16 to 0.92)

The Laboration of the Laborati		DDO	ODD D			
I anio 4	Accorigtion Retwoo	n PRS and Modian	N SKP Parcantila in	(inlighted)	Overall and Stratitied	NV AGA Groun
	ASSOCIATION DELWEE					

Model 1: median age (overall only), sex, race, median body mass index Z score, and first 4 principal components of ancestry.

Model 2: model 1+childhood hypertension medication use and childhood presence of diabetes. PRS indicates polygenic risk score; and SBP, systolic blood pressure.

Values are listed as beta (95% CI).

*P value for interaction <0.01.

complete, and codes were inconsistent for hypertension. Children and adolescents who attend clinics regularly, and hence have more blood pressure measurements, are more likely to have elevated risk factors and increased comorbidities, including conditions that cause secondary hypertension. To mitigate this concern, we limited blood pressure measurements to those from outpatient visits. Secondary and essential hypertension may have distinct genomic determinants, and this may warrant further investigation.

Previous studies have explored whether adult genetic variants associated with blood pressure were also associated with blood pressure in children and adolescents by using adult-based genetic risk scores based on significant loci. In the first study, the association between a genetic risk score based on 13 SNPs and a single childhood measurement of blood pressure was studied in 2357 participants in the YFS (Young Finns Study).²⁹ The authors found that individuals with several susceptibility alleles have an average of 0.5-mm Hg higher blood pressure than those with less susceptibility alleles. These results were replicated in 1194 participants in the BHS (Bogalusa Heart Study). In another study, in the ALSPAC (Avon Longitudinal Study of Parents and Children) and the Western Australia Pregnancy Cohort, allelic scores of 29 SNPs for adult blood pressure were associated with SBP at the age of 6 years.³⁰ In the current study, we similarly found an association between the PRS-based SNPs associated with adulthood SBP and childhood SBP percentile. We additionally found a significant interaction between age and PRS, which suggests that blood pressure changes from childhood to adulthood.

The current study has multiple strengths. The first is the use of BioVU, VUMC's vast DNA repository, linked to the electronic health record, which provides a population of >9000 participants aged <18 years with existing genotype data. Another strength is the diverse population of participants available. Our study included White and Black participants, whereas most studies of genetic variants associated with blood pressure in children have only been conducted in European

populations. We were also able to examine the interaction between genetic variants and age because repeated measures during childhood were available in the data. Our study also had several limitations. Our sample size was small and, therefore, our power to detect genome-wide associations was limited. Another limitation is that there is possible population stratification. We tried to limit this by adjusting for principal components of ancestry and stratifying by race and then meta-analyzing. Another limitation is that SBP was the only outcome and diastolic blood pressure was not included. Although data on diastolic blood pressure were available, no previous genome-wide associations of genetic variants and childhood diastolic blood pressure have been reported for use in the candidate SNP analysis.

We have identified 2 known genetic variants related to SBP in childhood, but none related to SBP overall or in any age group at genome-wide significance. We did find that a PRS created from genetic variants shown to be associated with adulthood SBP was associated with SBP percentile in childhood and that this association changed with age. These findings serve as a comparison for genetic variants already identified in children, adolescents, and adults; and they provide evidence for age-specific genetic associations with blood pressure. As this is one of few studies of genetic variants and blood pressure in children, these associations require further investigation and replication.

ARTICLE INFORMATION

Received August 29, 2022; accepted January 5, 2023.

Affiliations

Division of Epidemiology, Department of Medicine (M.M.P., T.E., L.L.) Department of Biostatistics (J.S.) Division of Pediatric Cardiology, Department of Medicine (S.B.) Division of Nephrology, Department of Medicine (C.R.) and Vanderbilt-O'Brien Center for Kidney Disease (C.R.).

Acknowledgments

The results presented in this article have not been published previously in whole or part, except in abstract form. Vanderbilt University Medical Center's BioVU projects are supported by numerous sources: institutional funding, private agencies, and federal grants. These include National Institutes of Health-funded shared instrumentation grants S10OD017985, S10RR025141, and S10OD025092; and Clinical Translational Science Award grants UL1TR002243, UL1TR000445, and UL1RR024975. Authors contributions: research idea and study design: Drs Pike, Schildcrout, Edwards, Baldwin, Lipworth, and Robinson-Cohen; data acquisition: Drs Pike and Robinson-Cohen; data analysis/interpretation: Drs Pike, Schildcrout, Edwards, Baldwin, Lipworth, and Robinson-Cohen; statistical analysis: Drs Pike, Robinson-Cohen, and Schildcrout; supervision or mentorship: Drs Schildcrout, Edwards, Baldwin, Lipworth, and Robinson-Cohen. Each author contributed important intellectual content during manuscript drafting or revision and accepts accountability for the overall work by ensuring that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved.

Sources of Funding

The Vanderbilt Institute for Clinical and Translational Research is funded by the National Center for Advancing Translational Sciences Clinical Translational Science Award Program, award number 5UL1TR002243-03. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Disclosures

None.

Supplemental Material

Tables S1–S3

REFERENCES

- Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, et al. Heart disease and stroke statistics—2021 update. *Circulation*. 2021;143:e254–e743. doi: 10.1161/CIR.000000000000950
- Russo A, Di Gaetano C, Cugliari G, Matullo G. Advances in the genetics of hypertension: the effect of rare variants. *Int J Mol Sci.* 2018;19:688. doi: 10.3390/ijms19030688
- Wills AK, Lawlor DA, Matthews FE, Sayer AA, Bakra E, Ben-Shlomo Y, Benzeval M, Brunner E, Cooper R, Kivimaki M, et al. Life course trajectories of systolic blood pressure using longitudinal data from eight UK cohorts. *PLOS Medicine*. 2011;8:e1000440. doi: 10.1371/journal.pmed.1000440
- Labarthe DR, Dai S, Fulton JE, Harrist RB, Shah SM, Eissa MA. Systolic and fourth- and fifth-phase diastolic blood pressure from ages 8 to 18 years. Am J Prev Med. 2009;37:S86–S96. doi: 10.1016/j. amepre.2009.04.014
- Parmar PG, Taal HR, Timpson NJ, Thiering E, Lehtimäki T, Marinelli M, Lind PA, Howe LD, Verwoert G, Aalto V, et al. International genomewide association study consortium identifies novel loci associated with blood pressure in children and adolescents. *Circ Cardiovasc Genet*. 2016;9:266–278. doi: 10.1161/CIRCGENETICS.115.001190
- Roden DM, Pulley JM, Basford MA, Bernard GR, Clayton EW, Balser JR, Masys DR. Development of a large-scale de-identified DNA biobank to enable personalized medicine. *Clin Pharmacol Ther.* 2008;84:362– 369. doi: 10.1038/clpt.2008.89
- Pulley J, Clayton E, Bernard GR, Roden DM, Masys DR. Principles of human subjects protections applied in an opt-out, de-identified biobank. *Clin Transl Sci.* 2010;3:42–48. doi: 10.1111/j.1752-8062.2010.00175.x
- Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, McGue M, et al. Next-generation genotype imputation service and methods. *Nat Genet*. 2016;48:1284–1287. doi: 10.1038/ ng.3656
- Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, de Ferranti SD, Dionne JM, Falkner B, Flinn SK, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. *Pediatrics*. 2017;140:e20171904. doi: 10.1542/peds.2017-1904
- Giri A, Hellwege JN, Keaton JM, Park J, Qiu C, Warren HR, Torstenson ES, Kovesdy CP, Sun YV, Wilson OD, et al. Trans-ethnic association

study of blood pressure determinants in over 750,000 individuals. *Nat Genet*. 2019;51:51–62. doi: 10.1038/s41588-018-0303-9

- Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. *Nat Genet.* 2018;50:1412–1425. doi: 10.1038/ s41588-018-0205-x
- Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, Ntalla I, Surendran P, Liu C, Cook JP, et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. *Nat Genet.* 2017;49:403–415. doi: 10.1038/ ng.3768
- WHO child growth standards: length/height-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. 2022. Available from: https://www.who.int/ publications-detail-redirect/924154693X. Accessed March 23, 2022.
- Willer CJ, Li Y, Abecasis GR. METAL: Fast and efficient meta-analysis of genomewide association scans. *Bioinformatics*. 2010;26:2190–2191. doi: 10.1093/bioinformatics/btq340
- Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society. Series B (Methodological).* 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet*. 2007;81:559–575. doi: 10.1086/519795
- R Development Core Team. R: A Language and Environment for Statistical Computing. Version 3.6.2. Vienna, Austria: R Foundation for Statistical Computing; 2014. Available from: https://www.R-proje ct.org/. Accessed August 27, 2020.
- Ge T, Chen C-Y, Ni Y, Feng Y-CA, Smoller JW. Polygenic prediction via Bayesian regression and continuous shrinkage priors. *Nat Commun.* 2019;10:1776. doi: 10.1038/s41467-019-09718-5
- Forer L. PGS Calculator. 2022. Available from: https://github.com/lukfo r/pgs-calc. Accessed March 23, 2022.
- 20. Stata Statistical Software. Version 16. StataCorp; 2019. Available from: http://www.stata.com/. Accessed March 15, 2022.
- Quondamatteo F, Reinhardt DP, Charbonneau NL, Pophal G, Sakai LY, Herken R. Fibrillin-1 and fibrillin-2 in human embryonic and early fetal development. *Matrix Biol.* 2002;21:637–646. doi: 10.1016/ S0945-053X(02)00100-2
- Ammash NM, Sundt TM, Connolly HM. Marfan syndrome-diagnosis and management. *Curr Probl Cardiol.* 2008;33:7–39. doi: 10.1016/j. cpcardiol.2007.10.001
- Stiff skin syndrome. Genetic and Rare Diseases Information Center (GARD) – an NCATS Program. https://rarediseases.info.nih.gov/disea ses/5025/stiff-skin-syndrome/cases/53719#ref_3625
- GWAS Catalog. 2022. Available from: https://www.ebi.ac.uk/gwas/ genes/FBN1. Accessed April 21, 2022.
- Olson S, Wang MG, Carafoli E, Strehler EE, McBride OW. Localization of two genes encoding plasma membrane Ca2+–transporting ATPases to human chromosomes 1q25–32 and 12q21–23. *Genomics*. 1991;9:629– 641. doi: 10.1016/0888-7543(91)90356-J
- 26. GWAS Catalog. https://www.ebi.ac.uk/gwas/genes/ATP2B1
- 27. Luma GB, Spiotta RT. Hypertension in children and adolescents. *Am Fam Physician*. 2006;73:1558–1568.
- Chrysaidou K, Chainoglou A, Karava V, Dotis J, Printza N, Stabouli S. Secondary hypertension in children and adolescents: novel insights. *Curr Hypertens Rev.* 2020;16:37–44.
- Oikonen M, Tikkanen E, Juhola J, Tuovinen T, Seppälä I, Juonala M, Taittonen L, Mikkilä V, Kähönen M, Ripatti S, et al. Genetic variants and blood pressure in a population-based cohort: the Cardiovascular Risk in Young Finns study. *Hypertension*. 2011;58:1079–1085. doi: 10.1161/ HYPERTENSIONAHA.111.179291
- Howe LD, Parmar PG, Paternoster L, Warrington NM, Kemp JP, Briollais L, Newnham JP, Timpson NJ, Smith GD, Ring SM, et al. Genetic influences on trajectories of systolic blood pressure across childhood and adolescence. *Circ Cardiovasc Genet.* 2013;6:608–614. doi: 10.1161/ CIRCGENETICS.113.000197

SUPPLEMENTAL MATERIAL

Nearest Gene	rsid	Chr	Base Pair	Effect Allele	Other Allele	Freq.	Beta	p-value
Overall (n=9178)								
FSTL4	rs79477508	5	133005855	Т	С	0.89	3.83	1.1x10 ⁻⁴
	interaction						-0.48	2.7x10 ⁻⁷
XXYLT1	rs6770150	3	194781805	G	Т	0.85	-3.61	3.2x10⁻⁵
	interaction						0.40	7.0x10 ⁻⁷
F11	rs4253406	4	187191392	G	Т	0.94	-5.64	1.9x10⁻⁵
	interaction						0.62	8.4x10 ⁻⁷
LOC124903205	rs61965486	13	107700149	А	Т	0.82	3.98	9.5x10 ⁻⁷
	interaction						-0.37	9.9x10 ⁻⁷
TRIB1	rs6470355	8	126460535	А	G	0.73	-3.18	6.7x10 ⁻⁶
	interaction						0.32	1.3x10 ⁻⁶
OR6B2	rs7574432	2	240976327	С	Т	0.77	-3.59	2.1x10 ⁻⁶
	interaction						0.33	1.4x10 ⁻⁶
VEPH1	rs2316336	3	157206296	Т	С	0.61	2.23	4.2x10 ⁻⁴
	interaction						-0.28	2.5x10⁻ ⁶
KCND3	rs617531	1	112391923	А	G	0.64	-2.14	8.5x10⁻⁴
	interaction						0.28	3.7x10⁻ ⁶
LOC107984471	rs7306200	12	69524926	А	G	0.54	2.22	1.7x10 ⁻³
	interaction						-0.31	3.8x10⁻ ⁶
DCBLD1	rs9374668	6	117859198	G	А	0.89	3.16	1.4x10 ⁻³
	interaction						-0.43	3.9x10⁻ ⁶
PTPRM	rs7241594	18	7579007	Т	С	0.94	-7.68	3.9x10⁻⁴
	interaction						0.85	4.3x10 ⁻⁶

Table S1. Top age interactions between single nucleotide polymorphisms and median systolic blood pressure percentile

Note: top associations were defined as interaction p<5x10⁻⁶; frequency refers to effect allele frequency Abbreviations: chr, chromosome; BP, base pair; MAF, minor allele frequency; SNP, single nucleotide polymorphism; SBP, systolic blood pressure

Nearest Gene	rsid	Chr	Base Pair	Effect Allele	Other Allele	Freq.	Beta	p-value
White Participar	nts (n=6936)							
LINC02661	rs12780127	10	110603382	С	Т	0.73	2.01	1.7x10 ⁻⁷
AGBL1	rs2034633	15	87353775	А	G	0.89	-2.53	3.0x10 ⁻⁷
AKAP6	rs11455295	14	32699185	А	G	0.69	1.66	1.8x10⁻ ⁶
ACMSD	rs1893396	2	135599009	Т	G	0.53	-1.56	2.8x10⁻ ⁶
LINC02661	rs11596055	10	110478121	G	А	0.82	2.03	2.9x10⁻ ⁶
AKAP6	rs7155347	14	32697558	Т	С	0.70	1.61	4.1x10 ⁻⁶
MAPKAPK5P1	rs2039666	10	110631824	С	Т	0.60	1.63	4.6x10 ⁻⁶
Black Participar	nts (n=2242)							
MCRIP2P2	rs4651259	1	185410975	G	А	0.63	-2.77	2.2x10 ⁻⁶
LOC105374920	rs370971359	6	10330362	С	Т	0.89	-3.35	2.3x10⁻ ⁶
KRTAP2-1	rs112999280	17	39206388	G	А	0.94	3.50	2.5x10⁻ ⁶
FOXP1	rs539420592	3	71358543	А	Т	0.77	-3.12	2.5x10⁻ ⁶
LOC100526736	rs975967	4	86353091	А	G	0.84	-2.80	2.6x10⁻ ⁶
LOC105378143	rs660011	6	169109717	С	Т	0.90	-3.85	2.6x10⁻ ⁶
KAZN	rs10927497	1	15004062	С	А	0.56	2.92	2.9x10⁻ ⁶
LOC100526736	rs340207	4	86357577	С	Т	0.72	2.81	3.1x10⁻ ⁶
LOC124900344	rs4885023	13	73243986	С	Т	0.69	2.69	3.8x10⁻ ⁶
LING01	rs35119957	15	78153578	А	G	0.82	-5.76	3.9x10⁻ ⁶
LINC01547	rs556954878	21	46355856	А	Т	0.61	-2.61	4.2x10 ⁻⁶
WNT3	rs199527	17	44843667	А	G	0.64	-2.71	4.5x10⁻ ⁶
GALNT13	rs751696293	2	154729145	GGGA	G	0.62	-2.66	4.7x10 ⁻⁶
SMYD3	rs6656940	1	246255826	G	А	0.81	-3.43	4.9x10 ⁻⁶

 Table S2. Borderline associations between all single nucleotide polymorphisms and median systolic blood pressure percentile, stratified by race

Note: top associations were defined as p<5x10⁻⁶; frequency refers to effect allele frequency Abbreviations: chr, chromosome; BP, base pair; FDR, false discovery rate; SNP, single nucleotide polymorphism; SBP, systolic blood pressure

Table S3. Association score and median sy adulthood (N=877)	on between polygenic risk ystolic blood pressure in				
Unadjusted	Model 1				
0.26 (0.03, 0.49) 0.24 (-0.21, 0.70)					
Abbreviation: PRS, po	olygenic risk score				
Model 1: median age,	sex, race, first 4 principal				
	1				

components of ancestry