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The first report of a gonadotropic substance in an invertebrate hot-water extract of

radial nerve cords from starfish Asterias forbesi that induced the shedding of gametes

when injected into the coelomic cavity in a ripe individual occurred in 1959. The active

substance was named gamete-shedding substance (GSS) or radial nerve factor. GSS is

the primary mediator of oocyte maturation and ovulation in starfish. However, the effect

of GSS is indirect. Resumption of meiosis in immature oocytes and release from the

ovary are induced by a second mediator, maturation-inducing hormone, identified as

1-methyladenine (1-MeAde) in starfish. The role of GSS is to induce 1-MeAde production

by ovarian follicle cells. Thus, GSS was redesignated as gonad-stimulating substance

(also GSS). Although GSS has been characterized biochemically as a peptide hormone,

identification of the chemical structure had to wait until 2009. Fifty years after

the initial finding, GSS was purified from the radial nerve cords of starfish Patiria

pectinifera (P. pectinifera). The purified hormone was a heterodimer composed of A- and

B-chains, with disulfide cross-linkages. Based on its cysteine motif, GSS is classified

as a member of the insulin/insulin-like growth factor (IGF)/relaxin superfamily. More

specifically, phylogenetic sequence analysis revealed that P. pectiniferaGSS is a member

of the relaxin-type peptide family. Therefore, GSS in starfish has been redesignated as

relaxin-like gonad-stimulating peptide (RGP). Subsequently, orthologs of P. pectinifera

RGP have been identified in other starfish species, including Asterias amurensis

(A. amurensis), and Aphelasterias japonica (A. japonica).

Keywords: gonadotropic hormone, gamete-shedding substance, gonad-stimulating substance, relaxin-like

gonad-stimulating peptide, 1-Methyladenine, starfish

INTRODUCTION

Regulation of reproduction differs among animals. This variety can appear more as a gathering of
exceptions, and it is hard to explain reproductive regulation by only a single mechanism. In fact, the
meiotic stage of oocytes for the timing of fertilization differs widely among animals. Sea urchin eggs
have long been used as a principal material for the study of developmental biology, because both
eggs and spermatozoa are obtained easily by injecting isotonic potassium chloride into the body
cavity. In other words, sea urchin oocytes have already accomplished meiotic maturation within
the ovaries during the breeding season long before spawning occurs. On the other hand, in starfish
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belonging to the same phylum as sea urchins, Echinodermata,
meiosis is arrested at the prophase of the first meiotic stage
in fully grown oocytes just before spawning. These immature
oocytes within the ovary still possess a large nucleus (germinal
vesicle [GV]) and fail to undergo fertilization even though
oocytes isolated mechanically from ovaries are inseminated. In
order to undergo normal fertilization, the immature oocytesmust
resumemeiotic division just before spawning under the influence
of an active substance. Thus, starfish are suitable animals for
the study of regulatory mechanism of oocyte maturation and
ovulation. It is also important that 1-methyladenine (1-MeAde)
has been purified from starfish A. amurensis (1), and 1-MeAde
on its own is capable of inducing oocyte maturation and
ovulation. Therefore, 1-MeAde in starfish is the first maturation-
inducing hormone (MIH) identified in the animal kingdom.
Numerous studies about the hormonal role of 1-MeAde on
oocyte maturation in starfish have been published to date (2–9).
On the other hand, the chemical structure of the gonadotropic
hormone of starfish remained unknown for 50 years, even though
its activity had been found 10 years before the discovery of 1-
MeAde. In 2009, starfish gonadotropic hormone was the first
identified among invertebrates (10). In this review, the outcome
of research on starfish gonadotropic hormone from its discovery
to its identification is described.

GAMETE-SHEDDING SUBSTANCE

Gonadotropic hormones play important regulatory roles
in reproduction in both vertebrates and invertebrates.
In vertebrates, two kinds of gonadotropins are secreted
from pituitary glands: follicle-stimulating hormone (FSH)
and luteinizing hormone (LH). These two glycoproteins
are structurally and functionally conserved across various
species. Glycoprotein hormones that include FSH, LH, thyroid
stimulating-hormone (TSH) and thyrostimulin (TS) are widely
distributed not only in vertebrates but also in invertebrates (11).
However, it is unclear whether pituitary glycoprotein hormones
are involved in reproduction in invertebrates.

In 1959, Chaet and McConnaughy (12) first reported that
injecting a hot-water extract of the radial nerve cords of starfish
Asterias forbesi induced the release of eggs and spermatozoa from
ripe females and males, respectively. This finding opened the
door to the study of reproductive endocrinology in asteroids. An
active substance present in the radial nerve cords has been found
in all starfish species so far tested (about thirty) (3). The extract
prepared frommale nerve cords can induce the release of gametes
in both sexes (13). Not only whole animals (13–15) but also
isolated gonads (16–18) respond to the radial nerve factor, so the
active substance is considered to act directly on the gonads. Thus,
the substance was first designated as gamete-shedding substance
(GSS) (18).

The content of GSS in the radial nerve cords (Figures 1A,B)
has been shown to be equal in both sexes, when assayed with
isolated ovarian fragments in vitro (20). GSS is also present in
the radial nerve cords throughout the year and its quantity is
mostly the same irrespective of the breeding season (17, 18).

In individuals, GSS mostly exists in the radial nerve cords and
circumoral-nerve rings (20). However, GSS is also abundantly
found in various other parts of the body, such as the epidermis,
tube-feet and cardiac stomach, although its activity is much
less than in the radial nerve cords (20). It is important that
GSS is detected in the coelomic fluid only when individuals are
undergoing natural spawning (20). Thus, this indicates that GSS
is a hormone.

Microsurgical procedures show that GSS is located mostly in
the supporting cells located under the cuticle layer of the surface
of the radial nerve cords (Figure 1C) (17, 21). Histological
studies also indicate that GSS is contained in neurosecretory-
like granules in the same area of the radial nerve cords (22, 23).
Further electron microscopic observations of the radial nerve
cords and on GSS-containing granules isolated by differential
centrifugation and sucrose density gradient ultracentrifugation
from a homogenate of radial nerve cords show that GSS is
present in granules contained in the supporting cells (21). Similar
granules are also found in the subepithelial plexus of tube-feet,
body wall, and cardiac stomach where GSS activity is detected
(20, 23). Although the pyloric caecum contains an extensive
nerve plexus, neither GSS granules nor GSS activity are detected.
According to the histological study by Unger (24), GSS seems to
be transported from the supporting cells along the supporting
fibers in radial nerve cords to the radial and transverse haemal
sinus (Figure 1C), and then to the water vascular system, thus
reaching the coelomic cavity where the gonads are suspended.

GONAD-STIMULATING SUBSTANCE

Although GSS is the primary mediator of oocyte maturation and
ovulation in starfish, the effect of GSS is indirect. The action of
GSS is production of a second mediator, 1-MeAde, as an MIH in
starfish (1–5). When GSS reaches the ovary, it enters the ovary
and acts on follicle cells around oocytes to produce 1-MeAde
(25, 26). 1-MeAde is found from the incubation mixture of GSS
and ovarian fragments of A. amurensis (1), and 1-MeAde induces
spawning when injected into the coelomic cavity of ripe starfish
(27). Isolated ovarian fragments also undergo spawning in
seawater containing 1-MeAde. Thus, the GSS (gamete shedding
substance) has been redesignated as gonad-stimulating substance
(still termed GSS) (28).

The shedding of spermatozoa begins after a shorter latent
period than that of eggs after 1-MeAde treatment. The intervals
preceding the discharge of gametes after the injection of 1-
MeAde are almost equal to those found after injection of GSS.
This indicates that 1-MeAde production in ovarian follicle cells
begins immediately after GSS application (28–30).

Although GSS is thermostable, insoluble in organic solvents,
and dialyzable, its activity is lost by treatment with proteolytic
enzymes (14, 17, 31), indicating that GSS is a peptide hormone.
Chaet (32) first tried to purify GSS from radial nerve cords
of Patiria miniata (P. miniata). The result suggested that GSS
consisted of at least 42 amino acid moieties, implying a minimum
molecular weight of around 4,800. In contrast, the GSS purified
from the radial nerve cords of A. amurensis showed that GSS
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FIGURE 1 | Structure of radial nerve cords of starfish P. pectinifera and chemical structures of relaxin-like gonad-stimulating peptides (RGP) in various species of

starfish. (A) Aboral surface of P. pectinifera. (B) Magnified image of the area in the square in (A). Arrow indicates radial nerve cords. (C) Cross-section of the tissue

around radial nerve cord of P. pectinifera. The specimen was stained with hematoxylin-eosin. (D) Alignment of RGP pre-prohormone sequences of P. pectinifera,

Acanthaster planci (A. planci), Certonardoa semiregularis (C. semiregularis), P. miniata, Asterisa amurensis (A. amurensis), and A. japonica. The signal peptide,

C-peptide, B- and A-chains are indicated. To illustrate the conserved features, the amino acid types are color coded according to their nature with basic residues in

blue (Arg, Lys, and His), acidic residues in red (Glu and Asp), hydrophobic residues in green (Ala, Val, Ile, Phe, Trp, Tyr, Pro, and Met), hydrophilic in black (Ser, Thr,

Asn, and Gln) and glycine in light blue. The cysteine residues are highlighted in yellow, and the disulfide bonds are shown by solid dark red lines. The abbreviations and

the sequence sources [DDBJ accession numbers]: AamRGP, A. amurensis RGP (LC040882); AjaRGP, A. japonica RGP (LC104980); AplRGP-a, A. planci RGP-a

(LC033566); AplRGP-b, A. planci RGP-b (19); BM, basement membrane; CL, cuticle layer; CseRGP, C. semiregularis RGP (LC066682); CT, connective tissue; DFC,

deep fiber system; EC, epithelical cells; SC, sensory cells; PmiRGP, P. miniata RGP (LC057656); PpeRGP, P. (Asterina) pectinifera RGP (AB496611); RHS, radial

heamal sinus; RNC, radial nerve cord; SFS, superficial fiber system; and TF, tube foot.

was a single peptide consisting of some 22 amino acids, with a
molecular weight of about 2,100 (33). Since GSS is composed
of two peptides combined by disulfide bonds (10), it might be
possible that the disulfide bond of GSS is reduced during the
purification process to become a single peptide. Despite active
efforts, they could not determine the amino acid sequences of
GSS, because the detection threshold of analytical instruments
was insufficient at that time. It was also difficult to undertake
physiological assays using chemically synthetic peptides.

RELAXIN-LIKE
GONAD-STIMULATING PEPTIDE

It took 50 years since the initial finding by Chaet and
McConnaughy (12) before GSS was finally purified from

the radial nerve cords of starfish Patiria (synonym, Asterina)
pectinifera and its chemical structure identified (10). For the
purification of the GSS, 126.3 g wet weight of total radial
nerve cords were collected from 5,500 animals (Figures 1A,B).
The purification procedures are briefly described. After
homogenization and extraction, the nerve extracts were applied
to a four-step high-performance liquid chromatography (HPLC)
procedure using a reverse-phase column. GSS activity was
biologically assayed by ovarian fragments of P. pectinifera. After
the 4th HPLC, GSS was finally purified and the amino acid
sequence analyze using a protein sequencer and electronspray
ionization-tandem quadruple/orthogonal-acceleration TOF
MS/MS equipped with a nano-HPLC system. The purified
hormone was a heterodimeric peptide with a molecular weight
of 4,740 Da, comprising an A-chain of 24 amino acids (aa)
and a B-chain of 19 aa, with disulfide cross-linkages; two
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interchain between the A- and B-chains, and an intrachain
within the A-chain (10). The molecular weight of GSS in P.
pectinifera was close to that of P. miniata estimated by Chaet
(32). It is important that the A-chain contains a cysteine motif
[CCxxxCxxxxxxxxC], which is a signature sequence of the
insulin/insulin-like growth factor (IGF)/relaxin superfamily.
Based on its cysteine motif, starfish GSS has been classified as a
member of the insulin/IGF/relaxin superfamily. Furthermore, a

FIGURE 2 | Overview of RGP. (A) Annual changes in RGP content in radial

nerve cords and gonadal index in starfish P. pectinifera. Starfish P. pectinifera

were collected monthly from Yokosuka (Kanagawa Prefecture, Japan). More

than ten individuals (arm length 30–50mm) per group were used for

measurement of gonadal index ( ) and the preparation of radial nerve cord

extracts for the measurement of RGP content ( ). RGP contents were

determined by ELISA (40). The gonadal index was calculated as the gonad

weight per body weight × 100. Symbols and bars represent the mean of six

independent samples and standard error of the mean (SEM), respectively.

Arrow shows timing of spawning. (B) De novo synthesis, secretion, and

hormonal action of RGP. AC, adenylyl cyclase; GPCR, G-protein-coupled

receptor; Gs, G-protein as adenylyl cyclase stimulator; Met, methionine; and

RXFP, relaxin-family peptide receptor.

phylogenetic tree of the insulin/IGF/relaxin superfamily strongly
suggests that GSS belongs to the relaxin-like peptide family (10).
The name of GSS had not adequately expressed characteristics of
a peptide hormone. Thus, GSS has been designated once again as
a relaxin-like gonad-stimulating peptide (RGP) (34).

Synthetic RGP induces oocyte maturation and ovulation in
ovarian fragments of P. pectinifera within 30min of incubation.
A median effective concentration is approximately 1–2 nM
(10). In contrast, neither oocyte maturation nor ovulation
occurs when ovarian fragments are incubated with the A-chain
alone, the B-chain alone, or a mixture of A- and B-chains.
Additionally, spawning behavior and subsequent spawning can
be seen after injection with synthetic RGP into the males and
females of P. pectinifera with fully grown testes and ovaries,
respectively (10).

The RGP gene in P. pectinifera (PpeRGP) consists of 3,896 base
pairs (bp) comprising two exons and one intron. The lengths
of exons 1 and 2 are 208 and 2,277 bp, respectively, with an
intron of 1,411 bp between them (DDBJ: LC027939) (34). The
transcript consists of 2,485 bases (b) in length (DDBJ: LC027938),
although a size of the open reading frame (ORF) is 351 b
(DDBJ: AB496611) (10). This indicates that only 14% of the
PpeRGP mRNA is translated into the peptide. Also, PpeRGP is
a very highly conserved peptide, because genetic variation and
polymorphism have not been found in the PpeRGP gene among
ten local populations from Japanese waters (35). The ORF of
PpeRGP encodes a peptide of 116 aa, including a signal peptide
of 29 aa at the N-terminus (10). The signal peptide is followed by
the B-chain, and the A-chain is located at the C-terminus. There
is an intermediate sequence (C-peptide) of 44 aa between the B-
and A-chains, which have typical proteolytic cleavage sites, Lys
and Arg, at the ends (Figure 1D). Thus, after the formation of
three disulfide cross-linkages between the A- and B-chains and
within the A-chain, mature RGP is produced by elimination of
the signal and C-peptides.

The chemical structures of RGP in A. planci (AplRGP-a)
(DDBJ: LC033566) (36), A. planci (AplRGP-b) (19), C.
semiregularis (CseRGP) (DDBJ: LC066682) (35), and P. miniata
(PmiRGP) (DDBJ: LC057656) (35) are almost the same as that
of P. pectinifera (Figure 1D). Because A. planci, C. semiregularis,
P. miniata, and P. pectinifera belong to the order Valvatida
in the class Asteroidea, the chemical structure of PpeRGP is
considered to be well-conserved among starfish of the order
Valvatida beyond species (37).

In contrast, the chemical structures of RGP identified from
A. amurensis (AamRGP) and A. japonica (AjaRGP) of the
order Forcipulatida are quite different from that of PpeRGP
(38, 39), although the cysteine motifs of AamRGP and AjaRGP
coincide exactly with that of PpeRGP (Figure 1D). This suggests
that AamRGP and AjaRGP are orthologs of PpeRGP. The
molecular weights of AamRGP and AjaRGP are 5,156 and 5,117,
respectively. The coding sequence (CDS) of AamRGP consists
of 330 bp with an ORF encoding a peptide of 109 aa, including
a signal peptide (26 aa), B-chain (20 aa), C-peptide (38 aa),
and A-chain (25 aa) (Figure 1D) (DDBJ: LC040882) (38). The
AjaRGP CDS is composed of 342 bp with an ORF encoding a
peptide of 113 aa, comprising a signal peptide (26 aa), B-chain (20
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aa), C-peptide (42 aa), and A-chain (25 aa) (Figure 1D) (DDBJ:
LC104980) (39). The identity levels of the CDS in AamRGP and
AjaRGP with respect to PpeRGP were 68 and 67%, although the
homology betweenAamRGP andAjaRGP is 85%. The amino acid
sequences of AamRGP and AjaRGP are not quite the same as that
of PpeRGP. This suggests that the chemical structure of AamRGP
is close to AjaRGP rather than PpeRGP (37).

As already introduced, the GSS seems to be present in the
radial nerve cords throughout the year and its quantity is mostly
the same irrespective of the breeding season (17, 18). This was
confirmed by enzyme-linked immunosorbent assay (ELISA) of
PpeRGP using anti-PpeRGP antibody (40). The result showed
that PpeRGP contents remained almost constant regardless of the
breeding or non-breeding season, although the breeding season
of P. pectinifera estimated by the gonadal index (GI) values
was around May in Yokosuka (Kanagawa Prefecture, Japan)
(Figure 2A). It is assumed that the amount of RGP secreted upon
spawning is considerably lower than that stored in radial nerve
cords. On the basis of in situ hybridization, the mRNA of RGP
is detected in the peripheral area of radial nerve cords proximal
to the tube-feet, but not at the side of the haemal sinus (10, 41).
Thus, RGP is de novo synthesized in the radial nerve cords and
circumoral-nerve rings which are functionally equivalent to the
central nervous system in vertebrates.

In the breeding season, RGP secreted from the radial nerve
cords should be transported to the gonads (Figure 2B). Because
it has been shown that RGP is capable of being released from
the radial nerve cords in the presence of ionomycin (42), an
increase in the level of intracellular Ca2+ is closely associated with
RGP secretion. In contrast, a gonadotropin-releasing hormone-
like peptide, pEIHYKVPGWGPG-NH2 (DDBJ: LC131035), of
P. pectinifera fails to induce RGP secretion in isolated radial nerve
cords (37). The mechanism of RGP secretion from radial nerve
cords is still unknown.

RGP binds specifically to a membrane preparation of ovarian
follicles in starfish (43, 44), and the follicle cells cultured
with RGP show a dose-related increase in cAMP production,
coinciding with an increase in 1-MeAde production (10, 44–
46). The action of RGP is mediated through the activation of its
receptor, leading to the activation of a G-protein and adenylyl
cyclase in follicle cells (Figure 2B) (10, 46, 47). In this sense,
RGP is functionally identical to vertebrate LH, especially piscine
and amphibian LHs, acting on ovarian follicle cells to produce
MIH to induce the final maturation or meiotic resumption of
oocytes (48).

Previously, cross-species experiments using different species
of starfish have shown that GSS generally acts non-species
specifically, with some exceptions (15, 17, 18). There are three
kinds of RGP orthologs, PpeRGP, AamRGP, and AjaRGP, among
the class Asteroidea (Figure 1D) (37). Neither AamRGP nor
AjaRGP induces spawning in ovarian fragments of P. pectinifera
(38, 39), although PpeRGP can induce spawning in A. amurensis
and A. japonica ovaries (39). Presumably, partial species-
specificity observed in AamRGP and AjaRGP is caused by
interaction with the receptor. Thus, chimeric RGP derivatives
with replaced A- and B-chain from these RGPs were synthesized
and examined whether to induce spawning. The results suggest

that the B-chain of RGP plays an important role in the interaction
with the receptor (49).

Receptors for the relaxin family peptides (RXFPs) belong to
the superfamily of rhodopsin-like G-protein-coupled receptors
(GPCRs) (50, 51). In humans, the relaxin superfamily consists
of relaxin 1 (H1 relaxin), relaxin 2 (H2 relaxin), relaxin 3 (H3
relaxin), insulin-like peptide 3 (INSL3 also known as relaxin-
like factor or Leydig insulin-like peptide), insulin-like peptide 4
(INSL4 or placetin), insulin-like peptide 5 (INSL5), and insulin-
like peptide 6 (INSL6) (51–58). Previous studies have shown
that H2 relaxin, INSL3, H3 relaxin, and INSL5 signal through
RXFP1 (59), RXFP2 (60), RXFP3 (61), and RXFP4 (62) receptors,
respectively. It is also considered that H1 relaxin is a ligand of
the RXFP1 (63–65). However, the native receptors for INSL4
and INSL6 are yet to be identified (66). All the family members
of relaxin peptides and their targets receptors have shown
broad physiological roles (63–65). The activation of adenylyl
cyclase by RXFP1 is complex and involves the interaction with
several G-proteins, resulting in a biphasic pattern of cAMP
accumulation (63). RXFP2 activates adenylyl cyclase in vitro but
some physiological responses are sensitive to pertussis toxin (63).
The signaling pathways activated by RXFP3 or RXFP4 result
in the inhibition of adenylyl cyclase and a decrease in cAMP
accumulation. Thus, it is possible that RGP receptor belongs
to RXFP1/RXFP2 rather than RXFP3/ RXFP4, although the
receptor has not been identified yet.

It has been demonstrated in mammals that the B-chain of
relaxins and INSLs binds to the receptor (63–65). Despite its
similarity with relaxin super family, however, the RGP sequence
does not possess the vertebrate relaxin-specific receptor-binding
cassette RxxxRxxI/V in the B-chain, a distinct andwell-conserved
feature of the relaxin group identified so far (67). A relaxin-like
signaling system also exists in protostomes. Dilp8, Drosophila
insulin-like peptide 8, exerts role in developmental transitions via
a signaling pathway involving the LGR3, a leucine-rich repeat-
containing G-protein coupled receptor, homologous to RXFP1
and RXFP2 (68). Because echinoderms belong to deuterostomes,
starfish RGP and vertebrate relaxin are considered to be
derived from the same ancestral peptide. Further studies on the
receptor protein for RGP could provide useful insights into
the hormonal action and evolution of species differentiation in
the class Asteroidea.
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