NeuroImage: Clinical 24 (2019) 102070

Contents lists available at ScienceDirect

Neurolmage:

CLINICAL

Neurolmage: Clinical

journal homepage: www.elsevier.com/locate/ynicl _—

Check for
updates

Quantitative susceptibility mapping based hybrid feature extraction for
diagnosis of Parkinson's disease

Bin Xiao™”’', Naying He®', Qian Wang™", Zenghui Cheng", Yining Jiao®, E. Mark Haacke*,
Fuhua Yan®*, Feng Shi"

@ Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Y Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China

© Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China
d Department of Radiology, Wayne State University, Detroit, MI, USA

ARTICLE INFO ABSTRAT

Parkinson's disease is the second most common neurodegenerative disease in the elderly after Alzheimer's dis-
ease. The aetiology and pathogenesis of Parkinson's disease (PD) are still unclear, but the loss of dopaminergic
osM cells and the excessive iron deposition in the substantia nigra (SN) are associated with the pathophysiology. As
Subs_ta“_na nigra an imaging technique that can quantitatively reflect the amount of iron deposition, Quantitative Susceptibility
Radlomlc,s Mapping (QSM) has been shown to be a promising modality for the diagnosis of PD. In the present work, we
Convolution neural network . . . . . . . P

propose a hybrid feature extraction method for PD diagnosis using QSM images. First, we extract radiomics
features from the SN using QSM and employ machine learning algorithms to classify PD and normal controls
(NC). This approach allows us to investigate which features are most vulnerable to the effects of the disease.
Along with this approach, we propose a Convolutional Neural Network (CNN) based method which can extract
different features from the QSM image to further support the diagnosis of PD. Finally, we combine these two
types of features and we find that the radiomics features and CNN features are complementary to each other,
which helps further improve the classification (diagnostic) performance. We conclude that: (1) radiomics fea-
tures from QSM data have significant clinical value for the diagnosis of PD; (2) CNN features are also useful in
the diagnosis of PD; and (3) the combination of radiomics features and CNN features can enhance the diagnostic
accuracy.
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Parkinson's disease

1. Introduction diagnosis of PD.

Previous studies based on different neuroimaging modalities in-

Parkinson's disease (PD) is a progressive neurodegenerative disease
that affects predominately dopamine-producing neurons in the sub-
stantia nigra (SN). It leads to shaking, stiffness, and difficulty with
walking, balance, and coordination. In 2015, more than 6 million in the
world had PD, causing significant economic loss to society (Vos et al.,
2017). Although there are some treatments such as dopamine-related
medication and deep brain stimulation, over time the patient still suf-
fers a gradual increase in the severity of the symptoms. Therefore, early
diagnosis of PD is crucial for treatment and disease management.
Clinically, the physician makes the diagnosis of PD by reviewing the
patient's history, symptoms, and drug reactions. However, it is often
difficult to clearly differentiate idiopathic PD from other movement
disorders. Thus, sensitive imaging biomarkers may help improve the
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cluding structural or functional magnetic resonance imaging (MRI) and
dopaminergic imaging methods using positron emission tomography
(PET) have been used to diagnose PD with some success (Brooks and
Pavese, 2011; Lorraine and Kalia, 2015). More recently, a great deal of
attention has been paid to the role of increased iron deposition in the
SN and its role in the development and progression of PD. Quantitative
susceptibility mapping (QSM) is an MRI method used to quantify iron in
vivo. Compared with these other imaging measures, the main ad-
vantage of QSM is that it provides a means to quantify iron content
spatially in the deep gray matter and specifically in the SN
(Haacke et al., 2015; Yan et al., 2018).

To validate the ability to measure iron content, QSM data has been
compared with inductively coupled plasma mass spectrometry (ICP-

E-mail addresses: wang.qian@sjtu.edu.cn (Q. Wang), yfh11655@rjh.com.cn (F. Yan).

1 Both authors made equal contributions.

https://doi.org/10.1016/j.nicl.2019.102070

Received 1 July 2019; Received in revised form 24 September 2019; Accepted 4 November 2019

Available online 05 November 2019

2213-1582/ © 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/BY-NC-ND/4.0/).


http://www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2019.102070
https://doi.org/10.1016/j.nicl.2019.102070
mailto:wang.qian@sjtu.edu.cn
mailto:yfh11655@rjh.com.cn
https://doi.org/10.1016/j.nicl.2019.102070
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2019.102070&domain=pdf

B. Xiao, et al.

MS) in cadaver brains and it has been shown that the magnetic sus-
ceptibility values in the deep brain nuclei are mainly derived from iron
deposition (Langkammer et al., 2012). In addition, using X-ray fluor-
escence (XRF) imaging, magnetic susceptibility has proven to provide a
reliable quantitative measurement of iron content (Zheng et al., 2013).
Another study (Sun et al., 2015) also confirmed iron as the dominant
QSM contrast in deep grey matter using a histologic iron-staining
method.

Recently there has been a major interest in using iron-based contrast
methods such as QSM to study the absence of the Nigrosome 1 (N1)
territory as a biomarker for PD (Schwarz et al., 2018). In healthy
controls, N1 appears hypointense in QSM, and the remaining parts of
the SN appear hyperintense because of the normal age-related iron
deposition in those areas. This visual determination of N1 is purely
qualitative and does not take into account the shape or variable iron
content of the SN. The feasibility to recognize and characterize the N1
territory is thus limited (Mahlknecht et al., 2017).

Our hypothesis is that AI methods such as radiomics and a
Convolutional Neural Network (CNN) can successfully evaluate both
iron increases and texture features to discriminate PD from normal
controls (NC). Therefore, we propose to evaluate the QSM data in three
ways: (1) using radiomics features from QSM to model the classification
problem; (2) using a CNN to diagnose PD and obtain auto-encoded
features from the QSM data; and (3) combining the radiomics features
and CNN features to predict PD from NC.

2. Materials and methods
2.1. Data collection and ROI extraction

Eighty-seven cases of idiopathic PD (IPD) patients (41 males and 46
females, aged 60.9 + 8.1 years old) and 53 normal controls (NC) (24
males and 29 females, aged 62.9 * 7.1 years old) were collected at the
Department of Radiology, Shanghai Ruijin Hospital. All patients were
recruited from a local movement disorder clinic. The present study was
approved by the local ethics committee and informed consent was
signed by each subject. The data were collected between March 2012
and June 2015. The inclusion criteria were: (1) a diagnosis of idiopathic
PD; (2) Mini-Mental State Exam (MMSE) score greater than or equal to
24; and (3) a Hoehn and Yahr (H&Y) scale of 1-3 but not higher since
patients with higher scores would have more trouble staying still for the
scan. The exclusion criteria were: (1) symptoms of secondary or aty-
pical parkinsonism; (2) a history of cerebrovascular disease, seizures,
brain surgery, brain tumor, moderate-to-severe head trauma or hy-
drocephalus; and (3) treatment with antipsychotic drugs or any other
drug affecting clinical evaluation. Data were collected using a 16 echo,
gradient echo imaging sequence on a 3T GE Signa HDxt from an eight-
channel receive-only head coil with the following imaging parameters:
TE1l = 2.69ms with ATE = 2.87 ms, TR = 59.3 ms, pixel
bandwidth = 488 Hz/pixel, flip angle = 12°, slice thickness = 1 mm,
number of slices = 136, matrix size = 256 X 256, an in-plane resolu-
tion of 0.86 x 0.86 mm?, a parallel imaging factor of 2 with a total
acquisition time of 10 min and 42 s.

Image reconstruction was performed as in (Li et al., 2011). Briefly,
all phase images were averaged and filtered with the sophisticated
harmonic artifact reduction for phase data (SHARP) and the suscept-
ibility maps were derived from the frequency map using an improved
LSQR (iLSQR) method (Li et al., 2011) (the regularization threshold for
the Laplace filtering was set to 0.04). Units of susceptibility are given in
parts per billion (ppb). Each SN was drawn by a clinician who is fa-
miliar with the anatomy of the midbrain and with this project (see
Fig. 1).

2.2. Classification with radiomics features

In order to verify the validity of radiomics features on the SN
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obtained from the QSM data, we extracted the radiomics features from
the SN by using a process described in Section 2.2.1 and employed two
machine methods: Logistic regression (LR) and support vector machine
(SVM), to predict PD and NC as described in Section 2.2.2. The flow
chart of the processing is shown in Fig. 2. All experiments were per-
formed within the nested cross-validation framework: the inner loop
was used to select the best model parameters and features, and the
outer loop was used to evaluate the performance of the classifier.

2.2.1. Image preprocessing and feature extraction
As discussed earlier, we first transform the QSM data into three
different image types which can be used to extract features from:

(1) Original: A copy of the original images.

(2) Wavelet: Applies high (H) or low (L) pass filter in all of three di-
mensions in a 3D image. Theoretically, we have eight different
filtering combinations: LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH.
However, when the image rotates, the features extracted from the
images processed by LLH, LHL, LHH, HLL, HLH and HHL filters will
change too much, so we only preserve the images that are filtered
by LLL and HHH.

(3) LoG: Applies the Laplacian of Gaussian filter to the image to en-
hance edge information.

Then, we extract radiomics features from the QSM images.
Specifically, by using the manual mask mentioned in Section 2.1, we
first extracted two independent SN regions from the preprocessed
images obtained in the previous step, as shown in Fig. 1. After that, we
calculated the radiomics features of each connected region by Pyr-
adiomics (https://pyradiomics.readthedocs.io/en/latest/). The ex-
tracted features contain six basic categories:(1) First-order statistical
features; (2) Gray level co-occurrence matrix; (3) Gray level run length
matrix; (4) Gray level size zone matrix; (5) Neighbouring gray tone
difference matrix; and (6) Gray level dependence matrix. In this work,
the feature set consisted of 2212 features for each case (i.e., the left
substantia nigra and the right substantia nigra have 1106 features, re-
spectively).

2.2.2. Feature selection and classification

Feature selection was performed to exclude the unstable factors in
features and reduce the dimensionality of features. In order to evaluate
the stability of the features extracted from the SN, we use the intraclass
correlation coefficient (ICC) to screen out those features with high
stability for manual mask. Here, ICC is a descriptive statistic that can be
used to quantify the stability of a feature with respect to the accuracy of
the mask. We first applied a small spatial deformation on the manually
labeled mask to simulate a new mask set from a different doctor. Then,
for each feature, we extracted the radiomics features based on the two
mask sets and calculate the corresponding ICC. In our research, we
chose features with ICC > 0.8 for the later steps. While the reduction in
the number of features also makes our model more robust and inter-
pretable, we used recursive feature elimination (RFE) for further fea-
ture selection to reduce the dimensionality of features. We chose the
RFE method for feature selection based on the following considerations:
(1) RFE can gradually eliminate useless features while keeping the ro-
bust features. (2) In the process of modeling, RFE makes it possible to
combine logistic regression and SVM, so that the final classification
model can decide which features are most useful, thereby integrating
the learning and feature selection into the entire process. Given a
classifier which can assign coefficients to features, the purpose of the
RFE is to exclude the least important features from the current feature
set. This procedure was recursively repeated until the number of re-
maining features reached a predetermined number. In order to avoid
the influence of different feature scales, we removed the mean of the
features on the training data and scaled them to unit variance before
feature selection. Then, combined with an LR or SVC, we used RFE to
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Fig 1. Left: The original QSM image. Middle: The original QSM image with the mask of SN. Right: The SN extracted by the mask.
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filter out the most informative features for distinguishing PD from NC
based on the feature set with high stability. After feature selection, we
retrained an LR and an SVC model on the training and validation set
with the selected features to predict whether a case is PD or NC.

To avoid data disclosure issues, all of the feature selection, hy-
perparameter selection and evaluation of the method were performed
within a nested cross-validation framework. The nested cross-validation
scheme involves two cross-validation routines: Outer cross-validation
and inner cross-validation. We used a 7-fold outer cross-validation to
test the generalization performance of the classification model and a 6-
fold inner cross-validation to select features and optimize the hy-
perparameters. In each fold session, 100 examples were used for
training, 20 for validation, and 20 for testing.

2.3. Classification with convolution neural network

Different from the radiomics based methods, we also proposed a
convolution neural network (CNN) to distinguish PD patients from
healthy controls. Since the features extracted by CNN are continuously
optimized according to the classification accuracy on the training set,
we can assume that these features can better solve the problem from the
perspective of data driving, compared with the fixed feature extraction
method of radiomics. Our CNN-based pipeline is shown in Fig. 3. Next,
we introduce the CNN classification model from two aspects: data
augmentation, and network construction and training.

2.3.1. Data augmentation

Previous studies show that, in the case of limited data, necessary
data augmentation can help obtain a more robust classification model.
Therefore, we performed data augmentation on all training data. First,
we applied a dilation operation on the mask image. The dilated image
can contain contextual information next to the SN. Both the dilated and
the original mask images were used for ROI extraction. Then, we ex-
tracted a patch image containing the SN. The size of the patch image
was fixed to 50 x 50 X 24. Before each training iteration, we randomly
scale and rotate the patch image in a small range. The scaling coeffi-
cients were generated randomly from 0.95 to 1.05, and the rotation
angles were generated randomly from —5 to +5°.

2.3.2. The construction and training of the CNN

Based on the most advanced deep learning classification network,
i.e., Densenet (Huang et al., 2017), we constructed our classification
network as summarized in Fig. 3.

After data augmentation, images with 1 channel (intensity channel)
were passed into the convolution layer. Then, the data stream passes
through a Convolution layer, Batch Normalization (BN) layer (Ioffe and
Szegedy, 2015) and Relu layer successively. Here we call “Convolution
layer + +BN layer + +Relu layer” as a “block” as indicated in Fig. 3.
After block 1, which produced 6 feature maps, we added a “Dense
block” which was introduced in (Huang et al., 2016). Specifically, the
output of blockl generates a new 2-channel feature map through a new
block. Then, two feature maps are concatenated into the channel di-
mension to form an 8-dimensional feature map. In our network, the
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Fig 3. The pipeline of the CNN. Data-augmentation, which helps prevent overfitting and provides more training data, is performed first, followed by a CNN classifier.
The classifier will give a probability to PD and NC, respectively, according to the input image with SN.

same operation is repeated twice, resulting in a 10-channel feature map
as the output of the “Dense block”. In the last two blocks, we added a
“Pooling” layer to reduce the spatial dimension. After two blocks, we
obtained a 4-dimension feature vector which encodes the input image
in the semantic space. After introducing a fully connected layer and a
Softmax layer, we obtained a classification probability for describing
the confidence of illness.

The training of the CNN model is implemented by Pytorch, on a
desktop equipped with a GTX 1080Ti GPU. For each experiment ses-
sion, we divide the dataset into three parts: 100 subjects for training, 20
for validation, and 20 for testing same as described in 2.2.2. We employ
Adam algorithm to optimize the CNN on the training set. For model
selection, since we can get a model in each training step, we set in-
clusion criteria to prevent overfitting and enhance the generalization
ability of the model: For each training step, only if the model had a
classification accuracy larger than 90% on the training set and 80% on
the validation set, was it recorded. After training, the model with the
highest accuracy on the validation set was selected and used to evaluate
the performance on the test set.

2.4. Hybrid features for diagnosis of PD

Radiomics features focus more on gray scale statistics and texture
features (Jjm et al., 2017), while CNN pays more attention to specific
higher-order semantic information (Zeiler and Fergus, 2014; Guorong
et al., 2006). Therefore, we assume these two approaches may be
complementarity for the classification task, as (Dong et al., 2016). Here,
we combine them to look for an improved diagnosis of PD. We con-
catenate the radiomics features extracted in Section 2.2.2 and the 4-
dimension feature vector extracted before the fully-connected layer in
CNN as the new feature vector. By using this new feature vector, an LR
or SVC is employed to model the classification task again. Except for the
input features of the model, all the experimental steps were the same as
in Section 2.2.

3. Results
3.1. Classification accuracy (PD/NC)
We performed fifty distinct 7-fold nested cross-validations on the

dataset with three different machine learning algorithms: logistic re-
gression (LR), support vector machine (SVM) and convolution neural

network (CNN). In each cross-validation, six-seventh of the data was
used as the training data (i.e., five-seventh for training, and one-seventh
for validation in the CNN model), and the remaining one-seventh of the
data was used as the test data. For each method, we put all the test cases
in one set as the result. The AUC (Area Under the Curve), accuracy,
sensitivity, and specificity for differentiating PD from NC were eval-
uated on the test set.

As summarised in the first three lines of Table 1, CNN gives the best
classification performance: AUC = 0.93, Accuracy = 0.85, Sensi-
tivity = =0.86, and Specificity = 0.83. Besides CNN, logistic regres-
sion and SVM also have comparable results. Even though these machine
learning methods are not as good as CNN, they have better interpret-
ability as the radiomics features provide more explanatory biomarkers.

In addition to putting all the test results into one set for con-
sideration, we calculated the results of each experiment and arranged
them in Figs. 4 and 5. We can see that the CNN-based method not only
obtains a better performance of almost all the classification indicators,
but also is more stable than radiomics. Nevertheless, the radiomics
features still get good classification results, which indicates that the
gray scale and texture features of the SN can also distinguish PD very
well.

3.2. Combination of radiomics features and CNN features

We combined the features extracted from the last convolution layer
of CNN with the radiomics features extracted by RFE method and re-
trained the LR and SVM models to get the classification results (see
Table 1). It can be seen from Table 1 that the integration of the two

Table 1

PD vs. NC classification performance. Area under the receiver operating char-
acteristics (AUC), accuracy (ACCQ), sensitivity, specificity, and BAC (= (sensi-
tivity + specificity)/2) are reported with difference classifiers: SVM (support
vector machine), LR (logistic regression), and our CNN (convolution neural
network) method. The ‘Hybrid features’ means that both radiomics features and
deep features extracted by CNN are used.

Method AUC Accuracy Sensitivity Specificity BAC
LR 0.89 0.81 0.91 0.70 0.80
SvC 0.89 0.81 0.91 0.71 0.80
CNN 0.93 0.85 0.86 0.83 0.85
LR (Hybrid features) 0.96 0.88 0.97 0.78 0.88
SVM (Hybrid features) 0.96 0.90 0.93 0.86 0.89
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Fig 4. Comparison of results by LR (Logistic Regression), SVM (Support Vector Machine), and CNN (Convolution Neural Network). The box plot extends from the
upper to lower quartile values of different criteria, while the box displays the quartile of values set. Points outside the box plot are outliers.

features helps produce better performance in classification. With the 3.3. Feature statistics and visualization

help of radiomics features and deep features, we find that the SVM

model gets the best results with the AUC comparable to that obtained The high classification capacity shown by the radiomics features
from PET (Choi et al., 2017). Figs. 6 and 7 demonstrate that the com- demonstrates the reliability of QSM in diagnosing PD. So, it is inter-
bination of the radiomics features and CNN-based features improves esting to evaluate which features are chosen by the classification model.
both the classification accuracy and algorithm stability. For each cross-validation round, we recorded which features were se-

lected and counted them in Table 3. The clinical significance of these
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Fig 5. The AUC curves of SVM (support vector machine), LR (logistic regression), and CNN (convolution neural network).
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Fig 7. The AUC curves of SVM (support vector machine), LR (logistic regression), and CNN (convolution neural network).

features will be further discussed in Section 4.

For the CNN-based method, although we have achieved the highest
classification accuracy, there are still some problems. The hierarchical
structure of CNN has the advantage of mining the characteristics of the
data, but these features are often difficult to understand. In order to
extract more information about the pattern of PD pathological changes
from CNN, we employed the visualization technology Grad-Cam

(Selvaraju et al., 2017) to highlight the most relevant region with the
model's output through the CNN's parameters. The heat map visualized
in Fig. 8 reveals pathophysiological changes consistent with current
studies, some of which we will discuss in Section 4.
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Fig 8. The visualization of original image (left) and heat map (right) from Grad-
Cam. The position pointed to by the red arrow is the 'Swallow tail’ representing
the N1 territory, which usually appears in the caudal region of the substantia
nigra in healthy people. According to the principle of grad-cam, if we reduce
the intensity of the original image at the black area in the heat map, or increase
the intensity of the original image at the white area in the heat map, the NC
probability of CNN output will increase. In fact, no matter which kind of op-
eration is carried out, the swallowtail sign will be more obvious. This is in
complete agreement with our current understanding of the swallowtail sign.

4. Discussion

In this work, we found that CNN gave the best classification per-
formance, and it was more stable than the radiomics features. Given
that the radiomics features are easy to interpret and can still produce
good classification results, we combined radiomics features and CNN-
based features to further improve the classification performance, ob-
taining an AUC as high as 0.96.

Previous neuroimaging Al (e.g., ICCA, JFSS or SVM) studies on PD
(see Table 2) were based on T1-weighted MR imaging. The classifica-
tion accuracy of studies from T1 MR images ranged from 70.5% to 88%
(Adeli et al., 2016; Amoroso et al., 2018; Liu et al., 2018). But T1 MR
imaging can only show volumetric changes of brain structures from the
whole brain data. However, the T1 image contrast in SN, which is a key
structure pathologically involved in PD, is too low to show its contour.
Therefore, it is difficult to determine which brain regions play an im-
portant role in the final diagnosis, because features come from different
brain regions.

On the other hand, QSM is a recently developed MRI technique that
is used to quantify iron in vivo. It provides both the quantitative in-
formation of the regional iron content and also its distribution within
these nuclei. A previous QSM study on 21 PD patients and 21 normal
controls by Murakami et al. (2015) showed a diagnostic performance
accuracy of 88%, and the AUC for the ROC reached 0.9. Therefore, both
radiomics features and CNN-based features in our work were performed
on the QSM data of the SN structure to investigate the diagnostic per-
formance.

The features used by CNN were extracted automatically by the back-
propagation algorithm, which extracted the most discriminative fea-
tures for the current classification task. Therefore, they have better
discriminative power than radiomics features. As we can see from
Table 3, most of the features selected in the LR and SVM are related to
the brightness distribution in the region of the SN and are consistent

Table 2
Classification accuracy from different methods. The method column is briefly
described as the form of Method (medical image modality).

Method AUC  Accuracy  Sensitivity  Specificity
ICCA (MRI T1) Liu et al. 071 0.71 0.625 0.786
RLDA +JFSS (MRI T1) Adeli et al. 0.84 0.82 * *

NF (MRI T1) Amoroso et al 0.94 0.88 0.85 0.88

CNN (MRI QSM) [Proposed] 0.95 0.89 0.92 0.85

SVM (MRI QSM) [Proposed] 0.96  0.90 0.93 0.86
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Table 3

The radiomics features selected by logistic regression and SVM. We carried out
nested cross-validation 50 times. In each cross-validation, logistic regression
and SVM were combined with RFE, respectively, and selected a feature subset.
We recorded the frequency of each feature selected and sorted out the features
whose selected frequency is more than 20. In table, ‘Left’ and ‘Right’ denote the
left and right hemispheres, respectively.

Region Image Type Feature Class Feature Frequency
Right Original GLRLM RunEntropy 95
Right Original GLCM ClusterShade 64
Left Wavelet-LLL GLCM IDN 63
Right Log GLCM DifferenceEntropy 59
Right Log First-order Median 56
Left Log GLDM DependenceVariance 54
Right Wavelet-LLL GLCM ClusterShade 50
Right Log First-order Median 49
Left Original GLDM DependenceEntropy 48
Right Wavelet GLDM DependenceEntropy 47
Right Original GLDM DependenceEntropy 41
Right Log First-order Skewness 36
Right Log GLCM DifferenceVariance 36
Right Wavelet-LLL GLRLM RunEntropy 31
Right Wavelet-LLL GLCM Correlation 31
Left Wavelet-LLL GLDM DependenceEntropy 27
Right Log GLCM IDN 26
Left Log GLRLM LongRunEmphasis 24
Right Log First-order Mean 21
Left Log First-order Median 20
Left Log GLRLM Median 20

with previous studies that have shown that excessive iron deposition
occurs in the SN of PD patients (He et al, 2015; Morris and
Edwardson, 1994; Sian-Hiilsmann et al., 2011; Wypijewska et al.,
2010). From the features we selected, we can see that this phenomenon
can be reflected not only in the mean of ROI gray, but also in other
indicators of grayscale texture. For example, we can see that there are
apparent anomalies in the median and 90 quantiles of grayscale in the
region. Entropy is also frequently selected, and suggests that the dis-
tribution of the gray scale values is spatially cluttered. This indicates
that the excessive deposition of iron does not occur uniformly in the SN
but may be distributed in specific local regions.

The highlighted part of Fig. 8 from the CNN results for visualization
represents a positive correlation with the judgment made by the net-
work. This highlighted area is mainly located in the lateral aspects and
the caudal portion of the SN. This is in agreement with previous work
showing that there is a loss of dopaminergic neurons in the SN in PD
patients in just these regions (Damier et al., 1999a, 1999b). So, these
CNN-derived features appear to reflect the key pathophysiological
change of PD as seen in other studies.

5. Conclusion

The findings from this work showed that hybrid features based on
QSM of the SN from radiomics and CNN are consistent with previous
histological and imaging studies, and provided reasonable diagnostic
performance with an AUC as high as 0.96. The use of CNN and radio-
mics algorithms may provide a means by which to study diagnostic MR
imaging biomarkers for PD.
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