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Abstract

The dust produced by transportation roads is the primary source of PM2.5 pollution in open-

cast coal mines. However, China’s opencast coal mines lack an efficient and straightforward

construction scheme of monitoring and management systems and a short-term prediction

model to support dust control. In this study, by establishing a PM2.5 and other real-time

environmental information to monitor, manage, visualize and predict the Internet of things

monitoring and prediction system to solve these problems. This study solves these prob-

lems by establishing an Internet of things monitoring and prediction system, which can moni-

tor PM2.5 and other real-time environmental information for monitoring, management,

visualization, and prediction. We use Lua language to write interface protocol code in the

APRUS adapter, which can simplify the construction of environmental monitoring system.

The Internet of things platform has a custom visualization scheme, which is convenient for

managers without programming experience to manage sensors and real-time data. We ana-

lyze real-time data using a time series model in Python, and RMSE and MAPE evaluate

cross-validation results. The evaluation results show that the average RMSE of the ARIMA

(4,1,0) and Double Exponential Smoothing models are 12.68 and 8.34, respectively. Both

models have good generalization ability. The average MAPE of the fitting results are 10.5%

and 1.7%, respectively, and the relative error is small. Because the ARIMA model has a

more flexible prediction range and strong expansibility, and ARIMA model shows good

adaptability in cross-validation, the ARIMA model is more suitable as the short-term predic-

tion model of the prediction system. The prediction system can continuously predict PM2.5

dust through the ARIMA model. The monitoring and prediction system is very suitable for

managers of opencast coal mines to prevent and control road dust.

1. Introduction

There is little research on China’s PM2.5 dust concentration monitoring of opencast coal mine

roads. According to Article 642 in the Coal Mine Safety Regulations [1], the total dust
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concentration of opencast coal mines is measured once a month, and respiratory dust concen-

tration is measured once a month. Because of the lack of real-time monitoring data, coal mine

dust pollution in opencast coal mines can only be qualitatively evaluated without quantitative

analysis [2].

In order to study the numerical simulation of PM10 diffusion in an opencast coal mine,

scholars such as Chinthala Sumanth and Mukesh Khare [3] need to collect PM10 data from

multiple stations in multiple periods and finally get a method for estimating PM10 pit reten-

tion. Tang Wanjun, Cai Qingxiang [4], and other scholars use β Ray particle monitor and laser

monitor to collect data in the opencast coal mine, and they simulate the dust distribution in

the opencast coal mine based on fluent. Finally, they get the relationship function between

PM2.5 and PM10 and the spatial motion law of dust. Qingyu Guan, Fuchun Li [5], and other

scholars downloaded environmental data such as PM2.5 concentration from the urban air

quality real-time publishing platform of the China National Environmental Monitoring Cen-

ter; particulate matter’s temporal and spatial behavior (PM) in Lanzhou is revealed through

backward trajectory analysis.

Monitoring equipment is required to collect data, but different sensor devices have different

standard specifications and interfaces [6]. Therefore, microcontrollers usually control sensor

nodes [7, 8]. Linux [8], Raspberry Pi [9], and C language [10] are often used to build the oper-

ating system of sensors. Users need to use different configuration codes according to the actual

situation. In order to quickly obtain the information of particulate matter (PM) concentration,

Marek Badura, Piotr Batog [9], and other scholars started from the equipment layer [11], con-

nected with the sensor through the microcontroller, and then corrected the sensor accuracy

and sensor deviation [12], and successfully built a sensing layer node with reasonable

accuracy.

Currently, building data acquisition nodes according to the needs are the mainstream

direction. Table 1 summarizes the characteristics of current dust data acquisition.

As can be seen from the above example, their method of obtaining the original data is very

cumbersome, and the learning cost of establishing the Internet of things monitoring system

from scratch is too high, so there is no good road PM2.5 monitoring scheme in the opencast

coal mine so far. Therefore, to facilitate the acquisition of research data and help the managers

of opencast coal mines simplify the construction of monitoring nodes, we use the technology

of the Internet of things platform to build monitoring nodes.

Internet of things platform is the application and practice of Internet of things technology.

Users can quickly build the Internet of things monitoring system through the Internet of

things platform [13] and then collect and analyze data. Analyzing data aims to realize Digital

Twin (DT) in the Internet of Things platform, which means that the information exchange

between the physical and information layers could be bidirectional [6]. Classification regres-

sion analysis [14], neural network [15], time series, and other analysis methods are often used

in the prediction work of the service layer, and the use of time series analysis PM2.5 in the ser-

vice layer has been proved to be feasible [16]

Table 1. Status of dust data acquisition.

Data acquisition method Characteristic

Manual collection High consumption of human and material resources

Instrument acquisition Low degree of visualization and cumbersome data management

Download from a third-party platform High dependence and limited monitoring location

Building sensor nodes Low degree of systematization and difficult to expand

https://doi.org/10.1371/journal.pone.0267440.t001

PLOS ONE PM2.5 monitoring and prediction system based on internet of things

PLOS ONE | https://doi.org/10.1371/journal.pone.0267440 May 5, 2022 2 / 28

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0267440.t001
https://doi.org/10.1371/journal.pone.0267440


The single Exponential Smoothing method is suitable for analyzing time series without

trend. In order to better predict time series with trend components, the Double Exponential

Smoothing method (DES) can be used. DES model is one of the methods to analyze time series

[17] and can also make a short-term prediction of power load [18]. Moreover, the DES model

is mainly used for short-term prediction [19].

The Autoregressive Integrated Moving Average model (ARIMA) is also a statistical model

to analyze and predict time series. ARIMA has achieved good prediction results in predicting

energy consumption and greenhouse gas emissions [20]. When ARIMA predicts climate vari-

ables, the prediction results agree with the data trend [21].

Their research is based on data sets that will not change. However, in practice, the concentra-

tion of road PM2.5 changes. In order to make the time series model more suitable for real-time

data, we choose real-time monitoring data to build prediction models and prediction systems.

The dust generated by the transportation road is the primary source of PM2.5 pollution in

an opencast coal mine [20]. In order to monitor the change of PM2.5 in opencast coal mine

roads in real-time and predict the change of dust concentration, and also help managers

quickly build the required sensing layer nodes, this study proposes a system based on the Inter-

net of things platform to collect PM2.5 dust data and analyze the data.

We require that the monitoring and prediction system monitor the change of road environ-

mental information of opencast coal mines in real-time. The system has the functions of over-

run warning, visualization, and data analysis.

The main contributions of this paper are as follows:

1. We have built a dust information monitoring and management system using Internet of

things technology, which solves the problems of complex environmental data collection and

cumbersome management. Connecting the sensor with the APRUS adapter replaces the tra-

ditional scheme of connecting the sensor with a microcontroller. The general standard speci-

fication and interface protocol simplify the construction process of sensing layer nodes. At

the same time, the customized visualization function of the Internet of things platform facili-

tates the use of managers without programming experience. We provide the design process,

prototype, and visualization effect for the construction of the monitoring system.

2. This paper analyzes the conversion process between PM2.5 real-time monitoring data and

time series. Through cross-validation (CV) [22], we compared the modeling performance

of the DES model and ARIMA model in the real-time data of PM2.5 and proved that the

DES model and ARIMA model have good feasibility and accuracy in the short-term predic-

tion of PM2.5. We selected the best short-term prediction model for the road PM2.5 predic-

tion system of an opencast coal mine through discussion.

The rest of this paper is organized as follows: the second part introduces the structure con-

struction process of the Internet of things monitoring system, including introducing the APRUS

adapter and the use effect display of the Internet of things platform. In Section 3, we conducted

data preprocessing, modeling, and cross-validation. In Section 4, according to the evaluation

index, the model’s characteristics, accuracy, feasibility, and applicability are discussed, and we

choose a suitable short-term prediction model. The last part is the conclusion of this paper.

2. Monitoring system

2.1 IoT platform

In 1999, Professor Kevin Ashton first proposed the concept of IoT (Internet of things) [11].

The 2010 work report of the Chinese government [23] also made requirements for the devel-

opment of the Internet of things.
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Shenzhen smart IOT Network Co., Ltd., founded in 2014, is one of China’s earliest indus-

trial Internet solution providers. It has developed the MIXIOT IoT platform. The schematic

diagram of the monitoring system proposed in this paper based on the Internet of things tech-

nology is as follows (Fig 1).

2.2 Hardware device

PM2.5 and PM10 dust concentration sensors, temperature and humidity sensors, wind speed

sensors, and wind direction sensors are selected in this study. The specific parameters of the

sensors are shown in (Fig 9).

APRUS (Advanced Programmable Remote Utility Server) is an adapter produced by Shen-

zhen smart IOT Network Co., Ltd. It uses Lua language [24] to write the sensor’s data upload

rules and communication interface protocol. The interface and appearance of the adapter are

shown in the figure (Fig 2). The adapter has interfaces such as RS232, RS485 [25], CAN [26],

and Siemens PLC [27]. The adapter can also report and log sensor faults [28] or send instruc-

tions to the equipment to modify or control parameters. Therefore, APRUS can connect most

industrial control systems.

2.3 Connection

(Fig 3) shows part of the code of the data acquisition rules of the sensor. The manager needs to

create the parameter object according to the format of the proposed frame [29]. Modbus pro-

tocol is adopted this time, so we only annotate Modbus-RTU [25].

Fig 1. Schematic diagram of PM2.5 monitoring system.

https://doi.org/10.1371/journal.pone.0267440.g001
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Fig 2. APRUS adapter.

https://doi.org/10.1371/journal.pone.0267440.g002

Fig 3. Data interaction rule code.

https://doi.org/10.1371/journal.pone.0267440.g003
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The parameters to be transferred in the interface attribute of the parameter object include:

baud rate, data bit, stop bit, and check bit of the sensor interface. The objects of the acquisition

node include Modbus ID, address, function code, data length, and interval time (ms). For each

sensor node, the objects of the reporting node include Modbus ID, function code, slave

address, reporting data type, register address, reporting cycle, and reporting data label. The

MQTT [30] processing function (Fig 4) can import the parameter object. The Internet of

things server subscribes to the theme of each node according to the parameter object and then

stores it in different databases according to the label and separator. Sensors with different pro-

tocols and communication interfaces can only be connected to the Internet of things platform

by parameter objects.

The sensor is set to collect and upload data every 5 seconds, and the data is uploaded to the

MIXIOT platform (Fig 5). The manager can know the pollution degree of road PM2.5 in real-

time by viewing the monitoring data. When the PM2.5 concentration at the monitoring point

exceeds the set threshold, the MIXIOT platform will alarm and remind the administrator

through the web page or intelligent mobile device application.

The IoT system usually uses Front End Programming Languages (JavaScript, HTML, CSS)

[31–33] to visualize data, but the IoT platform can customize the visualization interface. The

Internet of things platform modularizes the graph, dashboard, and other components, and the

components and data are connected through the reporting name in the data interaction rule

code. As shown in (Figs 6 and 7), the manager can build the website interface and the visualiza-

tion interface of an intelligent mobile device application by selecting the visualization method,

the source of data, and adjusting the location and size.

PM2.5 monitoring equipment is assembled by support (Fig 8). (Fig 9) shows the overall

architecture of the Internet of things opencast coal mine road PM2.5 monitoring system.

Fig 4. Protocol adaptation code.

https://doi.org/10.1371/journal.pone.0267440.g004
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Fig 5. MIXIOT platform.

https://doi.org/10.1371/journal.pone.0267440.g005

Fig 6. Customize visualization scheme.

https://doi.org/10.1371/journal.pone.0267440.g006
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3. Construction of prediction model

3.1. Data sources

Install the monitoring device at monitoring point 5 of the transportation road of the opencast

coal mine (Fig 10).

3.2 Strategies and methods

We set the data upload rules of the sensor online through the APRUS adapter, and the data is

transmitted once every 5 seconds. Considering the network delay, we will preprocess the data,

and the goal is to process the data into a standard time series [34]. After decomposing the time

series [35], we will obtain the trend, season, and residual.

DES model is characterized by considering the weighted average and change trend of his-

torical data, and the ARIMA model also considers the weight and trend of historical values.

Interestingly, using a small number of samples for short-term prediction also has good accu-

racy [36]. The length of data we will choose this time is 661 (one hour). The preprocessed data

is divided into the training set and test set. We conduct processing and parameter estimation

on the training set and model evaluation on the test set.

DES model is suitable for time series with time trends [18]. We construct the objective

function according to the constraint range of smoothing parameters and the model accuracy

evaluation standard MAPE. After solving the local optimal smoothing parameters, we will fit

the model, cross verify, and predict.

ARIMA model has high requirements for the stationarity of time series. Therefore, we test

the stationarity of time series through differencing [21] and ACF (autocorrelation function)

[35] and then use ADF (augmented Dickey fuller test) [37] to judge the stationarity further. If

Fig 7. Visualization of monitoring data.

https://doi.org/10.1371/journal.pone.0267440.g007
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the time series is unstable, the time series trend is weakened by differencing. Finally, we per-

form parameter estimation and cross-validation of the model.

It is worth noting that most researchers use ACF and PACF (partial autocorrelation func-

tion) to estimate the parameters of the ARIMA model [21, 36, 38]. In order to avoid the

Fig 8. Monitoring device.

https://doi.org/10.1371/journal.pone.0267440.g008
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influence of subjectivity in parameter estimation, we will use more objective AIC (Akaike

information criterion) and BIC (Bayesian information criterion) evaluation criteria [39] for

parameter estimation. We will select the optimal parameters according to the differencing

times, AIC and BIC.

In order to evaluate the performance of the model, both the DES model and ARIMA model

use generalized cross-validation on the test set [22]. In order to confirm whether the selected

model belongs to the best model, the ARIMA model will be subject to residual analysis and the

Ljung-Box test [40]

3.3 Time series cross-validation

Using cross-validation or Monte Carlo [41] can effectively estimate the model’s performance.

However, the time series does have a time structure. If this structure is not retained, the values

cannot be randomly mixed in the folding otherwise, all the time dependencies between the

observations will be lost [42].

Richard Morton, Emily L. Kang compared the cross-validation methods of time series such

as the P method [22], GCV, LCV and VCV [43]. P method is the most stable compared with

other methods. P method is the Preliminary method, and the Preliminary method is similar to

the Out-Of-Sample (OOS) approvals [42]. The following figure (Fig 11) shows the Preliminary

method of cross-validation of time series.

Fig 9. Overall architecture.

https://doi.org/10.1371/journal.pone.0267440.g009
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Fig 10. No. 5 monitoring point of transportation road of opencast coal mine.

https://doi.org/10.1371/journal.pone.0267440.g010

Fig 11. Time series cross-validation.

https://doi.org/10.1371/journal.pone.0267440.g011

PLOS ONE PM2.5 monitoring and prediction system based on internet of things

PLOS ONE | https://doi.org/10.1371/journal.pone.0267440 May 5, 2022 11 / 28

https://doi.org/10.1371/journal.pone.0267440.g010
https://doi.org/10.1371/journal.pone.0267440.g011
https://doi.org/10.1371/journal.pone.0267440


3.4 Data acquisition and preprocessing

There are many ways and objectives to analyze data. In addition to using the third-party data

analysis platform [44], Python’s ARIMA model analysis tool can also be used [45].

We use Python to access the MIXIOT API (Application Programming Interface) to obtain

data. The request library in Python is used to obtain the PM2.5 concentration data of the open-

cast coal mine monitoring site. The time interval is from 10:40 on October 18, 2021, to 11:40

on October 18, 2021, with 661 data pieces, as shown in (Fig 12).

The upload cycle of the sensor is 5 seconds. Due to the existence of delay, the time interval

of the original data is not equidistant, and the original data does not belong to the standard

time series [34]. A small amount of sample data can be used when the time series model is

used for short-term prediction [36]. So, take the average of the data in one minute to represent

the PM2.5 concentration in that minute and regenerate the time series. The time label of the

data is from 10:40 on October 18, 2021, to 11:40 on October 18, 2021, with a total of 61 data.

The pre-processed data are shown in (Fig 13).

To understand PM2.5 characteristics of time series, we decompose the time series, as

shown in (Fig 14). We can get the trend, season, and residual of the time series.

When the opencast coal mine is in the peak period of transportation operation, we con-

ducted data collection. It can be seen from (Fig 12) that although the PM2.5 concentration

fluctuates wildly, there is a trend before the concentration reaches the peak. The standard time

series of the original data (Fig 13) proves this.

We can see from the decomposition diagram (Fig 14) that the first half and the second half

of the trend are different. DES model is suitable for time series with the trend, while the

Fig 12. PM2.5 concentration change from 10:40 to 11:40 on October 18, 2021.

https://doi.org/10.1371/journal.pone.0267440.g012
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Fig 13. Time series of PM2.5 concentrations.

https://doi.org/10.1371/journal.pone.0267440.g013

Fig 14. PM2.5 time series decomposition.

https://doi.org/10.1371/journal.pone.0267440.g014
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ARIMA model is more suitable for stationary time series. Therefore, the DES model can be fit-

ted only by using standard time series, and the ARIMA model needs to be further discussed.

3.5 Double exponential smoothing model

Single exponential smoothing and double exponential smoothing can analyze time series, but

the use environment of these two methods is different. The single exponential smoothing

equation is as follows:

ŷt ¼ a � xt þ ð1 � aÞ � xt� 1 ð1Þ

Single exponential smoothing only makes a weighted average of t pieces of data in history

without considering the trend factor of time series. Therefore, double exponential smoothing

needs to be further used. The equation is as follows:

lt ¼ axt þ ð1 � aÞðlt� 1 þ bx� 1Þ 0 � a � 1 ð2Þ

bt ¼ bðlt � lt� 1Þ þ ð1 � bÞbx� 1 0 � b � 1 ð3Þ

ŷtþ1 ¼ lt þ bt ð4Þ

l0 ¼ x0 ð5Þ

b0 ¼ x1 � l0 ð6Þ

In the equation, lt stands for intercept, bt stands for trend, α, β Represents the smoothing

coefficient. It can be seen from the equation that the predicted value depends on the intercept

term lt and trend item bt. Intercept and trend terms depend on smoothing parameters α and β
Eqs (2), (3) and (4) are combined to obtain the following equation:

Z ¼
1

n

Xn

t¼1

l̂ þ bt � lt
lt

�
�
�
�
�

�
�
�
�
�
� 100% ð7Þ

In order to get the optimal local solution, we import the scipy.optimize package in Python.

Combined with boundary constraints, the objective function Eq (7), and the least square

method, we can get the optimal local solution of α, β. The iteration results are shown in the fol-

lowing Table 2:

The fitting results are shown in (Fig 15). It can be seen from the figure that RMSE is 4.03

and MAPE is 5.72%. DES model has high fitting accuracy. The smoothing parameters are α
and β; The former is responsible for smoothing the sequence around the trend, while the latter

is responsible for smoothing the trend itself. The larger the value, the greater the weight of the

latest observation value and the lower the smoothness of the model sequence.

Input the training data and smoothing parameters into the model for cross-validation (Fig

16). The prediction range is one minute ahead of the current sample. In the cross-validation

process, the average MAPE is 12.9%, proving that the DES model has good prediction perfor-

mance for the short-term prediction of PM2.5. However, the prediction range of the DES

Table 2. Iterative results.

MAPE α, β Iterations

5.72% 0.9,0.02 173

https://doi.org/10.1371/journal.pone.0267440.t002
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model is limited. In order to improve this situation, we use the ARIMA model. Moreover, the

further analysis still needs to consider the trend factors of time series.

3.6 ARIMA model

The basic idea of the time series prediction method is to use the past behavior of data to predict

the future trend and change [34]. ARMA (Autoregressive Moving Average) is a time series

Fig 15. Fitting results of DES model with different parameters.

https://doi.org/10.1371/journal.pone.0267440.g015

Fig 16. Cross-validation of DES model.

https://doi.org/10.1371/journal.pone.0267440.g016
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analysis model proposed by American statistician box and British statistician Jenkins in 1976.

It is the most commonly used model for fitting stationary series [46]. The form of ARMA (p,q)

model can be described as:

xt ¼ �1xt� 1 þ �2xt� 2 þ � � � þ �pxt� p þ εt � y1εt� 1 � � � � � yqεt� q ð8Þ

In Eq (8), ϕ1, � � �, ϕp Represents the autoregressive coefficient, θ1, � � �, θq Represents the

moving average coefficient, {εt} Represents the white noise sequence.

The ARMA model can be transformed into the ARIMA model by weakening the trend fac-

tors through the differencing. An ARIMA model can be transformed into a SARIMA model

by dealing with the seasonal factors of time series [35]. We can flexibly use the ARIMA model

according to the characteristics of time series.

The differencing can further stabilize the unstable time series to obtain a stable time series

[21], series {Yt} can become a stationary sequence series {Xt} after d times of differencing,

which is described by the equation:

Xt ¼ r
dyt ¼ ð1 � BÞ

dyt ð9Þ

In the Eq (9),r = 1 − B represents the differencing operator, and B represents the lag

operator.

By combining the differencing and ARMA(p,q) model, the ARIMA(p,d,q) model can be

obtained, where p represents the autoregressive order, d is the order of differencing q repre-

sents the moving average order.

3.6.1 Model identification. The differencing equation is as follows:

Xt
0 ¼ Xt � Xt� 1 ð10Þ

ACF can also subjectively judge the stationarity of time series [35]. As can be seen from the

ACF diagram on the correct (Fig 17), after the second differencing, the lag value soon enters

the negative value area and exceeds the confidence area, which indicates that the time series

may have been over differencing. Therefore, we temporarily set the order of the differencing

to 1.

The stationarity of the time series can be judged by ADF [37]. If the p-value of the unit root

test statistic is less than the significance level (0.05), reject the original hypothesis and infer

that the time series is stationary.

ADF test is carried out on the time series. Tables 3 and 4 are the ADF test results. The

results show that after one differencing, the significance level of the sample is higher than 0.05,

and the time series has been stable.

The stationary time series is divided into training and test sets. The data set consists of 61

mean observations per minute, 80% of which are used to build the model (49 observations),

called the training set. The interval of the training set is from 10:40 to 11:28, and the remaining

20% (12 observations) are used to verify the prediction of the model, called the test set. The

test set interval is from 11:29 to 11:40.

3.6.2 Parameter estimation. (1) ACF and PACF. ACF function equation is as follows:

ACF kð Þ ¼ rk ¼
Covðyt; yt� kÞ
VarðytÞ

ð11Þ

In the function, k represents the lag order. ACF can measure the correlation between yt, yt
yt−k. PACF Can eliminate the interference of k − 1 random variables between x(t) and x(t − k).
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In general, parameters p and q can be determined by significant lag order in PACF and

ACF graphs [47], but parameters identified based on ACF and PACF can not be quantitatively

analyzed.

(2) AIC and BIC. It is also a standard method to use AIC and BIC to select models. Usually,

models with minimum Akaike information Criterion or minimum Bayesian information Cri-

terion are selected [39]. The equations of AIC and BIC are as follows:

AIC ¼ 2k � 2lnðLÞ ð12Þ

BIC ¼ klnðnÞ � 2lnðLÞ ð13Þ

Fig 17. Autocorrelation diagram of differential sequence.

https://doi.org/10.1371/journal.pone.0267440.g017

Table 3. Original sequence of ADF test results.

T-Statistic

Augmented Dickey-Fuller test statistic -1.810635

Test critical values 1% level -3.574589

5% level -2.923954

10% level -2.600039

https://doi.org/10.1371/journal.pone.0267440.t003
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k in the equation represents the number of unknowns in the model, L represents the maxi-

mum likelihood function of the model, and n represents the number of samples.

Autocorrelation graph and partial autocorrelation graph are shown in Fig 18, which shows

that the order p of autoregression is at order 0, p can also be at order 4, and the order of mov-

ing average is at order 0 or 1.

AIC and BIC were used to evaluate the parameters. The parameters were selected in the

range 0 to 8, the values of AIC and BIC were obtained by cyclic calculation. The calculation

results were presented in the thermal diagram. The smaller the AIC (Fig 19) or BIC (Fig 20),

the darker the color in the thermal diagram. It can be seen that the best parameter combina-

tion (p, q) is (4,0) and (0,1), AIC value is 404.74 and 406.87, BIC value is 415.97 and 412.48,

respectively. These combinations are consistent with subjective judgment based on autocorre-

lation and partial autocorrelation graphs.

3.6.3 Diagnostics. There are many combinations of ARIMA model parameters. In order

to evaluate the model established by different parameters, a diagnosis of the model is required.

Using root mean Square Error (RMSE), the mean absolute percentage error (MAPE) can

Table 4. Results of 1st order differencing.

T-Statistic

Augmented Dickey-Fuller test statistic -8.012107

Test critical values 1% level -3.574589

5% level -2.923954

10% level -2.6000391

https://doi.org/10.1371/journal.pone.0267440.t004

Fig 18. ACF and PACF.

https://doi.org/10.1371/journal.pone.0267440.g018
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measure the accuracy of the fitting model [48], Then, the steadiness of the residual is checked,

and the normality of the residual is evaluated [47], Ljung-Box is used to test whether the resid-

ual of the model belongs to white noise [40], to evaluate the goodness of fit of the model. The

evaluation criteria for the residual of the model belonging to the white noise sequence are as

follows: The assumption that the residual is at the confidence level of 95.0% or higher cannot

be rejected, meaning that the p-value is greater than or equal to 0.05 [48].

We used RMSE and MAPE to evaluate the error of prediction results [49]. The equation of

RMSE and MAPE is as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1
ðyi � ŷi

r

Þ
2

ð14Þ

MAPE ¼
100%

m

Xm

i¼1
jŷi � yij ð15Þ

From the previous section, we know that the best parameter combination (p, q) of the cur-

rent sample is (4,0) and (0,1), and AIC and BIC are very small. ARIMA (4,1,0) and ARIMA

(0,1,1) are used for model fitting, and the fitting results are shown in (Fig 21). Finally, the

residual error is analyzed. According to the residuals of ARIMA (4,1,0) and ARIMA (0,1,1),

the autocorrelation diagram and partial autocorrelation diagram are plotted in (Fig 22). It can

be seen that the residuals of ARIMA (4, 1, 0) and ARIMA (0, 1, 1) do not show an obvious

Fig 19. AIC thermal diagram.

https://doi.org/10.1371/journal.pone.0267440.g019
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Fig 20. BIC thermal diagram.

https://doi.org/10.1371/journal.pone.0267440.g020

Fig 21. ARIMA (0,1,0) model and ARIMA (4,1,0) model.

https://doi.org/10.1371/journal.pone.0267440.g021
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correlation. It can be seen from Table 5 that the MAPE and RMSE of the ARIMA (0,1,1)

model are more petite than ARIMA (4,1,0).

In order to further evaluate the performance of the model, we conduct cross-validation

(Figs 23 and 24), input data as time advances, and predict forward for two minutes. The pre-

diction results are compared with the test set.

As shown in (Fig 24), with the continuous input of data, the prediction accuracy of the

ARIMA (0,1,1) model and ARIM (4,1,0) model is continuously improved. The average MAPE

of the ARIMA (0,1,1) model in cross-validation is 13.74%, and the lowest MAPE can reach

4.97%. The average MAPE of the ARIMA (4,1,0) model in cross-validation is 20.92%, and the

lowest MAPE can reach 4.52%.

From the results, the ARIMA (0,1,1) model is the best. However, after the Ljung-Box test,

we found that the test value (p-value) of the residual of the ARIMA (0,1,1) model is 0.029 (less

than 0.05), and the residual of ARIMA (0,1,1) model is not white noise. The test value (p-

value) of the residual of ARIMA (4,1,0) model is 0.091 (greater than 0.05).

The results show that ARIMA (0,1,1) model is overfitting, and the sample data has not been

fully utilized. Therefore, ARIMA (4,1,0) model is selected.

Further analysis of the residuals of the ARIMA (4,1,0) model (Fig 25), according to the

upper left corner of the graph, the residuals have no evident seasonality, similar to the white

noise sequence and the residual autocorrelation graph in the lower right corner confirms this

point. The autocorrelation coefficients are between the confidence intervals, and the residuals

pass the independence test. The Normal Distribution diagram in the upper right corner shows

that the residuals are normally distributed, and the QQ diagram in the lower-left corner also

Fig 22. Residual autocorrelation diagram and partial autocorrelation diagram of ARIMA (0,1,1) (a) and ARIMA (4,1,0) (b).

https://doi.org/10.1371/journal.pone.0267440.g022

Table 5. Characteristics of the best Arima fitting model for PM2.5 concentration in the training set.

Model RMSE MAPE AIC(BIC)

ARIMA (0,1,1) 1.527 1.7% 406.87(412.48)

ARIMA (4,1,0) 8.919 10.5% 404.74(415.97)

https://doi.org/10.1371/journal.pone.0267440.t005
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Fig 23. ARIMA (0,1,1) model cross-validation.

https://doi.org/10.1371/journal.pone.0267440.g023

Fig 24. ARIMA (4,1,0) model cross-validation.

https://doi.org/10.1371/journal.pone.0267440.g024
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shows that the distribution of the residuals follows the standard normal distribution. There-

fore, the ARIMA (4,1,0) model is the best model for the current time series.

4. Discuss

The comparison of prediction effects between the DES model and ARIMA model is shown in

the following Table 6:

Under the currently selected time-series samples, the two models have the following

performances:

1. The modeling speed of the DES model is faster than that of the ARIMA model.

Fig 25. Residual analysis.

https://doi.org/10.1371/journal.pone.0267440.g025

Table 6. Characteristic evaluation of DES model and ARIMA (4,1,0,).

Model Fitting model RMSE Fitting model MAPE CV prediction average RMSE CV prediction average MAPE

DES 4.03 5.72% 8.34 12.9%

ARIMA (4,1,0) 8.919 10.5% 12.675 20.92%

https://doi.org/10.1371/journal.pone.0267440.t006
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2. It can be seen from the equation of the DES model that the prediction range of the DES

model is one step ahead.

3. The prediction range of the ARIMA model is adjustable

4. From the cross-validation diagram (Figs 16 and 24), it can be seen that the accuracy of the

DES model does not change significantly with the input of data. The difference is that the

accuracy of the prediction model is significantly improved with the input of data. ARIMA

model relies more on PM2.5 changes in sample length.

5. The ARIMA model has strong expansibility and can also deal with seasonal factors data.

6. Considering the randomness of PM2.5 dust on the opencast coal mine road, the ARIMA

model’s prediction result is acceptable.

Due to the significant fluctuation of PM2.5 dust concentration on the road of the opencast

coal mine, the short-term prediction is more in line with the actual production requirements.

Therefore, the 2-minute prediction range meets the basic requirements of PM2.5 concentra-

tion early warning on the road of the opencast coal mines. Moreover, the results of cross-vali-

dation prove the excellent generalization ability of the ARIMA model. Therefore, to improve

the feasibility and expansibility of the prediction model in the prediction system, the ARIMA

model is more suitable for the short-term prediction of PM2.5 concentration in opencast coal

mine roads.

5. Prediction system

As shown in Fig 26, the monitoring system’s data continues to enter the prediction system,

and the prediction system continues to predict through the mobile data window.

The original data becomes the standard time series in the prediction system after prepro-

cessing. The time series is stabilized by eliminating the trend and seasonal components of the

time series. The criterion of time series stabilization is whether the p-value in the ADF test is

less than 0.05. When using AIC and BIC to select parameters, we may encounter a variety of

parameter combinations, but MAPE and RMSE can evaluate the fitting accuracy, and Ljun-

box can be used to test the best model. When the data enters the above process, the best predic-

tion model in the current data window can be selected, and the prediction range of the model

is set to two minutes.

The data continue to enter the model over time, and the model continues to predict for-

ward. After each prediction, the current model’s performance is judged by comparing the

MAPE and RMSE between the historical data and the prediction results. There are quantitative

Fig 26. Prediction process.

https://doi.org/10.1371/journal.pone.0267440.g026
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evaluation indexes for stability evaluation, parameter selection, and the best model test. There-

fore, the program will re-establish the prediction model and predict the next data window

when the model is no longer applicable.

The functions of the whole monitoring and prediction system include data acquisition, data

preprocessing, model construction, prediction, early warning, and data visualization.

6. Conclusion

1. At present, the environmental monitoring ability of opencast coal mines is low, the amount

of data collection is small, and the data acquisition is not real-time. Moreover, building

multi-sensor monitoring nodes is very complex, which means that subsequent expansion

and upgrading are difficult. In this study, the APRUS adapter is used to simplify the con-

struction process of a multi-sensor monitoring node. We have successfully constructed a

PM2.5 dust monitoring node on an opencast coal mine road. At the same time, we have

also realized the real-time acquisition of PM2.5 dust information on the road of an opencast

coal mine, visual monitoring, and overrun alarm. The user-defined visualization function

of the Internet of things platform facilitates managers’ learning without programming expe-

rience. This research provides a complete design process, prototype, and guidance for con-

structing an opencast coal mine monitoring system.

2. In the cross-validation results of time series, the average MAPE of the ARIMA model and

DES model are 20.92% and 12.9%, respectively, and the lowest can reach less than 5%, which

proves that the DES model and ARIMA model have good feasibility and accuracy in the

short-term prediction of PM2.5. The DES model is simple to build, but it can also obtain

high short-term prediction accuracy. In the case of only pursuing the prediction accuracy,

using the DES model is a good alternative. On the other hand, in the process of cross-valida-

tion, the prediction accuracy of the ARIMA model will improve with the input of data. The

ARIMA model is sensitive to the real-time change of PM2.5, so the ARIMA model is suitable

for PM2.5 real-time monitoring data with significant fluctuation. Because the prediction

range of the ARIMA model is adjustable and the use of the ARIMA model is flexible, the

ARIMA model is more suitable for the PM2.5 prediction system of opencast coal mine road.

In the future, the open-source Internet of things platform needs to be linked with dust

reduction equipment so that we can take dust reduction measures before the dust concentra-

tion exceeds the threshold to protect the respiratory health of workers in opencast coal mines.
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