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Abstract 

Intercellular heterogeneity is a major obstacle to successful personalized medicine. Single-cell 

RNA sequencing (scRNA-seq) technology has enabled in-depth analysis of intercellular 

heterogeneity in various diseases. However, its full potentials for personalized medicine are yet 

to be reached. Towards this, we propose A Single-cell Guided pipeline to Aid Repurposing of 

Drugs (ASGARD). ASGARD can repurpose single drugs for each cell cluster and for multiple cell 

clusters at individual patient levels; it can also predict personalized drug combinations to address 

the intercellular heterogeneity within each patient. We tested ASGARD on three independent 

datasets, including advanced metastatic breast cancer, acute lymphoblastic leukemia, and 

coronavirus disease 2019 (COVID-19). On single-drug therapy, ASGARD shows significantly 

better average accuracy (AUC=0.95) compared to two other single-cell pipelines (AUC 0.69 and 

0.57) and two other bulk-cell-based drug repurposing methods (AUC 0.80 and 0.75). The top-

ranked drugs, such as fulvestrant and neratinib for breast cancer, tretinoin and vorinostat for 

leukemia, and chloroquine and enalapril for severe COVID19, are either approved by FDA or in 

clinical trials treating corresponding diseases. In conclusion, ASGARD is a promising pipeline 

guided by single-cell RNA-seq data, for repurposing personalized drugs and drug combinations. 

ASGARD is free for academic use at https://github.com/lanagarmire/ASGARD. 
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Introduction 

Heterogeneity, or more specifically the diverse cell populations within the diseased tissue, is the 

main cause of treatment failure for many complex diseases, such as cancers 1, Alzheimer’s 

disease 2, stroke  3, and coronavirus disease 2019 (COVID-19) 4, etc., as well as a major obstacle 

to successful personalized medicine 5–7. Recent significant advances of single-cell technologies, 

especially the single-cell RNA sequencing (scRNA-seq) technology, have enabled the analysis of 

intercellular heterogeneity at a very fine resolution 8,9 and helped us to have many breakthroughs 

in understanding the disease mechanisms10, such as breast cancer 11, liver cancer 12 and COVID-

19 13. However, its full potentials for personalized medicine have not been fulfilled 14,15. 

Drug repurposing (also known as drug reposition, reprofiling, or re-tasking) is a strategy to identify 

new uses of a drug outside the scope of its original medical approval or investigation 16. So far, 

very few drug repurposing methods have been developed to utilize the highly valuable information 

residing in scRNA-seq data. The pipeline by Alakwaa identifies significantly differentiated genes 

(DEGs) for a specific group of cells, then predicts candidate drugs for DEGs using the Connectivity 

Map Linked User Environment (CLUE) platform, followed by prioritizing these drugs using a 

comprehensive ranking score system 17. This pipeline identified didanosine as a potential 

treatment for COVID-19 using scRNA-seq data 17.  Another pipeline by Guo et al. uses a simple 

combination of Seurat 18, a tool for scRNA-seq analysis, and CLUE to identify 281 FDA-approved 

drugs that have the potential to be effective for treating COVID-19 19.  However, the above 

pipelines predict drugs for each single-cell cluster within the patient but can’t give comprehensive 

drug scores at the patient level. Meanwhile, in heterogeneous diseases caused by multiple types 

of cells, a combination of cell-targeting drugs has shown to be a better treatment strategy 20. 

Neither of these above-mentioned pipelines is capable of predicting the combination of drugs, 

limiting their utility in the era of precision medicine.  

https://paperpile.com/c/9eQ10C/LFmsv
https://paperpile.com/c/9eQ10C/tY7Fq
https://paperpile.com/c/9eQ10C/0JbId
https://paperpile.com/c/9eQ10C/ncPFu
https://paperpile.com/c/9eQ10C/X8ujP+oAkFO+5nPd
https://paperpile.com/c/9eQ10C/rHVBj+8vLh
https://paperpile.com/c/9eQ10C/Iewk
https://paperpile.com/c/9eQ10C/wa5pC
https://paperpile.com/c/9eQ10C/9m7nT
https://paperpile.com/c/9eQ10C/YYGGW
https://paperpile.com/c/9eQ10C/CgnyM+jELO
https://paperpile.com/c/9eQ10C/XJ9Qe
https://paperpile.com/c/9eQ10C/7mFaS
https://paperpile.com/c/9eQ10C/7mFaS
https://paperpile.com/c/9eQ10C/bCE1u
https://paperpile.com/c/9eQ10C/wQJiM
https://paperpile.com/c/9eQ10C/CppH3
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Here we propose A Single-cell Guided pipeline for Accurate Repurposition of Drugs (ASGARD) 

to overcome the issue above. ASGARD repurposes single drugs for each population in single-

cell data and predicts personalized drug combinations to address the intercellular heterogeneity 

within a patient. We applied ASGARD on several scRNA-seq datasets, including those from 

Patient-Derived Xenografts (PDXs) models of advanced metastatic breast cancers and from Pre-

T acute lymphoblastic leukemia patients. The performance of ASGARD on single drugs is both 

more accurate and more robust compared to the two other pipelines mentioned earlier. 

Additionally, with the on-going worldwide COVID-19 pandemic, we applied ASGARD to scRNA-

seq data from severe COVID-19 patients and predict potential therapies to reduce deaths of 

severe COVID-19 patients.  

 

Methods 

Single-cell RNA sequencing (scRNA-seq) data 

We obtained scRNA-seq datasets from the Gene Expression Omnibus (GEO) database. 

Epithelial cells from Patient-Derived Xenografts (PDXs) models of 2 patients with advanced 

metastatic breast cancer and adult human breast epithelial cells from 3 healthy women are from 

GEO with accession numbers GSE123926 and GSE113197, respectively. ScRNA-seq data of 

pediatric bone marrow mononuclear cells (PBMMC) from 2 Pre-T acute lymphoblastic leukemia 

patients and 3 healthy controls are from GEO with accession number GSE132509. ScRNA-seq 

data of cells from bronchoalveolar lavage fluid (BALF) of 15 severe COVID-19 patients (4 

deceased and 11 cured) are from GEO with accession numbers GSE145926 and GSE158055. 

Processing of scRNA-seq data 
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ASGARD accepts processed scRNA-seq data from the Seurat package 18. In this study, genes 

identified in fewer than 3 cells are removed from the dataset. We used the same criteria as their 

original studies to filter cells 11,13,21. Epithelial cells from breast cancer PDXs and healthy breast 

tissues with fewer than 200 unique genes are removed from the dataset. PBMC cells from 

leukemia patients and healthy controls with fewer than 200 unique genes are removed from the 

dataset. BALF cells from COVID-19 patients with fewer than 200 unique genes or more than 6000 

unique genes or have a proportion of mitochondrial genes larger than 10% are removed from the 

dataset 13. We used cell cycle marker genes and linear transformation to scale the expression of 

each gene and remove the effects of the cell cycle on gene expressions.  

Cell pairwise correspondences  

ASGARD suggests using functions from Seurat for cell pairwise correspondences. In this study, 

gene counts for each cell were divided by the total counts for that cell and multiplied by a scaling 

factor (default is set to 10000). The count matrix was then transformed by log 2(count+1) in R. To 

identify gene variance across cells, we firstly fitted a line to the relationship of log(variance) and 

log(mean) using local polynomial regression (loess). Then we standardized the feature values 

using the observed mean and expected variance (given by the fitted line). Gene variance was 

then calculated on the standardized values. In this study, we used the 2,000 genes with the 

highest standardized variance for downstream analysis. Then we identified the K-nearest 

neighbors (KNNs) between disease and normal cells, based on the L2-normalized canonical 

correlation vectors (CCV). Finally, we built up the cell pairwise correspondences by identifying 

mutual nearest neighbors 18.  

Cell clustering and annotation 

We applied principal component analysis (PCA) from Seurat on the scaled data to perform the 

linear dimensional reduction. Then we used a graph-based clustering approach18. In this 

https://paperpile.com/c/9eQ10C/bCE1u
https://paperpile.com/c/9eQ10C/wa5pC+YYGGW+POX8p
https://paperpile.com/c/9eQ10C/YYGGW
https://paperpile.com/c/9eQ10C/bCE1u
https://paperpile.com/c/9eQ10C/bCE1u
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approach, we firstly constructed a KNN graph based on the euclidean distance in PCA space and 

refined the edge weights between any two cell pairs using Jaccard similarity. Then we applied the 

Louvain algorithm of modularity optimization to iteratively group cell pairs together. We further ran 

non-linear dimensional reduction (UMAP) to place similar cells within the graph-based clusters 

determined above together in low-dimensional space. To annotate clusters of cells, we ran an 

automatic annotation of single cells based on similarity to the references single-cell panel using 

the SingleR package 22. We used the dominant cell type (>50% cells) as the cell type of the 

cluster.  

Drug repurposing 

ASGARD supports multiple methods for differential gene analysis, including Limma 23, Seurat 

(Wilcoxon Rank Sum test) 18, DESeq2 24, and edgeR 25.  The differentially expressed gene list in 

a disease is transformed into a gene rank list. ASGARD uses 21,304 drugs/compounds with 

response gene expression profiles in 98 cell lines from the LINCS L1000 project 26. A differential 

gene expression list in response to drug treatment is also transformed into a gene rank list. 

ASGARD further identifies potential candidate drugs that yield reversed gene expression patterns 

from that in the diseased vs. normal cells, using the DrInsight package 27 (version: 0.1.1). 

Specifically, it identifies consistently differentially expressed genes, which are up-regulated in 

cells from diseased tissue but down-regulated in cells with drug treatment, or down-regulated in 

cells from diseased tissue but up-regulated in cells with drug treatment, to calculate the outlier-

sum (OS) statistic 28. The Kolmogorov–Smirnov test (K-S test) is then applied to the OS statistic, 

to show the significance level of one drug treatment relative to the background of all other drugs 

in the dataset. The reference drug dataset contains gene rank lists of 591,697 drug/compound 

treatments from the LINCS L1000 data, as mentioned above. The Benjamini-Hochberg (BH) false 

discovery rate (FDR) is used to adjust P-values from the K-S test to avoid false significance due 

to multiple hypothesis testing29.  

https://paperpile.com/c/9eQ10C/Kom9e
https://paperpile.com/c/9eQ10C/ZFhD2
https://paperpile.com/c/9eQ10C/bCE1u
https://paperpile.com/c/9eQ10C/tBt0
https://paperpile.com/c/9eQ10C/MtAt
https://paperpile.com/c/9eQ10C/raBXX
https://paperpile.com/c/9eQ10C/CQKZc
https://paperpile.com/c/9eQ10C/vdXeK
https://paperpile.com/c/9eQ10C/Kz8q
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Drug score 

ASGARD defines a novel drug score (Formula 1) to evaluate the treatment efficacy of single-drug 

and drug combinations on multiple single-cell clusters per sample. The drug score is a 

comprehensive estimation of drug therapeutic effects summing over every single cell cluster with 

weights. The drug score is estimated by the following formula: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑠𝑠𝑠𝑠𝑠𝑠𝐷𝐷𝑒𝑒 = ∑ ( 𝑛𝑛.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶.𝑛𝑛.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

∗ (−𝑙𝑙𝑠𝑠𝐷𝐷10
𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘) ∗ 𝑁𝑁𝑁𝑁𝑁𝑁(𝐹𝐹𝐶𝐶𝑅𝑅𝐶𝐶𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶𝑛𝑛𝐶𝐶)𝑘𝑘

𝑁𝑁𝑁𝑁𝑁𝑁(𝐹𝐹𝐷𝐷𝑅𝑅𝐶𝐶𝑇𝑇𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶𝑛𝑛𝐶𝐶)𝑘𝑘
)𝑛𝑛

𝑘𝑘=1  (1) 

In this formula, 𝑘𝑘 is a particular single-cell cluster. ��𝑡𝑡𝑡𝑡𝑙𝑙.𝑛𝑛.𝐶𝐶𝑒𝑒𝑙𝑙𝑙𝑙 is the total number of cells in the 

sample and 𝑛𝑛.𝐶𝐶𝑒𝑒𝑙𝑙𝑙𝑙𝑘𝑘 is the number of cells in cluster 𝑘𝑘. 𝐹𝐹𝐷𝐷𝐹𝐹𝑘𝑘 is the drug False Detective Rate 

(FDR) for cluster 𝑘𝑘. 𝑁𝑁𝐷𝐷𝑁𝑁 (𝐷𝐷𝐷𝐷𝑠𝑠𝑒𝑒𝑡𝑡𝑠𝑠𝑒𝑒𝐷𝐷𝐷𝐷𝑒𝑒𝑛𝑛𝑒𝑒𝑠𝑠)𝑘𝑘is the number of significantly deregulated genes in 

cluster 𝑘𝑘 , while 𝑁𝑁𝐷𝐷𝑁𝑁 (𝐹𝐹𝑒𝑒𝑅𝑅𝑒𝑒𝐷𝐷𝑠𝑠𝑒𝑒𝐷𝐷𝐷𝐷𝑒𝑒𝑛𝑛𝑒𝑒𝑠𝑠)𝑘𝑘 is the number of significantly deregulated genes in cluster 

𝑘𝑘 that can be reversed by the drug. The ratio of reversed disease-related genes indicates the 

therapeutic effect of a drug for each cluster.  

Besides the drug score, ASGARD further provides a Fisher's combined P-value 30 over the original 

P value of every cluster. It shows the drug significance on multiple single-cell clusters per sample. 

The combined p-value is calculated as the right-tail probability 𝑃𝑃𝑥𝑥2(2𝑛𝑛)(𝑇𝑇 > 𝑡𝑡), where 𝑡𝑡 =

−2∑ 𝑙𝑙𝑠𝑠𝐷𝐷10
𝑃𝑃𝑖𝑖𝑛𝑛

𝐷𝐷=1 . The BH FDR is used to adjust Fisher's combined P-value. 

For the drug combination, the user needs to set the number of drugs (size) in the combination. 

ASGARD explores all the potential combinations of required size, using significant drugs obtained 

from each cluster. It removes combinations that have adverse effects according to the data from 

Drugbank31 and SIDER database32. For the remaining combinations, ASGARD uses an additive 

model to estimate the combined gene expression response to the drug combination20. The 

combined gene responses are then used to identify the reversely deregulated gene by the drug 

combination. If a gene is significantly up/down regulated in the diseased cluster 𝑘𝑘, and the gene 

https://paperpile.com/c/9eQ10C/yetR
https://paperpile.com/c/9eQ10C/G49C7
https://paperpile.com/c/9eQ10C/YwgWn
https://paperpile.com/c/9eQ10C/CppH3
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is reversely down/up regulated according to the combined gene response using additive model20,  

then this gene is called the reversely deregulated gene by the drug combination. The drug 

combination score of combined drug A and drug B is modified from Formula 1, using Formula 2 

below: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑠𝑠𝑠𝑠𝑁𝑁𝑐𝑐𝐷𝐷𝑛𝑛𝑡𝑡𝑡𝑡𝐷𝐷𝑠𝑠𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝐷𝐷𝑒𝑒 = ∑ ( 𝑛𝑛.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶.𝑛𝑛.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

∗ (−𝑙𝑙𝑠𝑠𝐷𝐷10
𝐹𝐹𝐹𝐹𝐹𝐹𝑎𝑎𝑘𝑘∗𝐹𝐹𝐹𝐹𝐹𝐹𝑏𝑏𝑘𝑘) ∗ 𝑁𝑁𝑁𝑁𝑁𝑁(𝐹𝐹𝐶𝐶𝑅𝑅𝐶𝐶𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶𝑛𝑛𝐶𝐶)𝑐𝑐𝑘𝑘

𝑁𝑁𝑁𝑁𝑁𝑁(𝐹𝐹𝐷𝐷𝑅𝑅𝐶𝐶𝑇𝑇𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶𝑛𝑛𝐶𝐶)𝑘𝑘
)  𝑛𝑛

𝑘𝑘=1 (2) 

In this formula, 𝐹𝐹𝐷𝐷𝐹𝐹𝑇𝑇𝑘𝑘and 𝐹𝐹𝐷𝐷𝐹𝐹𝑏𝑏𝑘𝑘 are the FDRs of drug A and drug B for cluster k, respectively. 

𝑁𝑁𝐷𝐷𝑁𝑁(𝐹𝐹𝑒𝑒𝑅𝑅𝑒𝑒𝑠𝑠𝑒𝑒𝐷𝐷𝐷𝐷𝑒𝑒𝑛𝑛𝑒𝑒)𝑐𝑐𝑘𝑘is the number of the combined reversely deregulated genes by drug A and 

drug B in cluster k. Other terms have the same meanings as in Formula 1.  

Performance comparison  

We use the receiver operating characteristic curves (ROCs) and the areas under the ROC curves 

(AUCs) to compare the performance of ASGARD with those of the other two pipelines, as well as 

bulk methods. Since these pipelines/methods report both drugs and compounds, we let the 

ASGARD report both drugs and compounds in the comparisons with other pipelines/methods. 

For the performance estimation of ASGARD with different methods of differential gene analysis, 

we let the ASGARD only report drugs. ROCs and AUCs are calculated for each pipeline using 

the pROC package 33. True positive datasets in ROC and AUC estimation of single-drug are taken 

from FDA-approved drugs for the corresponding disease, as well as compounds and drugs in 

advanced clinical trials or have been proved effective in animal models. For the drug combination, 

the true positive dataset in ROC and AUC are taken from FDA-approved drug combinations or 

known synergistic drug-drug interactions on drug labels, from the Drugbank31 database. To 

assess the robustness of the three pipelines on different sizes of single-cell populations, 

simulation data are generated by randomly drawing the same number of disease and normal cells 

from GSE123926 and GSE113197 using the Bootstrapping method in R 34. To assess the 

robustness of the three pipelines on different similarities of single-cell populations, simulation data 

https://paperpile.com/c/9eQ10C/CppH3
https://paperpile.com/c/9eQ10C/YLmyZ
https://paperpile.com/c/9eQ10C/G49C7
https://paperpile.com/c/9eQ10C/l32RZ


9 

are generated by adjusting differential gene expression levels from 20% to 90% of original 

differential levels of the single-cell cluster, based on GSE123926 and GSE113197. To assess the 

robustness of the three pipelines on unbalanced single-cell populations, simulation data are 

generated by randomly drawing 5000 cells with diseased cells proportion ranging from 20% to 

90%. The true positive datasets, results of all the five methods, and scripts for the performance 

comparisons are available at: https://github.com/lanagarmire/Single-cell-drug-

repositioning/tree/master/ROC   

Code availability 

ASGARD is available as an R package in Github (https://github.com/lanagarmire/ASGARD) 

under the PolyForm Noncommercial License.    

https://github.com/lanagarmire/Single-cell-drug-repositioning/tree/master/ROC
https://github.com/lanagarmire/Single-cell-drug-repositioning/tree/master/ROC


10 

Results 

Summary of A Single-cell Guided pipeline to Aid Repurposing of Drugs (ASGARD) 

Using scRNA-seq data, ASGARD repurposes drug combinations maximally efficiently for all cell 

populations, by fully accounting for the cellular heterogeneity of patients (Figure 1). In ASGARD, 

every cell type in the diseased sample is paired to that in the normal (or control) sample, according 

to “anchor” genes that are consistently expressed between diseased and normal cells. It then 

identifies consistently differentially expressed genes (P-value < 0.05) between the paired 

diseased and normal clusters in the scRNA-seq data, per computational methods including 

Limma 23, Seurat (Wilcoxon Rank Sum test) 18, DESeq2 24 and edgeR 25. These individual clusters 

can be optionally annotated to specific cell types. Then ASGARD uses these consistently 

differentially expressed genes as inputs to identify drugs that can significantly (FDR < 0.05) 

reverse their expression levels in the L1000 drug response dataset, which comprises 591,697 

drug/compound treatments 26. Specifically, ASGARD calculates the outlier-sum (OS) statistic first 

28 by using the differentially expressed gene list, then applies the Kolmogorov–Smirnov test (K-S 

test) to the OS statistic to obtain the significance level of one drug treatment relative to the 

background of all other drugs in the reference drug dataset, as done before 27. Finally, ASGARD 

estimates the comprehensive drug score to identify single-drugs that are most efficient in treating 

all or selected diseased cell clusters (Formula 1 in Methods). ASGARD can also perform the drug 

combination analysis to identify the synergistic combination of repurposed drugs that are most 

potent in treating the selected diseased cell clusters (Formula 2 in Methods).  

Comparing ASGARD to bulk-cell based repurposing methods 

Before comparing ASGARD to other bulk RNA-Seq sample-based repurposing methods, we first 

determined the default differential expression method in ASGARD. For this, we compared several 

https://paperpile.com/c/9eQ10C/ZFhD2
https://paperpile.com/c/9eQ10C/bCE1u
https://paperpile.com/c/9eQ10C/tBt0
https://paperpile.com/c/9eQ10C/MtAt
https://paperpile.com/c/9eQ10C/raBXX
https://paperpile.com/c/9eQ10C/vdXeK
https://paperpile.com/c/9eQ10C/CQKZc
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representative differential expression methods: Limma 23, Seurat (Wilcoxon Rank Sum test) 18, 

DESeq2 24, and edgeR 25, using advanced metastatic breast cancer 11,21, acute lymphoblastic 

leukemia35, and coronavirus disease 2019 (COVID-19)13,36 datasets (see Methods). Drug 

prediction accuracies of ASGARD are determined by the receiver operating characteristic curves 

(ROCs) and the areas under the ROC curves (AUCs), using FDA-approved drugs and candidate 

drugs validated in advanced clinical trials as the true positive dataset. As shown in Figure 2A, 

limma yields the best AUCs for each of the three datasets with an average AUC 0.93 (0.90-0.98), 

significantly (P-value < 0.05, student’s t-test) better than other differential expression methods. 

The AUCs for the other methods are: Seurat average 0.82 (0.80-0.86), DESeq2 average 0.83 

(0.81-0.84), and edgeR average 0.87 (0.83-0.93). Therefore, limma was used as the default 

method in the ASGARD pipeline for the following analysis.  

To compare ASGARD with those drug repurposing methods using bulk RNA-Seq samples, we 

summarized scRNA-seq data into pseudo-bulk RNA-Seq data. We then applied bulk methods 

CLUE 37 and DrInsight 27 on the pseudo-bulk RNA-Seq query data and compared their results 

with ASGARD on predicting both drugs and compounds (Figure 2B). We took the same scRNA-

seq data from the same three datasets above. Since CLUE and DrInsight predict both drugs and 

compounds, we added compounds validated in animal models to the true positive dataset for the 

AUC evaluation of drug/compound predictions. As a result, the AUCs obtained from ASGARD on 

drugs and compounds (Figure 2B) are slightly different from those on drugs only (Figure 2A). On 

the breast cancer dataset, ASGARD yields an overall AUC of 0.92, much better than CLUE and 

DrInsight with values of 0.74 and 0.81 respectively. On precursor T-cell acute lymphoblastic 

leukemia data, ASGARD yields an AUC of 0.95 in drug/compound repurposing for the leukemia 

patients, while CLUE and DrInsight only achieve much worse averaged AUCs of 0.82 and 0.73 

respectively. For the COVID-19 dataset, ASGARD shows an AUC of 0.97 in drug/compound 

repurposing for the deceased COVID-19 patients, while CLUE and DrInsight have much lower 

https://paperpile.com/c/9eQ10C/ZFhD2
https://paperpile.com/c/9eQ10C/bCE1u
https://paperpile.com/c/9eQ10C/tBt0
https://paperpile.com/c/9eQ10C/MtAt
https://paperpile.com/c/9eQ10C/wa5pC+POX8p
https://paperpile.com/c/9eQ10C/px7T
https://paperpile.com/c/9eQ10C/YYGGW+cOXa
https://paperpile.com/c/9eQ10C/xiJR
https://paperpile.com/c/9eQ10C/CQKZc
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AUCs of 0.85 and 0.72 respectively, on the same patients (Figure 2B). In summary, by paying 

attention to heterogeneity at single-cell levels, ASGARD shows much better drug repurposing 

predictability than methods that rely on bulk samples.  

Comparing ASGARD to other single-cell based repurposing methods 

We also compared single drug prediction using ASGARD with two other pipelines developed by 

Alakwaa et al. 17,19 and Guo et al.17,19, which were reported to handle scRNA-Seq data. Note that 

ASGARD offers more functionalities than those two methods, from at least two aspects. First, 

Alakwaa’ and Guo’ pipelines can only repurpose drug/compounds for each single-cell cluster but 

not on the patient level using multiple cell clusters. ASGARD on the other hand can compute both 

the cluster-level drug significance and the patient-level novel drug score (Formula 1 in Methods). 

Second, neither the Alakwaa' nor Guo’ pipeline can propose drug combinations like ASGARD  

(Formula 2 in Methods). These unique functions of ASGARD will be demonstrated in the later 

sections. For a fair comparison, we tested single drug prediction accuracies of these three 

methods on individual clusters, which constitutes only a small portion of ASGARD's capacities 

(Figure 3, Supplementary Figure 1). ASGARD shows the best AUCs on every individual cluster 

from breast cancer, leukemia, and COVID-19 datasets (Figure 3). On the 8 clusters of breast 

cancer dataset, ASGARD yields an averaged AUC of 0.83 (0.80-0.86), much better (P-

value<0.001, student’s t-test) than Alakwaa' and Guo’ pipelines, with averaged AUC values of 

0.72 (0.62-0.79) and 0.56 (0.54-0.59) respectively (Figure 3A). On the 4 clusters of precursor T-

cell acute lymphoblastic leukemia data, ASGARD has an averaged AUC of 0.81 (0.76-0.85), 

again much better (P-value<0.05, student’s t-test) than Alakwaa' and Guo’ pipelines, with 

averaged AUC values of 0.51 (0.49-0.56) and 0.52 (0.49-0.55) respectively (Figure 3B). Similar 

trends exist in the 4 clusters with increased cell proportions in the decreased severe vs cured 

severe COVID-19 patients (Figure 6A and 6B), with averaged AUCs of 0.87 (0.83-0.90), 0.81 

(0.75-0.86), and 0.65 (0.61-0.68) for ASGARD, Alakwaa’ and Guo’ methods (Figure 3C). These 

https://paperpile.com/c/9eQ10C/7mFaS+wQJiM
https://paperpile.com/c/9eQ10C/7mFaS+wQJiM
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results collectively support the conclusion that ASGARD predicts single drugs more accurately 

than Alakwaa’ and Guo’ pipelines. 

Additionally, given that sample size, cell population similarity, and proportion of disease cells 

impact significantly on differential gene analysis 38, we further performed robustness assessments 

of the three pipelines across different sizes of single-cell populations, different differential levels 

of single-cell populations, and different proportions of diseased cells using simulation data based 

on GSE123926 and GSE113197 dataset (see Methods). The AUCs of the three single-cell drug 

repurposing pipelines on the simulation data show that ASGARD, as well as the other two 

pipelines, have very robust performance across different sizes of single-cell populations 

(Supplementary Figure 2A), different degrees of differential expression between disease and 

normal conditions (Supplementary Figure 2B), and different proportions of disease cells among 

the scRNA-Seq data (Supplementary Figure 2C).   

Single-cell drug repurposing for advanced metastatic breast cancer 

We collected scRNA-seq data from 24,741 epithelial cells of advanced metastatic breast cancer 

Patient-Derived Xenografts (PDXs) models 11 and 16,998  epithelial cells from normal breast 

tissues 21. After preprocessing, all cancer cells and 16,954 normal cells were paired and clustered 

into 8 populations (Figure 4A). Cluster 1 (C1) is the largest one covering 33.68% of cells, while 

cluster 8 (C8) is the smallest one accounting for only 1.8% of cells (Figure 4A). The differentially 

expressed genes (adjusted P-value <0.05, cancer vs normal) in the clusters are significantly 

enriched in 10 well-known breast cancer-related pathways, including ncluding apoptosis, cell 

cycle, estrogen signaling, IL−17 signaling, neurotrophin signaling, NF−kappa B signaling, 

NOD−like receptor signaling, p53 signaling, PI3K−Akt signaling and TNF signaling pathways 

(Figure 4B). Cluster 7 (C7) has the largest number of 7 significant pathways, while C1 and C6 

each have only 1 significant pathway. 

https://paperpile.com/c/9eQ10C/ohQDw
https://paperpile.com/c/9eQ10C/wa5pC
https://paperpile.com/c/9eQ10C/POX8p
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We first applied ASGARD for single drug repurposing prediction and predicted 11 drugs 

(FDR<0.05 and overall drug score >0.99 quantiles) for advanced metastatic breast cancer  

(Figure 4C). Among them, fulvestrant and neratinib have been approved by the Food and Drug 

Administration (FDA) for breast cancer treatment 39,40. Fostamatinib is the top 1 drug candidate 

(Figure 4C). It is a tyrosine kinase inhibitor medication approved for the treatment of chronic 

immune thrombocytopenia 41. We next applied ASGARD to predict drug combinations, using 

significant drugs (FDR<0.05) repurposed for each cluster (Table 1, Supplementary Table 1). We 

used drug combinations approved for breast cancer or having known synergistic drug-drug 

interactions as the true positive dataset in the AUC estimation. ASGARD shows an AUC of 0.85 

in predicting drug combinations for advanced metastatic breast cancer (Figure 4D). Fostamatinib 

and colchicine are proposed as the top 1 drug combination (Figure 4E). Colchicine is an alkaloid 

approved for treating the inflammatory symptoms of familial Mediterranean fever 42.  

We next investigated the target genes and pathways of fostamatinib and colchicine combination 

(Figure 4F). Fostamatinib and colchicine both target all the significant pathways in each cluster. 

Fostamatinib and colchicine are complementary in targeting genes of these pathways. Among 

the 143 target genes from these significant pathways, only 29 target genes are shared by 

fostamatinib and colchicine (Figure 4F). The combination of fostamatinib and colchicine also 

shows biologically synergistic targeting of multiple genes on the same significant pathways. For 

example, fostamatinib inhibits Cyclin D1 (CCND1) to produce G1 arrest in the p53 signaling 

pathway, while colchicine inhibits Cyclin-dependent kinase 1 (CDK1) to produce G2 arrest in the 

p53 signaling pathway and cell cycle pathway 43 (Figure 4F). Additionally, the drug scores of top 

drug combination candidates vary from one PDX model to another (Figure 4E), demonstrating 

that ASGARD is a forward-looking personalized medicine strategy in silico.  

Single-cell drug repurposing for precursor T-cell acute lymphoblastic leukemia (Pre-T ALL) 

https://paperpile.com/c/9eQ10C/wpx3L+FgX6
https://paperpile.com/c/9eQ10C/Av6OT
https://paperpile.com/c/9eQ10C/BtTi
https://paperpile.com/c/9eQ10C/SxcN
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We further applied ASGARD to the collected scRNA-seq data from 2 Pre-T ALL patients and 3 

normal healthy controls35. ASGARD identifies 8 types of cells (Figure 5A), in which T cells are 

further clustered into 4 sub-populations (Figure 5B). Cluster 1 (C1) is the largest one covering 

47.29% of cells, while cluster 4 (C4) is the smallest accounting for only 2.11% of cells (Figure 5B). 

The differentially expressed genes (adjusted P-value <0.05, Pre-T ALL vs normal) in the T cell 

clusters are significantly enriched in 6 pathways, including apoptosis, cell cycle, cGMP−PKG 

signaling, NF−kappa B signaling, p53 signaling, and T cell receptor signaling pathways (Figure 

5C). Among the predicted drugs by ASGARD, the 1st candidate tretinoin and 6th candidate 

vorinostat have been approved for the treatment of leukemia 44,45 (Figure 5D, Supplementary 

Table 2). Tretinoin is a vitamin A derivative. Tretinoin targets many genes in all 4 clusters, such 

as MDM4, a regulator of p53 (MDM4) in the p53 signaling pathway, cyclin D3 (CCND3) in cell 

cycle and p53 signaling pathways, G protein subunit alpha q (GNAQ) and phospholipase C beta 

1 (PLCB1) in the cGMP−PKG signaling pathway, Fos proto-oncogene (FOS) and p21 (RAC1) 

activated kinase 2 (PAK2) in T cell receptor signaling pathway,  spectrin alpha non-erythrocytic 1 

(SPTAN1) in apoptosis pathway and zeta chain of T cell receptor associated protein kinase 70 

(ZAP70) in apoptosis and NF−kappa B signaling pathways (Figure 5E). All these genes were 

previously shown significance in T cell clusters of ALL 46–48.  

Single-cell drug repurposing for severe patients with coronavirus disease 2019 (COVID-

19) 

Using ASGARD, we annotated scRNA-seq data collected from the bronchoalveolar lavage fluid 

(BALF) of 15 severe COVID-19 patients 13,36. ASGARD identified 7 types of cells, including 6 types 

of immune cells and epithelial cell types (Figure 6A).  Monocyte is the largest cell population in 

both deceased and cured severe COVID-19 patients(Figure 6B).  The population of neutrophil, 

NK cell, T cell, and monocyte increased in deceased severe COVID patients compared to the 

cured ones, suggesting the important role of these four types of cells in the COVID19-related 

https://paperpile.com/c/9eQ10C/px7T
https://paperpile.com/c/9eQ10C/UG0E+ECY1
https://paperpile.com/c/9eQ10C/GMh9+UbyB+e1Pi
https://paperpile.com/c/9eQ10C/YYGGW+cOXa
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death 49–52 (Figure 6B). The differentially expressed genes (adjusted P-value <0.05, deceased 

severe vs cured severe) in the four types of cells are significantly enriched (adjusted P-value 

<0.05) in 8 pathways, including chemokine signaling, coronavirus disease−COVID−19, IL−17 

signaling, JAK−STAT signaling, NF−kappa B signaling, T cell receptor signaling, TNF signaling 

and Toll−like receptor signaling pathways (Figure 6C). Coronavirus disease−COVID−19 pathway 

is the most significant pathway in these cells. Chemokine signaling, NF−kappa B signaling, TNF 

signaling, and Toll−like receptor signaling pathways are the most widely enriched pathways in all 

four types of cells. T cell receptor signaling pathway is only enriched in T cells.      

We thus applied ASGARD to identify single drug candidates that target the four cell types, 

including neutrophil, NK cell, T cell, and monocyte, in the hope to reduce the mortality of severe 

COVID-19. Among the drugs predicted to reduce the mortality of the severe COVID-19 patients, 

rescinnamine (2nd) and enalapril (4th) caught our attention (Figure 6D, Supplementary Table 3). 

Both rescinnamine and enalapril are angiotensin-converting enzyme (ACE) inhibitors. 

Rescinnamine and enalapril share most of the key genes on all the significant pathways in 

monocyte, NK cell, neutrophil, and T cell, respectively (Figure 6E). In monocyte, rescinnamine 

and enalapril share 47 key target genes, including Janus Kinase 1 (JAK1), Janus Kinase 2 (JAK2), 

C-C Motif Chemokine Ligand 2 (CCL2), C-C Motif Chemokine Ligand 4 (CCL4), and C-C Motif 

Chemokine Ligand 8 (CCL8), and all the 7 significant pathways. In NK cells, rescinnamine and 

enalapril share 35 key target genes from 6 significant pathways, such as JAK1, Janus Kinase 3 

(JAK3), CCL4, tumor necrosis factor (TNF), and Signal Transducer And Activator Of Transcription 

2 (STAT2). In neutrophils, rescinnamine and enalapril share 16 key target genes, such as CCL2, 

CCL8, C-X-C Motif Chemokine Ligand 8 (CXCL8) and C-X-C Motif Chemokine Ligand 10 

(CXCL10), and all the 5 significant pathways.  In T cell, rescinnamine and enalapril share 30 key 

target genes, such as CCL2, CCL8, C-X-C Motif Chemokine Ligand 9 (CXCL9), JAK3, TNF, and 

Lymphocyte Cytosolic Protein 2 (LCP2),  and all the 6 significant pathways of T cell. The shared 

https://paperpile.com/c/9eQ10C/3GMz+WXhI+gtH4+A39n
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target genes and pathways in corresponding cells were previously shown related to death from 

COVID19 49–52. 

   

Discussion 

In this study, we present A Single-cell Guided pipeline to Aid Repurposing of Drugs (ASGARD). 

To evaluate the accuracy of ASGARD in single drug repurposing, we compared ASGARD to other 

repurposing methods that utilize bulk cell RNA-Seq (CLUE and DrInsight) or single-cell RNA-Seq 

data (Alakwaa’s and Guo’s) on a variety of diseases, including breast cancer, leukemia, and 

COVID-19. ASGARD shows much better performance than all of these methods in predicting 

drug/compounds (Figure 2, 3, Supplementary Figure 1). The performance of ASGARD is also 

robust across different sizes and proportions of cell populations, as well as differential expression 

levels (Supplementary Figure 2). Moreover, we highlight that ASGARD can not only summarize 

drug efficiency across all clusters at the individual patient level but also propose drug 

combinations. These important functions are missing in other simple single-cell RNA-Seq drug 

reposition pipelines of Alakwaa and Guo. 

ASGARD achieves overall drug ranking for the disease/patient, by a novel drug score that 

evaluates the treatment efficacy across all/selected single-cell clusters (Formula 1 in Methods). 

This drug score shows a significantly (P-value <0.05, student’s t-test) better AUC than the 

prediction based on individual clusters (Figure 2, 3). It suggests that targeting individual cell 

clusters isn’t sufficient for treating diseases. Good therapy should be able to target all essential 

diseased cell clusters of the patient. On the other hand, it is not ideal to propose drug repurposing 

using bulk RNA-seq as done by traditional methods either (eg. CLUE and DrInsight). There exists 

significant heterogeneity of different cell populations and not all these cells play equal roles in the 

https://paperpile.com/c/9eQ10C/3GMz+WXhI+gtH4+A39n
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diseases 53,54, reflected by different gene expression responses to drug treatment55. ASGARD can 

distinguish more important cell types from others and repurpose drugs accordingly, explaining 

why ASGARD has significantly (P-value <0.05, student’s t-test) better AUC performance than 

traditional bulk methods (Figure 2B). Moreover, ASGARD also demonstrates variations of drug 

and drug combination scores within patients (Figure 4C, 4E, 5D, and 6D). This stresses that 

personalized therapy is necessary for the best therapeutic effect and utilizing single-cell 

sequencing information may help to achieve that. 

We chose breast cancer or leukemia datasets to illustrate the utilities of ASGARD, given the 

relative abundance of prior knowledge on drugs. Many drugs predicted by ASGARD have been 

approved by FDA, such as fulvestrant and neratinib for breast cancer 39,40 (Figure 4C), tretinoin, 

and vorinostat for leukemia 44,45 (Figure 5D). The drug combination is an alternative strategy to 

precisely addressing multiple diseased single-cell clusters. In the breast cancer dataset, 

fostamatinib and colchicine is the top 1 candidate combination (Figure 4E). Fostamatinib is a 

tyrosine kinase inhibitor. Tyrosine kinase inhibitors have been widely used either in single drug 

treatment or combination therapy for breast cancer 56,57. Colchicine is an alkaloid used in 

symptomatic pain relief in attacks of gout. Fostamatinib and colchicine show synergistic targeting 

of multiple genes in the significant pathways associated with breast cancers (Figure 4F). For 

example, fostamatinib inhibits Cyclin D1 (CCND1) to produce G1 (first growth) arrest 58 in the p53 

signaling pathway,  and colchicine inhibits Cyclin-dependent kinase 1 (CDK1) to produce G2 

(second growth) arrest 59 in the p53 signaling pathway and cell cycle pathway. G1 and G2 are 

important phases of the cell cycle, essential for the treatment of breast cancer 60. The combination 

of colchicine and fostamatinib shows a synergistic effect according to the drug interaction record 

from the DrugBank database31, although it hasn’t been tested in breast cancer in particular.  

COVID-19 is an ongoing and evolving pandemic, therefore drug knowledge is changing too. 

Remdesivir is the only drug approved for COVID-1961. But it’s not in the L1000 drug response 

https://paperpile.com/c/9eQ10C/16dh+xivM
https://paperpile.com/c/9eQ10C/IATF
https://paperpile.com/c/9eQ10C/wpx3L+FgX6
https://paperpile.com/c/9eQ10C/UG0E+ECY1
https://paperpile.com/c/9eQ10C/W3Ga+sb6l
https://paperpile.com/c/9eQ10C/DTMY
https://paperpile.com/c/9eQ10C/BjCr
https://paperpile.com/c/9eQ10C/sjVw
https://paperpile.com/c/9eQ10C/G49C7
https://paperpile.com/c/9eQ10C/V8H4
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dataset, and therefore wasn’t predicted by ASGARD. However, ASGARD does predict ACE 

inhibitors rescinnamine and enalapril as the 2nd and 4th drug candidates, aimed to reduce the 

mortality of the severe COVID-19. A study of 19,486 COVID-19 patients from 8.28 million England 

participants showed that enalapril was associated with reduced risks of COVID-19 disease62. 

Another observational clinical trial on 22,213 participants (ClinicalTrials.gov Identifier: 

NCT04467931) further showed that the use of enalapril is associated with a 15% lower relative 

risk of mortality of COVID-19 patients 63. Our drug-gene-pathway analysis shows that enalapril 

targets all the significantly deregulated pathways, such as coronavirus disease−COVID−19, 

chemokine signaling, and IL−17 signaling pathway, in monocyte, NK cell, neutrophil, and T cell 

(Figure 6E). These pathways play important roles in COVID-19 patient severity and survival 64. It 

may explain the observed efficiency of enalapril in reducing mortality of COVID-19 patients. On 

the other hand, rescinnamine was rarely studied for COVID-10. Since rescinnamine targets the 

same significant pathways as enalapril in COVID-19 (Figure 6E), rescinnamine could be an 

alternative candidate for further investigation.    

Altogether, this study shows clear evidence that ASGARD repurposes confident drugs that were 

approved or in clinical trials for breast cancer, leukemia, and COVID-19, respectively. It also 

provides new applications for drugs and drug combinations that warrant further clinical studies. In 

all, ASGARD is a single-cell guided pipeline with significant potential to recommend personalized 

repurposeful drugs and drug combinations using scRNA-seq data.  

https://paperpile.com/c/9eQ10C/8Lfv
https://paperpile.com/c/9eQ10C/0h2x
https://paperpile.com/c/9eQ10C/w5X3
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Table 1. Single-cell clusters and candidate drugs for the advanced metastatic breast cancer PDX model. 

Cluster Proportion(%) 
Drug 

Key genes Drug name* FDR 
C1 33.68 fostamatinib 6.48E-03 SFN, GADD45A, CDKN1A, CYCS, IGFBP3, CDKN2A, EI24, SIVA1, PMAIP1, BAX, 

TP53I3, AIFM2, TNFRSF10A, GADD45B fulvestrant 3.17E-03 
C2 23.33 fostamatinib 1.44E-03 RHOA, CXCL8, VDAC1, TXN, BIRC3, CASP4, CYBA, IFI16, CXCL1, VDAC2, ATG12, 

TXNIP, NFKBIA, GBP2, HSP90AA1, CXCL2, TRAF2, YWHAE, MAPK8, JAK1, RELA, 
NAMPT, FOSL1, HSP90B1, FOS, FOSB, S100A9, CALML5, ARHGDIA, ATF4, RAP1B, 
HRAS, IRS1, CDC42, CALML3, IRAK2, GRB2, CAPN2, TNFRSF10A, CTSC, TUBA1C, 
EIF2S1, ACTG1, PMAIP1, GADD45B, GADD45A, TUBA4A, TUBA1B, CASP7 

colchicine 2.11E-03 
sirolimus 5.83E-04 

C3 13.03 vincristine 1.75E-01 CAPN2, TUBA1B, TUBA1C, EIF2S1, FOS, ACTG1, PMAIP1, ATF4, GADD45B, 
GADD45A, JUN, BAX, BIRC3, AKT2, BBC3, NFKBIA, TNFRSF10A, CTSC 

C4 11.15 fulvestrant 4.41E-02 KRT18, FOS, KRT19, KRT17, KRT23, CALML5, HSPA8, CALM3, KRT14, GNAQ, 
CALM2, HSP90AA1, GNAI2, PIK3R3, SHC1, JUN, CALML3, PIK3R1, CREB3L4, 
HSP90B1, CREB5, KRT15, NR4A1, YWHAH, RPS6, COL9A2, YWHAZ, COL1A2, NGF, 
RAC1, LAMB3, ITGA3, MYC, ITGB4, ITGA2, PPP2R5A, FOXO3, ITGB6, PRLR, SGK1, 
COL6A2, DDIT4, COL9A3, GNG5, PTK2, COL2A1, OSMR, FGFR1, PDGFC, RHEB, 
ARHGDIA, RIPK2, MAPK13, BAX, SFN, CDKN2A, HDAC2, CDKN2C, RAD21, TFDP1, 
CDK1, WEE1, MCM3, PCNA, CDC20, MAD2L2, E2F3, SMC1B, SKP1, ANAPC16, 
MCM6, PKMYT1 

crizotinib 7.76E-04 
neratinib 1.52E-02 
pazopanib 3.78E-02 

C5 8.51 fostamatinib 2.63E-07 SFN, PMAIP1, IGFBP3, CDKN2A, GADD45B, GADD45A, CCND2, BBC3, AIFM2, 
CDKN1A, SERPINE1, EI24, TNFRSF10A, BAX, BIRC3, CXCL1, SOCS3, ATF4, ICAM1, 
AKT3, MAP2K3, CASP7, CCL2, JAG1, FOS, IL15, TRAF1, NFKBIA, MMP14, CXCL6, 
CXCL8, IFI16, CASP4, GBP2, RHOA, IRF7, TXNIP, VDAC1, VDAC2, CASP1, GBP3, 
JAK1, ATG12, NAMPT, CYBA, TXN, CARD16, ACTG1, CTSC, TUBA1C, HRAS, 
CAPN2, EIF2S1, TUBA1B 

C6 
 

5.43 fostamatinib 5.05E-03 SFN, CDKN2A, CYCS, IGFBP3, EI24, CCND1, PERP, CCND2, CD82, GADD45A, 
SERPINE1, DDB2, CDK1, TP53I3, SERPINB5 mebendazole 7.37E-04 

C7 3.08 fostamatinib 1.12E-06 CXCL2, CXCL1, ICAM1, AKT3, TNFAIP3, CCL2, RIPK3, CXCL6, SOCS3, FAS, 
MAP2K3, ATF4, NFKBIA, TRAF1, CASP7, PIK3CD, IL15, CSF1, JUN, BIRC3, GBP2, 
CXCL8, IFI16, IRF7, CARD18, CASP4, CARD16, RHOA, VDAC1, CTSB, CASP1, 
TICAM1, MAP1LC3B, HSP90AA1, GBP1, YWHAE, ATG12, S100A9, FOSL1, S100A8, 
IL17B, TRAF3IP2, TRAF4, HSP90B1, SFN, PMAIP1, GADD45B, CCND2, CDKN2A, 
BBC3, CYCS, TP53AIP1, GADD45A, IGFBP3, PERP, SERPINE1, PLAU, NFKB2, 
CD40, RELB, BCL10, CALML3, CALML5, IRS1, ARHGDIA, IRAK2, ARHGDIB, 
CAMK2B, NGFR, GRB2, ACTG1, CTSC, TNFSF10, TUBA1A, CAPN2, TUBA1C, CTSO 

C8 
 

1.8 colchicine 3.49E-05 FOS, BIRC5, CTSF, CASP2, ITPR2, LMNB1, ATF4, ENDOG, PARP1, HRK, TUBA1C, 
CAPN2, GADD45B, EIF2S1, ACTG1, CDKN2A, MAD2L1, CCNA2, CCNB2, CCNB1, 
SKP1, E2F5, PRKDC, SKP2, ORC6, ORC1, TTK, PTTG1, YWHAE, CDKN2C, SFN, 
MCM6, CCNE2, CCNE1, RBL1, CDC20 

mebendazole 3.49E-05 



 

*: The best candidate drug and significant drugs with FDR<0.05 for each cluster are shown in this table.
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Figure Legends 

Figure 1. The workflow of the ASGARD drug repurposing pipeline. The workflow of the 

ASGARD pipeline. Diseased and normal cells are paired according to “anchor” genes that are 

expressed consistently between the two types of cells. The differentially expressed (DE) genes 

are identified between diseased and normal cells, either within a cluster or within a cell type. 

Using the consistently DE genes as the input, potential drugs that significantly reverse the 

pattern of DE genes are identified, using the Kolmogorov–Smirnov (K-S) test with Benjamini-

Hochberg (BH) false discovery rate (FDR) adjustment. Next ASGARD estimates and ranks the 

comprehensive drug scores for single drugs or the drug combination scores for drug 

combinations, by targeting specific cell cluster(s) or all cell clusters. 

Figure 2. Comparing ASGARD to bulk-cell-based repurposing methods. (A) The receiver 

operating characteristic (ROC) curves and area under curve (AUC) scores of the ASGARD, 

using DE analysis methods (Limma, DESeq2, Seurat, and edgeR). The tests are done on 

advanced metastatic breast cancer, acute lymphoblastic leukemia, and coronavirus disease 

2019 (COVID-19), respectively. DESeq2 failed to produce results over 82,157 cells in COVID-

19 data. (B) ROC curves and AUC scores of the ASGARD and bulk-cell based drug 

repurposing methods (CLUE and DrInsight), using the same three diseases as in (A). The 

single-cell RNA-Seq data were aggregated to pseudo-bulk RNA-Seq data for the bulk-cell-

based methods. 

Figure 3. Comparing ASGARD to other single-cell-based repurposing methods. ROC 

curves and AUC scores of the ASGARD and other published pipelines (Alakwaa’s pipeline and 

Guo’s pipeline). The results of drug/compound repurposing are shown on every cell cluster of 

the metastatic breast cancer dataset (A), every cell cluster of acute lymphoblastic leukemia 

dataset (B) and 4 clusters with increased cell proportions in the decreased severe vs cured 
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severe COVID-19 patients (C). The proportion of each single-cell cluster is shown in the 

brackets above each plot. 

Figure 4. Drug repurposing in Patient-Derived Xenograft (PDX) models from advanced 

metastatic breast cancers. (A) UMAP plots of single-cell data from 3 normal controls and 2 

breast cancer PDX samples. (B) Pathway enrichment analysis (breast cancer vs normal) for 

each single-cell cluster.  (C) The overall drug score combining both PDX models and drug score 

in each breast cancer PDX model, among top-ranked significant single drugs (FDR<0.05). 

Drugs approved for breast cancer treatment by the FDA are labeled in red boxes. (D) ROC 

curve and AUC scores of the ASGARD in the drug combination prediction for breast cancer. (E) 

The overall drug score combining both PDX models and drug score in each breast cancer PDX 

model, among top-ranked significant drug combinations (FDR<0.05). (F) The drug candidates 

fostamatinib and colchicine, their target genes, pathways, and single-cell clusters. Orange node: 

up-regulated gene (logFC>1 and adjusted P-value<0.05). Blue node: down-regulated gene 

(logFC<-1 and adjusted P-value<0.05). Orange solid edge: drug stimulates gene expression. 

Blue solid edge: drug inhibits gene expression. The width of the edge is proportional to the 

strength of the drug effect. Grey dotted edge: gene belonging to a pathway. Grey backward 

slash: pathway significant in a cell cluster. 

Figure 5. Drug repurposing for precursor T-cell acute lymphoblastic leukemia (Pre-T 

ALL). (A) UMAP plots of all cells from 3 normal controls and 2 Pre-T ALL samples. (B) UMAP 

plots of T cell clusters from normal controls and Pre-T ALL samples. (C) Pathway enrichment 

analysis (leukemia vs normal) for each T cell cluster. (D) The overall drug score and drug score 

in each Pre-T ALL patient, among top-ranked significant drugs (FDR<0.05).  (E) The drug 

candidate tretinoin, its target genes, pathways, and single-cell clusters. All labels and their 

annotations are the same as Figure 4F. 
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Figure 6. Drug repurposing for reducing mortality of severe COVID-19 patients. (A) Single-

cell populations of bronchoalveolar immune cells in 11 cured and 4 deceased severe COVID-19 

patients, respectively. (B) The proportions of cell type in (left) and log10 transformed fold 

changes in deceased over the cured state (right) of the single-cell populations in (A). (C) 

Pathway enrichment analysis (deceased severe vs cured severe) for neutrophil, NK cell, T cell, 

and monocyte respectively. (D) The drug scores in each of the four deceased severe COVID-19 

patients as well as all four patients, among top-ranked significant drugs (FDR<0.05). (E) The 

drug candidate rescinnamine and enalapril, their target genes and pathways in the monocyte, 

NK cell, T cell, and neutrophil, respectively, from severe COVID-19 patients. All labels and their 

annotations are the same as Figure 4F. 

 

Supplementary Materials 

Supplementary Figure 1. Boxplots on AUCs of the three single-cell-based repurposing 

pipelines, based on all cell clusters as shown in Figure 3. 

Supplementary Figure 2. AUC scores of the three single-cell-based repurposing 

pipelines, using simulation data adapted from the real datasets. (A) The effect of varying 

total cell sizes from 100 cells to 20000 cells. (B) The effect of varying differential expression 

levels from 20% to 90%. (C) The effect of varying the proportions of diseased cells ranging from 

20% to 90%. 

Supplementary Table 1. Individual drug significances and overall drug scores for breast 

cancer.  

Supplementary Table 2. Individual drug significances and overall drug scores for leukemia.  

Supplementary Table 3. Individual drug significances and overall drug scores for COVID-19.   
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