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Background: Cross-validation tools are used increasingly to validate and compare genetic evaluation methods but
analytical properties of cross-validation methods are rarely described. There is also a lack of cross-validation tools for
complex problems such as prediction of indirect effects (e.g. maternal effects) or for breeding schemes with small

Results: We derive the expected value of several quadratic forms by comparing genetic evaluations including
“partial”and “whole” data. We propose statistics that compare genetic evaluations including “partial”and “whole” data
based on differences in means, covariance, and correlation, and term the use of these statistics “method LR" (from
linear regression). Contrary to common belief, the regression of true on estimated breeding values is (on expecta-
tion) lower than 1 for small or related validation sets, due to family structures. For validation sets that are sufficiently
large, we show that these statistics yield estimators of bias, slope or dispersion, and population accuracy for estimated
breeding values. Similar results hold for prediction of future phenotypes although we show that estimates of bias,
slope or dispersion using prediction of future phenotypes are sensitive to incorrect heritabilities or precorrection for
fixed effects. We present an example for a set of 2111 Brahman beef cattle for which, in repeated partitioning of the
data into training and validation sets, there is very good agreement of statistics of method LR with prediction of future

Conclusions: Analytical properties of cross-validation measures are presented. We present a new method named LR
for cross-validation that is automatic, easy to use, and which yields the quantities of interest. The method compares
predictions based on partial and whole data, which results in estimates of accuracy and biases. Prediction of observed
records may yield biased results due to precorrection or use of incorrect heritabilities.

Background

Models for genetic evaluation are an oversimplification
of reality that usually holds only in the short run and in
closely-related populations. Their properties are rarely
well known, which can lead to unexpected results. For
instance, initial applications of genomic predictions of
breeding values (GEBV) in dairy cattle led to biases, with
young “genomic” selected bulls with high GEBV being
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overpredicted, as verified by posterior progeny test-
ing [1-3]. As a result, further use of GEBV in the dairy
industry required extensive cross-validation and a more
formal analytical framework [4—6].

The introduction of new methods for genetic or
genomic evaluation raises the question of model choice
(comparing across models) and model quality (features
of a particular model). Thus, we need tools to rank,
understand and quantify the behavior of prediction
models in an “animal breeding” context. The need for
these tools has dramatically increased with the imple-
mentation of genomic selection, given its built-in
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encouragement to take riskier decisions such as selec-
tion of unproven young candidates, in particular in
dairy cattle. The method that is most commonly used
to check genomic predictions is some form of cross-
validation, a test that was rarely used in pedigree-based
genetic evaluation studies, which relied primarily on
progeny testing (but see [7, 8]). In genomic prediction,
cross-validation studies are indeed the norm [4, 9, 10].

Cross-validation tests rely on either one of two
approaches: (1) comparing (G)EBV or predicted phe-
notypes to (pre-corrected) observed phenotypes,
deregressed proofs, or yield deviations [9]; or (2) com-
paring (G)EBV to highly accurate EBV from progeny
testing. Another approach, which is in between the two
above approaches, is based on daughter yield devia-
tions (DYD; [6]), which are close to highly accurate
EBV if heritability is high and the number of daughters
is large. Cross-validation is very useful but there are
some concerns about the quality or adequacy of these
approaches for several reasons, including: (a) the need
to pre-correct phenotypes; (b) the growing difficulty
to obtain unbiased estimates of DYD with the increas-
ing use of non-progeny tested bulls selected based on
GEBV; and (c) their inadequacy for indirect predictions
such as those of maternal effects, for which there is
no direct observation related to the animal. Apparent
contradictions exist, such as lower accuracy of GEBV
than that of pedigree EBV [5, 11], or accuracies higher
than 1 for lowly heritable traits. For a detailed review of
cross-validation in animal breeding and its metrics, we
refer the reader to our review [12].

Cross-validation is a good tool but has some limitations
as discussed above. Thus, there is an increasing need for
a simple general tool that can be used in several complex
scenarios, including for traits with a low heritability (e.g.
reproductive and fitness traits), for indirectly observed
traits (random regression coefficients, maternal effects,
GxE interactions), and with limited size of progeny test
groups (e.g., pigs). Here, we propose to complement
cross-validation approaches with semiparametric proce-
dures based on the classical theory of genetic evaluation.

Semiparametric procedures based on the mixed
model equations are appealing because they combine
theory, which we know is approximately and/or asymp-
totically correct, with model-free evidence from data. In
the 1990’s, there was some effort to develop such proce-
dures [13]. Reverter et al. [14] showed that the amount of
change in EBV from one genetic evaluation to the next
(i.e., with the arrival of “new” data) was predictable. In
parallel, bias in across-country predictions [15, 16] led to
the introduction of the Interbull tests [17], which draw
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on a similar idea. This family of methods has been used
to check unbiasedness of predictions and, in the case
of the Interbull tests, relies heavily on the availability of
progeny tests based on large numbers of daughters.

In this work, we draw on analytical results from [14]
and present theoretical features of semi-parametric pro-
cedures, namely method LR (from “linear regression”).
These procedures are a series of statistics, which describe
the change of predictions from “old” to “recent” evalua-
tions that can be used to compute and compare popula-
tion accuracies and biases of (genomic) predictions. We
also explore analytical properties of the ability to predict
future phenotypes, sometimes called “predictivity” Then,
we illustrate the method with deterministic results for
simple designs and for experimental beef cattle data.

This work proposes estimates of the “population” accu-
racy, which is the correlation between true (TBV) and
estimated breeding values (EBV) across individuals in a
population. Population accuracy is relevant to compare
the predictive ability of models and to maximize genetic
progress. This work does not propose methods to esti-
mate individual accuracies, which are a measure of the
risk when choosing a particular animal for breeding [18].

Methods: analytical developments
We propose to test the quality of evaluation methods
using cross-validation tests based on successive EBV of
a set of “focal” individuals (a validation cohort). These
“focal” individuals can be the whole population [14,
19] or a set of “focal” individuals of interest, such as
“genomic” candidates for selection [6].

We will use the convention that var(x) refers to a
scalar, the variance of a random element from a sin-
gle realization of random vector x (in other words,

2
var(x) = % > l2 - (% Zixi) where 7 is the size of x),

whereas Var(x) refers to the variance—covariance matrix
of elements in x during conceptual repetitions. We use
a similar convention for cov (x,y) and r(x, y), which are
scalars that represent the covariance and correlation
across elements in x and y, whereas Cov (x, y) is a matrix.

Definition of population accuracy, bias, and dispersion

Let u be the true breeding value (TBV) and # an esti-
mated breeding value (EBV) of a single individual. The
classical definition of accuracy is the correlation r(u, it)
for one individual across conceptual repeated sampling
[20], which is a measure of the expected magnitude of
the change in EBV with increasing information. Accu-
racies are also used to forecast genetic progress in a
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selection scheme [18, 21, 22]. This use applies to large
unrelated populations, and made sense at the time of
selection-index based selection (e.g. selecting boars
based on family information). However, for the joint
evaluation of all animals, the relevant measure accord-
ing to Bijma [18] is “the correlation between true i.e.
TBV and EBV in the candidates for selection, which is
a property of a population, not of an individual” This
“population accuracy” (we will use this term hereafter)

is the correlation r(u, ﬁ) = cov (u, ﬁ)/, [var (ﬁ) var(u)

across a series of individuals.

Accordingly, bias is defined as the difference of
means u — @ and dispersion as the slope of the regres-
sion of u on : cov(u,@)/var (). Indeed, in practice,
proxies to these empirical measures are used in cross-
validation studies. In other words, accuracy measures
the ability to rank individuals within the focal set of
individuals, taking the possible relatedness within the
sample into account [23, 24], as well as the buildup of
the Bulmer effect that reduces genetic variance and
makes evaluation more difficult [18, 25].

Note that the three quantities accuracy, bias, and
dispersion are defined as scalars, i.e.

2
1 . 1 .
var () = - Zulz - (n Zul>
i i

Var(itl) Cov(itl,lftg)
# Var() = Var (it2) ,
and have distributions, i.e. over conceptual repetitions
r(u, @) have themselves a mean and a variance.

We also use indicators of (self-)relationships and of
genetic variances within the sample. If the relation-
ship matrix across focal individuals is K, then we use
diag(K) — K =1+ F — 2f where F is the inbreeding
coefficient and 2f is the relationship between individu-
als (f can be understood as coancestry), and the bar
operators imply averages, i.e. X is the average across
elements of X. The statistic diag(K) — K was used by
[26] to describe the decrease in genetic variance due
to relationships in a related but unselected population.
For selected populations, even of infinite size, there is
a further decrease in genetic variance due to the Bul-
mer effect [18, 27], and we will use 62, = (1 — k)02
where k is the reduction due to selection and o2 is
the genetic variance at equilibrium in a population
under selection. The equivalence between Henderson’s
[28] results for the decrease in genetic variance in a
selected population and o2, = (1 — k)oZ was shown
(in simplified settings) by [27, 29].
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Statistics to test the quality of evaluation methods in brief
Consider successive evaluations with “partial” and
“whole” data (1, and d,, respectively), which is based on
the use of “old” (p) and “recent+old” (w from “whole”)
phenotype data, respectively. Note that in the following,
0, and 11, have the same dimension and may be a sub-
set of “focal” individuals (e.g. the young candidates for
selection) or the number of animals in the entire dataset
(i.e., in the relationship matrix). In general, the breeder is
concerned with the population accuracy of candidates for
selection, because higher population accuracy of selec-
tion candidates implies greater genetic progress. Typi-
cally, focal individuals have no phenotype (or offspring
phenotyped) in p but have phenotype (or offspring phe-
notyped) in w, but this is not a requirement for the pro-
posed method. Reverter et al. [14] described the amount
of change that is expected in consecutive genetic evalu-
ations of individuals as a function of their respective
accuracies, and they proposed statistics to check biases
in genetic evaluations. The proposed criteria were very
beneficial because (1) they do not require knowledge of
the TBV, only the EBV from successive evaluations, and
(2) they do not require knowledge of adjustment factors
to pre-correct phenotypes.

In general, assumptions are: Cov(liy,0,) = Var (1),
E(d,) = E() = E(w)
Cov(u — ﬁw,ﬁw) =0. Henderson [28] proved that

and Cov(u — 1, ﬁp) =

Cov(u, ﬁ) = Var(ﬁ) even in the presence of selec-
tion, which when coupled with the results in [14] yields
Cov(ﬁw,ﬁp) = Var (ﬁp). Intuitively, this holds if “old”
errors in prediction (u — #,) are uncorrelated with “new”
information, which in turn holds if the model takes selec-
tion correctly into account. Another assumption, which
will be shown later in this paper, is that the set of focal
individuals is sufficiently large and “diverse” (for instance,
there are several full-sib families and not just one). The
derivations of Reverter et al. [14] referred to the individ-
ual case (e.g. r(u, 12)) and not to sets of individuals (e.g.
r(u, ﬁ)) that are used for cross-validation. We extend
their results as shown below, which leads to the following
main results.

1. The statistic typ = pr — 4, has an expected value
of 0 if the evaluation is unbiased.
2. The regression of EBV obtained with “whole” (w)

data on EBV estimated with “partial” (p) data
byp = % has an expectation, E(by,,) =1 if

there is no over/under dispersion.
3. The correlation of EBV based on partial and whole

cov(iy,iy,)

data, ppw = var (@ )var (&)

respective accuracies (acc), with an expected value

, is a function of their
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acc, . .
E (pw,p) ~ -, where acc is the population accuracy
w

(correlation between TBV and EBV across animals).
4. The covariance of EBV based on partial and whole

data is a function of the squared accuracy (reliability)
cov(iy,i,)

(14+F-2f )2’

of the partial EBY, p%ova =
E(p(zjova) ~ accﬁ.

5. The slope of the regression of EBV based on partial

on EBV based on whole data, by,, = cov(@y.fiy)

var () 1s, on

expectation, a function of the respective accuracies
2
acc . . .
E (bp,w) = ﬁ that is, the expectation of the slope is

proportional to the relative increase in average relia-
bilities from EBV based on partial to EBV based on
whole data.

Proofs of the adequacy of the statistics

In the following, we prove that the statistics described
above are related to bias, slope and accuracies. We
make repeated use of the following results for biquad-
ratic forms [30]: consider random vectors xj, Xy such
that E(x1> = <P~1>; Var<x1> = (Vn Va > The

X2 %) X2 Vi Vo

expectation of the quadratic form xjAixy is

E(x’lAuxz) = tr(A12V12) + R\ A1ay.  Empirical (co)
variances (scalars) are qgadratic forms, for instance
cov (ﬁw, ﬁp) = %(ﬁp - ﬁp) (ﬁw - ﬁw) = %ﬁ;SﬁW where
S=1- %] is the centering matrix [31].

Considering our problem, we make the hypothesis that

the two genetic evaluations (e.g. males before (“partial”)
and after (“whole”) progeny testing) have different means:

E(% )= (1)
Wy 1iy

Note that the meaning of the “expected mean of EBV
@” is unclear under selection. For instance, the last gen-
eration is expected to have means higher than 0, but these
means will differ for males (heavily selected) and females
(less selected). We will assume that the focal individuals
include sets of animals that are comparable, i.e. under
repeated sampling they have the same average genetic
level. For instance, if 1% of the elite females and 10% of
the elite bulls are selected, offspring from these animals
should have on average the same genetic level across con-
ceptual repetitions of the breeding scheme; the actual ani-
mals that are selected will differ but the genetic gain will
on average be the same. We also assume (as commonly
done) that, because of selection, Var(u) = G = 1(03,oc
(K is a relationship matrix) instead of the non-selection
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case, Var(n) = G = Kauz. This implies that Henderson’s
[28] description of decrease in variance due to the Bulmer
effect is correct and that it can be summarized by a single
parameter 03,00 [18, 25, 27].

Following classical notation: Var(u) =G = Kcru2
and Var(ti—u) = C*, and the matrix of prediction
error variances and covariances (PEV and PEC) can be
described as [14, 28].

l:lp G-CFG-C G-C
Var| o, | = | G-C* G- C¥ G-CJ* |,
u G-CrG-CJ G

where CjJ and CJ are matrices of PEV and PEC for the
partial and whole analysis, respectively. These expressions
assume that genetic evaluation deals correctly with the
decrease in genetic variance due to selection [28, 32] in
which case Var(ﬁp) = Cov (ﬁp, ﬁw). From here, we derive
expectations of several possible quadratic forms that are
combined to produce estimators of bias, dispersion and
accuracy. In principle, genetic evaluation does not need
to be based on mixed models (statistics can be computed
regardless of the procedure), but our results only hold if
the variances and covariances of estimators and true values
are as described above. Average inbreeding and relation-
ships in K are also needed. Ideally, the evaluation is based
on conditional means such that the properties described
before hold. Precision of the estimators of accuracy and
bias depends on the distributional properties of the EBV
and TBV, which can be derived when assuming multivari-
ate normality but we have not attempted to do so herein.

Averages of estimated breeding values to estimate bias

. 1a
It is show that E( n”) = lUps

o .
E ( 1 :W) = fiw. Thus, iy, = 0y — 1y is a direct measure

straightforward to

of bias.

Quadratic forms of estimated breeding values
For the method R of covariance estimation, it is rec-
ommended that the dispersion (relationship) matrix K
(Var(u) =G = KO’MZ) is included in the quadratic forms,
especially in the presence of selection [33]:

E(ﬁ;1<—1ﬁw> - tr(K_l (1(03 - CZ”)) + 1, 1G My,
= tr(o? — tr (K—lq;”) + VK gty
However, these weighted quadratic forms lead to esti-

mators that are difficult to understand. Hence, in the fol-
lowing, we will use “unweighted” quadratic forms.
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The quadratic form using not-centered t,, @, has
expectation:

E(ﬁ;ﬁw) —tr (G — C;”) + up1 Lty

= n(l +1:")03,00 — nPEVy, + npy iy,

where 7 is the number of individuals, 1 4 F is the average
self-relationship, PEV), = diag (Cz“) is the average pre-

diction error variance and o2, is the genetic variance. It
is worth noting that the classical definition of individual

. 2 (14+F)o2+PEVp;
accuracy is based on acc; = W [20]. Thus, the

expression above for E <ﬁ;ﬁw> is a function of individual

expected average reliabilities accl-z, but also of means ),

Mp-
To remove dependence of the quadratic form above on
means, it makes sense to use centered i1, and 1,

E((ﬁp — ) (- ﬁw)>

— (s’s (G - C;;“)) + 1pl'S'S1py,

’

where S=1— %] is the centering matrix [31]. By its
properties, S1 = 0and §'S = S’ = S, and therefore

(560 -8) (0 ))
= %tr (SG - SCZM>
_ Jiag @) — G — (diag (co) - (%‘”))

= (1+F =% )o2s — (PEV, - PEG,),

is a function of the average self-relationships 1 + F minus
the average relationship between individuals, 2f, and
PEV minus PEC. Inclusion of relationships between indi-
viduals results in the corresponding reduction in genetic
variance due to inbreeding to be accounted for, i.e., if as
usual F = f, then (1 +F— 2];)03 = (1 —I:")cf,f, which
shows the decrease in genetic variance [26, 34, 35]. Simi-
larly, PEV,, — PEC, considers the fact that estimates of i
are correlated across individuals (the so-called “co-reli-
abilities” [25]), showing that there is little value in hav-
ing high individual accuracy if predictors are correlated
across individuals.

The remaining quadratic forms needed for our develop-
ments are:
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= (1+F =% )o2s — (PEV, - PEG,),

= (1+F -3 o2 — (PEV,, - PEC,,).

In the remainder of this paper, we assume that the
expectation of a ratio of quadratic forms is equal to the
ratio of the expectations. The “Appendix” shows that
this holds when the number of individuals included in
the statistics is large (several hundred or more) or when
they are not structured into very large sibships. Other-
wise, as shown in the “Appendix’; both the true regres-
sion coefficient b = cov(ﬁp, u) /var (ﬁp) and its estimator
b = cov (ﬁp, ﬁw) / Var(ﬁp) have an expectation less than 1,
even when the model is perfect and the EBV have the right
dispersion.

Quadratic forms of estimated and true breeding values

Here, we give an alternative definition of the population
accuracy, i.e. the expected correlation of EBV and TBV in a
sample, as a ratio of quadratic forms:

accy, = E(,oT,p)

’

. (ﬁp—ﬁp) (u — i)

B \/(u — @) (u— @) (ﬁ,, - ﬁp)/(ﬁp - ﬁp)

5 e-9) -sfs(o- )

= (14+F =2 )0l — (PEV, - PEG,),

E((w—1@)(u— ) = tr(SG) = (1 yE— 2})03@0,

and £ (8, - 8,)] = £[ (8- 8,) (8, - )

this has expectation:
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accy = Epr)

Ler(sG - scp)

\/% Ly (SG - sc;”)
Lir(sG - scu)

\/(1 +E- 2})03,00 -

~
~

(PEV, — PEC,)

The denominator (l—i-F 2f) 0, corresponds to

the expected genetic variance in the focal population
and takes the reduction in variance due to relationships
(1 +F =2f ) and selection (0,42,00) into account. With all

these elements, we can compute the expectation of the
derived statistics, as done in the following.

Derivation of statistics to test the quality of evaluation
methods

Comparison of means of EBV from whole and EBV

from partial data

Mpw = (l/ilp - l/iiw)/n,

(1’&17) —E(l/ﬁw)
n n

(11 — V1) = pp — -

Il
t

E(ppw)

N

Regression of EBV from whole data on EBV from partial data
cov(iyivy) _ & (i) (i)

var(iy) l(up up)/<up71:lp> -

The regression by, =

>
)
2
S
—
—
=
Ny
|
Y
N

is composed of two quadratic forms.

When assuming that the expectation of the ratio is equal
to the ratio of the expectations,

(1 yE- 2})0300 -
(14 F =27 )02 — (PEV, - PECG,)

(PEV,, — PEC))

E(bwyp) ~ =1
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Note that this expectation involves PEV and
off-diagonal PEC. Importantly, it must hold that
Vtzr(ﬁp) Cov(up, )(as usually assumed).

Correlation of EBV from whole and EBV from partial data

w ~
- ’ - - \/ - '
o) (- ) o ) i)
This statistic is composed of three quadratic forms and

assuming that the square root of the expectation is equal
to the expectation of the root, it gives:

Lip (SG SC”“)

\/ftr SG — sCux \/ (G — SC"”)

Ler(s6 - scp)

pwp

1tr(sG —scu)

F =] )02 — (PEV, - PEG,)

sl

~ 3 o2 — (PEV,, - PEC,)

_ (PEV,—PEC,)

(1+ﬁ—2f) 02

_ (PEV,—PEG,)
(14+F=27 )02

Therefore, py,, is a direct estimator of the increase in

population accuracy of EBV from partial to whole data,
ﬂCCp

accy,’

Estimation of accuracy from the covariance of EBV based
on whole and EBV based on partial data
We can get a direct estimator of accuracy (and not of

ratios of accuracies) from cov(ﬁp,ﬁw) = %(ﬁp — ﬁp)

(ﬁw — ﬁw), from which we can derive the statistic:

cov(ﬁp, ﬁw)

(14+F - 9f o2

P, CoVy,p -
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with expectation acc; as follows
accf? =E (,oczovw'p>
- / -
E<}1 (8 — &) (- ﬁw)>
( 14+F—2f ) 02
_ 1-PEV, +PEC,
(1 vE- 2}) o2

2
Thus, 0,

is a direct estimate of squared popula-
tion accuracy of EBV based on partial data, which we call
pwv since it is an estimator of the squared accuracy (a
squared correlation) based on the covariance between a,
and @, This statistic requires an estimator of cr 1,00 o that can
be obtained by modelling the selection scheme [18] or be
explicitly estimated [34].

Regression of EBV from partial data on EBY from whole data

- Vi -
1/( ~ X A x A
n (up - up) (uw - uw) cov (T, iy )
bpaw = 1 e =\ var (@)
n (uw - uw) (uw - uw) w

with expectation:

irr(cG —ccu
E<bp'w) ~ nl ( uu)
Ly (CG — CcC)
(14 =27 )02 — (PEV, - PEG,)
- (1+F-2f)oz, — (PEV, — PEG,)
which is a funzction of squared population accuracies, i.e.
E(bp,w) = %. In addition, E(pw,p) = E(bp,w),

although py,, and /by, need not be equal for single
realizations, i.e. for the analysis of one particular dataset.

Effect of over/underdispersion of breeding values on statistics
Statistics used to compute slopes and accuracies deal well
with regular bias (1, # @,) because the @, and {,, are
centered. However, overdispersion (inflation) of EBV is
a frequent phenomenon [6]. To consider a simple case,
assume that EBV based on partial and whole data are uni-
formly scaled by regression coefficients 9; and 62, with
93 > 9],,2, > 1 (i.e., there is more overdispersion with less
data or with old data), resulting in:
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, 62(G- i) 0,0, (G-Ci) 6,(G—Ca)
var ( i, ) = | oou(6-Cp) ei(G-Ci) on(G-cu) |,
6(G-Cp)  ou(G-Cy) G

yielding, e.g.,
E(cov(&p,ﬁw))
(o) (o))
G — <diag (cu) - (c;;u)>}
= 0p0u{ (1+F =)ol — (PEV, ~ PEG) }.
The regression of EBV from whole on partial data,
o ) (5 5)
(up—up (l.lp—llp)

)
)~ EHF )02 o~ (PEV,—COPEV;)

9, = 9,7 Wthh is
b (1+F=2f ) 03— (PEV,—COPEV,)

tr(SG - s

- Gpew{diag(G) -

, yields on expectation

E(bw,

not equal to 1 but equal to the ratio of dispersions. Thus,
avalue of b, < 1 (as often observed for genomic predic-
tions) may indicate overdispersion of EBV based on par-
tial data but also underdispersion of EBV based on whole
data.

The reverse regression of EBV from partial on whole

1 (up up Uy —Uy

o) (1 se)

6, (1+F-2)o2—(PEV,~PEC,) g, acc?

data, by, = yields on expectation

E(b O . = £ —£,  which
(bp) ~ 3, (1+F~2f )03~ (PEV,,—PEC,) v acci W
is a ratio of dispersions and reliabilities.
Finally, ) the correlation Pwp =
(3-8 (o0 .
has the following

() (3-8 (5 (-3

expected value:
6p0utr (3G — sCy*)
\/#210r(SG — s ¢ 0240r(sG - s

1
Ler(s6 - scp)

E(pwp) ~

1tr(sG —scu)

(1 iy - 2})0300 -
(1+F -9 )02 — (PEV,, - PEC,)

accy

(PEV,, — PEC,)

)
accy
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retrieving a ratio of accuracies. Thus, the statistic py,,
(correlation of “whole data” and “partial data” EBV) is
an estimator of change in accuracy and is not affected by
this very simplistic form of overdispersion.

Note that equivalent biases result when 9142/ > 9; >1,1ie.
when there is more overdispersion with more data or with
recent data. Thus, regression of EBV from whole on par-
tial data informs about over/underdispersion, regression
of EBV from partial on whole data can be interpreted as
a function of accuracies, and the correlation of EBV from
partial and whole data is useful as a ratio of accuracies.

Predictivity: correlation of EBV with precorrected data
A very common strategy in cross-validation tests is to com-
pare predictions of EBV with precorrected phenotypes
for the predicted individuals [9, 10], i.e. using (¥}, %),
where y7,,, is the precorrected “new” data available in the
whole data. It is, however, not clear whether this is a valid
estimator of accuracy and what the effect of precorrection
is. Here we derive some results that show that the use of
precorrected data can be problematic in some cases: many
levels of the main environmental effect or wrong variance
components.

Precorrected data are obtained with the whole dataset
V' =y—XB= (I - x(x/V*lx)*x/V*)y,
where B is typically a BLUE estimator of fixed effects. In

using

fact, Var (y*) = VPV for P=v! (I -X
(X’ V_1X) X'v ) [36], which leads to:
Var(y*) = VPV
=vv! (1 - x(x/v‘lx) x’v‘1>v

—V-— x(x’v—lx) X
=V - XCPX' =R + ZGZ

where Cﬁ,ﬂ is the PEV of fixed effects in  obtained from
analysis of the whole dataset.

Now, we will consider only new data that are not in the
partial dataset and assume for simplicity one record per
individual. We further assume that the new data are only
affected by a single fixed effect (say contemporary group),
such that:

— XCPBx',

Var(yk,,) = R+ G — XCPAX'.

The covariance of EBV with y},, can be obtained as
follows:
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Cov(ﬁp,y;jew = Cov( ) Ynew — )
= Cov( y,,ew) Cov (up, XB)
= Cov( ynew) Cov (up, u+ enew)
= Cov(lip, u) + Cov (i, €pew ).

Because by orthogonality, Cov (ﬁp,X,B) =0 ([37]
=G-— CZ”, and
Cov(ﬁp, enew) = 0, the latter because EBV based on par-
tial data do not influence ey, (again, assuming there is no

effect of selection).
Therefore,

A _ Cuu _ Cuu
ol B ) _(67CG GG
Ynew G—CZ” R+G-XC,)X

which yields the following expectations for # individuals:

equation 528), and where Cov(ii,, u)

Ly (sG —scux
E(byzew,ﬁp) = M =L
n

which is equal to 1 as expected, and the correlation is
equal to:

’

(ﬁp - 1:11”) (y;lkew - )_’:flew)
\/(Y;ew - )_pnkew), (YZEW - ;’:ew) (ﬁp - {lP) (ﬁp - l;lp)

with expectation:

)

Py senrity

Lir(sG —scy)

E(pys, iy ) =
) e eact) e s

gy (SG - scg“)

\/5”(5(11 +6G-xclfx'))
\/(1 +F- 2})03,00 -
\/aez + (1 +F- 2]2)0300

Thus, the cross-validation correlation of EBV with
precorrected phenotypes depends on population accu-
racy, heritability, and errors in estimates of fixed effects.
If fixed effects are estimated with high precision Cli F~o0
and off-diagonals (both in relationships and in PEV) are
negligible, then:

(PEV, — PEC,)

~ Lur(sxslfx) ‘
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E( Oioc —PEV  [52 _ pPEV
i) = LY fob PEV
Yiew Up 0_3+0L%00 03,00+0'62

If we divide tlzle square of this by the population herita-
bility h2, = —

2 2
O'u,oo+o'e

(i.e. in the selected population, not in

the base population):

2
0. 00— PEV
— 2
o',%‘oo-}—gg _ GM,OO — PEV _ ﬂccz
o2 - 2 - P’
1,00 GM,OO
‘Tr%,oo+(7ez

and therefore, E (’Oy’éewﬁp) = Z—ij

Thus, if there has been no selection, we can estimate
accuracy from cross-validation as: acc ~ =92 where h?
is heritability in the base population *[9L However, if there
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population accuracy because o2, < o2 and i, < K.

Using the “dairy” example in [18], 62 = h?> = 0.3 and
02,, =018, such that K2, =0.20. If tphf observed
Pysmiy = 03, this yields (biased) acc ~ 29 — 055
and (correct) acc ~ y”h‘%:“o'”” = 0.67. The latter can, in
turn, be translated to an “unselected accuracy” of 0.82
[18, 27].

There is a second and not negligible source of bias
due to Cg,ﬂ # 0. For a single fixed effect, matrix XCE,ﬂ X’

contains var(ﬁi) (the variance of the estimate of the
effect that affects the i-th record) on the diagonal and

cov (ﬁi, B,) on off-diagonals (the covariance of the esti-

mates of the effects that affect the i-th and j-th records).
We will assume that covariances of estimates across
levels of the fixed effect are negligible (this is not true if
relatives are spread across fixed effects). For a balanced
design with n records in y},,, n; =n/m records for
each of the m levels of the fixed effect, and with records
ordered within level, the structure of XCﬁﬂ X' is:

has been selection, using acc ~ 242 underestimates
var(B1) var(p
var(B1) var(py ~0 ~0
var By ) var(po
~0 var By ) var( pa
var (B ) var( Bm
~0 var (B ) var( Bm
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where Var(Bl) = var(ﬁz) =

Also, we will assume that var(ﬁi> =

= var(Bn) = var(B),

2 2
Ou,00 +o;

—< in other
nj

words, relationships add little information to estimates of

the fixed effect. This results in

T a R 2 2 7 aa N

diag (XC&,’SX’) = mr(ﬂ) = % and (XCf,ﬂX’) =
2 2

@, which  results in %tr <SXC5,ﬂ X’ ) =

auz‘ooﬂrez

o (1 — %) Plugging this expression in E(py;ewﬁp)

above and ignoring off-diagonals results in:

E (py;ﬂlew’ﬁp)

~ 14l
o T S m—n )

This results in overestimation of the accuracy of
#ﬁil)’ which does not disappear with high values of
n. Thus, if there are several levels of the fixed effect,
the estimate of the cross-validation accuracy will have
an upward bias, which is greater for a smaller number
of records per contemporary group. This bias is due to
the assumption that the precorrection is perfect. For
instance, for n = 500 and 25 contemporary groups, the
bias is an extra 5% apparent accuracy. For # “large” and
m “not small”, bias is approximately n%, i.e., inversely
proportional to the size of the contemporary group,
which does not disappear with increasing .

Comparison with current Interbull validation procedures

The Interbull method [6] uses a simple regression that
can be written as 2DYD = 1bg + b1t + €, where DYD
are daughter yield deviations (computed with the
whole dataset) and act as pseudo-data for bulls. Ele-
ments of € are assumed to be independent across bulls
with variance inversely proportional to the equivalent
number of daughters (this can be viewed as DYD hav-
ing different heritabilities across bulls). Thus, this set-
ting is similar to the previous section on predictivity.
The above proofs apply and the expected value of by is
1, although, using @ = DYD — b1, does not yield a
correct estimate of uy, — jiy, i.e. bias, unless by = 1.
Also, the expected value of r? (&p,DYD) is ““12, where

re
rel is the average reliability of the EBV of bulls based
on progeny. Here, as in the analysis on predictivity,
off-diagonals are ignored, which should not affect
results if progeny numbers are large enough.
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Markers considered as “new” data: pedigree BLUP and (SS)

GBLUP

The addition of marker genotypes to a pedigree-based
BLUP genetic evaluation can also be viewed as having
“more data’; e.g. on a correlated trait [38, 39]. Thus, a way
to check the increase in accuracy from adding marker
information (e.g. from BLUP to GBLUP) is to view the
data with marker genotypes as “whole” and the data
without markers as “partial”. Using G to refer to EBV with
markers and A to EBV without markers, this yields:

(30 6) o i)
¢ (6~ 6) (6 —f6) (au — ) (i — )

accy

PAG =

)
accg

i.e., the lower the correlation between genomic EBV
and pedigree EBV, the higher the extra accuracy from
genomic data. This assumes that COV(ﬁ(.;, ﬁA) = Var (ﬁA ),
as assumed by [39], which sounds reasonable but has
been formally proved only for a single marker that is fit-
ted as a correlated trait [38].

The procedure above uses the same phenotypes for
the evaluations with either G or A. An alternative pro-
cedure may be to compare the increase in accuracy from
“partial” to “whole” in both approaches. In this case, to
compare EBV from a genomic-based method (GBLUP
or SSGBLUP) with EBV from a pedigree-based method
(PBLUP), we suggest the following procedure:

1. Compute EBV with all data (“whole”) using the
method that is deemed to be optimal; we will assume
that this is GBLUP.

2. Choose a cutoff date and create a partial dataset by
setting phenotypes after cutoff date to missing;

3. Compute GEBV based on the partial data using
GBLUP;

4. For “focal” individuals (i.e., the validation cohort):
compute statistics ugffup , vangup , and ,ogﬁLup that
describe respectively bias, dispersion and accuracy of
EBV from GBLUP;

5. Compute PEBV based on “partial data” and using
PBLUPD;

6. Compute statistics Mgﬁ/LUP , bﬁ%up »and p,
describe respectively bias, dispersion and accuracy of
PEBV from PBLUP;

7. The statistic PPBLUP,,GBLUP, quantifies the inverse
of the relative increase in accuracy from PBLUP to
GBLUP in the partial data;

8. The statistic ppaLup,,GeLuP, quantifies the inverse
of the relative increase in accuracy from PBLUP to
GBLUP in the whole data.

PBLUP that
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Data: example using beef cattle data

Animal population, genotypes and phenotypes

The statistics described above were tested in a real-
life dataset. We used genetic and phenotypic resources
(for details see Table 1) from Brahman cows (N=995)
and bulls (N=1116) that have been widely described
in the recent literature [40—42]. Yearling body weight
(YWT) computed from the average of all body weights
recorded between 300 and 420 days of age was used as
the phenotype. The 2111 Brahman cattle were geno-
typed using either the Illumina BovineSNP50 BeadChip
(Ilumina Inc., San Diego, CA; [43]) or the BovineHD
panel (Illumina Inc., San Diego, CA) that includes more
than 770,000 single nucleotide polymorphisms (SNPs).
Animals that were genotyped using the lower density
array had their genotypes imputed to higher-density, as
described previously [44]. The imputation was performed
on 30 iterations of BEAGLE [45], using 519 individuals
genotyped using the BovineHD chip as reference. After
imputation, we retained genotypes on 729,068 SNPs, of
which 651,253 were mapped to autosomal chromosomes
and had a minor allele frequency (MAF) higher than 1%
and were used to build the genomic relationship matrix
(GRM) according to Method 1 in [46].

Procedure to generate partial datasets and cross-validation
statistics

The data described above comprised the whole dataset.
One thousand partial datasets were generated by setting
a random 50% of records missing. It is worth noting that
these animals are contemporaries (the resource popu-
lation spans a few years and animals are not descend-
ants from each other) and, therefore, there are no issues
related to selection.

A simple breeding value mixed-model was used for the
analysis of YWT with the fixed effects of contemporary
group (combination of sex, year and location), age of
dam at birth in year classes, and age at measurement as a
covariate, and the random additive polygenic effects and
residuals as random effects. Variance components esti-
mates and BLUPs of breeding values were obtained using
the Qxpak5 software [47]. All datasets were analyzed
using both the pedigree-based numerator relationship
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matrix (NRM) and the SNP-based genomic relationship
matrix (GRM).

Table 2 lists the 16 statistics that were used to com-
pare EBV from the whole and partial datasets. Note that
in order to highlight the impact of the data partition-
ing, some of these statistics were computed separately
for the individuals in the whole and the partial datasets,
in the same context as ‘reference’ and ‘validation’ indi-
viduals, respectively. For instance, py, ,, is the correlation
between the EBV obtained using the whole dataset and
the EBV obtained using the partial dataset, but computed
only by using the validation individuals that have miss-
ing phenotypes in the partial dataset, i.e. the random
50% individuals with omitted phenotypes in the ‘partial’
dataset. The EBV of those animals are predicted in the
partial dataset using parent average (i.e. using pedigree)
or using genomic information from relatives (i.e. using
the GRM). In the whole dataset, they are predicted using
own records.

Results

Table 3 provides summary metrics (mean, standard
deviation, minimum and maximum) for the 16 statistics
across the 1000 partial datasets obtained using the NRM
and the GRM. The means are also presented in the bar
diagram of Fig. 1. Notable changes from using NRM ver-
sus GRM were the 66.5% increase in the estimated her-
itability (from 0.260 to 0.433), the 21.4% increase in p,‘j,’p
(from 0.550 to 0.668) and the 4.1-fold increase in r(yv, i)
(from 0.076 to 0.312).

Figure 2 presents a heatmap of the correlation matrix
among the 16 statistics obtained using the NRM and the
GRM. The individual values are provided in Additional
file 1: Tables S1 and S2. We observed a strong negative
correlation (r < —0.90 in all cases) between the herit-
ability estimates and the regressions of EBV from whole
on EBV from partial data (i.e. by, by, , and b}, ). This is
consistent with the expectation of over- and under-dis-
persion for regression values < 1.0 and > 1.0, respectively.

One metric of interest is the correlation of EBV with
precorrected phenotype (i.e., 7(¥e, iy ) denoted here as
r(yv, itv)) since this is one of the most frequent measures
of accuracy in cross-validation studies. Quite encourag-
ing is the high correlation observed between r(y,, it,) and

Table 1 Summary statistics for age and body weight (YWT) in yearling records used in the beef cattle data example

Sex N Variable Mean SD Min. Max.

Cows 995 Age (days) 361.77 12.68 323 400
BWT (kg) 209.73 30.54 115 299

Bulls 1116 Age (days) 359.10 20.54 302 416
BWT (kg) 24371 29.17 138 353
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Table 2 Set of 16 statistics used to compare predictions based on the whole and partial beef cattle datasets

Statistic Description

h? REML estimate of heritability for each ‘Partial’ dataset (each random 50% missing)

bw,p Regression of whole on partial EBV (expectation of 1.0)

blup bw,p computed within reference samples (i.e. Those with phenotypes maintained in the creation of the partial sample)

bjw by, computed within validation samples (i.e. Those with phenotypes treated as missing in the creation of the partial sample)

bpw Regression of partial on whole EBV (expectation depends on accuracies)

bgyw bp,w computed within reference samples

by bp,w computed within validation samples

Pw,p Correlation between whole and partial EBV (expectation depends on accuracies)

pjw Pw,p computed within reference samples

Pip Pw,p computed within validation samples

r(y,, 0,) Correlation between the partial EBV and the adjusted phenotypes for the reference samples

f()/v, Ov) Correlation between the partial EBV and the adjusted phenotypes for the validation samples (NB. This is the conventional
measure of accuracy in cross-validation genomic selection studies)

dip Difference between whole and partial EBV (in absolute value) computed within reference samples

djw Difference between whole and partial EBV (in absolute value) computed within validation samples

Vd;w Variance of the difference between whole and partial EBV computed within reference samples

\/dVVw Variance of the difference between whole and partial EBV computed within validation samples

Table 3 Summary metrics (mean, standard deviation, minimum and maximum) for the 16 statistics across the 1000
partial datasets (each one setting a random 50% as missing phenotypes) and obtained using either the pedigree-based

NRM or the SNP-based GRM

Statistic Pedigree-based NRM SNP-based GRM
Mean sD Min. Max. Mean sD Min. Max.

h? 0.260 0.021 0.211 0.371 0433 0.044 0316 0.598
bwp 0.957 0.064 0.741 1.206 0.961 0.083 0718 1.275
b\,/v,p 0.970 0.059 0.763 1.180 0.954 0.077 0.729 1.231
byp 0.925 0.082 0.688 1.272 0.975 0.099 0.685 1.372
bpw 0.751 0.077 0.522 1.189 0.710 0.066 0519 0.967
bbw 1.079 0.090 0.840 1.541 0.955 0.079 0.730 1.238
by 0423 0.056 0253 0.743 0462 0.046 0.329 0.667
Pwp 0.751 0.024 0.665 0.809 0.823 0.013 0.772 0.864
Pip 0.909 0.013 0.859 0.943 0.952 0.006 0.934 0.967
pVVV’p 0.550 0.035 0425 0.637 0.668 0.021 0.584 0.736
1y Or) 0.849 0.012 0.804 0.892 0.898 0.015 0.852 0.944
r (yv, Clv) 0.076 0.022 0.011 0.156 0312 0.021 0.227 0373
dip 2.253 0.266 1.684 3.902 2.905 0.288 2344 4476
djvlp 3.865 0.167 3441 4422 6.726 0216 5.932 7.575
vdy, , 8303 1.988 4.585 24.081 13.798 2977 8.839 32127
\/dvvv/p 23.893 2.003 19.174 30.920 73.330 4.676 57.355 91.677

the regressions of EBV from whole on EBV from partial
data (i.e. by,p, b}, , and by, ), which ranged from 0.604 to
0.746, as well as the high positive correlation of r(y,, &, )
with the correlations between “whole’ on “partial’ (i.e.
Pw,ps p;,,p and py, ,), with a maximum correlation of 0.806
between r(yv, it‘j and p]‘;,,p. These results illustrate that

the proposed metrics, particularly py, ,, are also estima-
tors of the accuracy of EBV based on the partial (earlier)
data (termed acc, in our algebraical derivations).

Striking is the novel finding of the strong negative cor-
relation of r(y,, it,) (where i, are “reference” animals in
the training dataset) with r(yv, itv). The former is bound



Legarra and Reverter Genet Sel Evol (2018) 50:53 Page 13 of 18

1.2 8 80
7 70
1
6 60
0.8
5 50
0.6 4 40
3 30
0.4
2 20
0.2
1 10 i
0 0 0
c v c v
v c pu wp v (e uC) diyp dw,p Vdyp Vdyp
w,p w,p fw . Py Pwp 1,1,
B NRM m GRM

Fig. 1 Mean value for the 16 statistics across the 1000 partial (random 50%) beef cattle datasets obtained using either the pedigree-based NRM
or the SNP-based GRM. Double-ended arrows indicate & 1 standard deviation (SD). Refer to Tables 2 and 3 for a description of the statistics and the
actual values, respectively
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Fig. 2 Heatmap of the correlation matrix among the 16 statistics obtained using the pedigree-based NRM (left panel) and the SNP-based GRM
(right panel). Refer to Table 2 for a description of the statistics and to Supplementary Tables 1 and 2 for the actual correlation values
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to be high since it reflects the prediction’s goodness of
fit when computed on the data that is used to build the
prediction, and averaged to 0.849 and 0.898 when using
the NRM and the GRM, respectively (Table 3). However,
the negative correlation of r(y,,iz,) with r(yv, itv) indi-
cates that when the breeding value model is particularly
good at fitting the reference (‘old’) data (reflected in part
by a high heritability estimate), this strong fitting ability
disappears when applied to the validation (‘new’) data,
which seems to imply overfitting (by chance). Indeed,
a very strong correlation (r=0.933) was observed
between the estimate of heritability and r(yy, ), and
a moderately strong negative correlation (r=—0.543)
between the estimate of heritability and r(yy, i, ) (Fig. 2
and Additional file 1: Table S2). Importantly, these
problematic relationships were not observed with either
Pip OF Py,

Finally, we explored the changes in ‘consecutive pre-
dictions, which are represented here by the move from
partial (old) to whole (new) data. We used the absolute
difference between predictions (statistics dy, , and d, )
and the variance of the difference of predictions (Vd,, ,
and Vd,, ) and explored the relationships of these
with the previous 12 statistics. Please note the strong
negative correlation (r=-0.838) between dj , and
py,p- This contrasts with the not so strong correlation
(r=—0.548) between d}, , and r(y, ity) (Fig. 3).

Between two competing measures of accuracy, the
measure that is more closely related to changes in
predictions will be preferred. Based on this and our
results, we conclude that p,‘j/,p is better than r(yv, itv).
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Discussion

Thompson [13] outlined and discussed methods for the
statistical validation of genetic models for genetic evalua-
tion [14, 17, 48]. He emphasized the need for the statisti-
cal models to be based on genetic considerations. Today,
different genetic considerations (e.g. oligogenic vs poly-
genic models) may lead to different prediction models,
in particular in the area of genomic selection. Thus, the
question “which model is best?” is today more impor-
tant than ever. In this work, we attempt to provide quan-
titative geneticists with a set of tools to make their own
decisions.

Why do animal breeders aim at having predictions
that are unbiased in both senses, i.e. , — uy =0 and
by, = 17 Practically, to avoid suboptimal “biased” deci-
sions, e.g. choosing too few or too many, or simply the
wrong set of, young animals. Theoretically, best predic-
tors, defined as conditional expectations, have optimal
selection properties [49, 50], and therefore we should
aim for models (not necessarily linear) that yield such
best predictors. In practice, unbiasedness is a property
that holds on expectation: for any real dataset, from one
evaluation to the next, there will be small deviations; for
instance, 11, — py may differ from 0 just because of small
noises. However, it is important to ascertain if these devi-
ations are large (and affect the practice of selection) or
not.

In selection, the expected genetic gain at the stage of
selection is AG = 1X(EBV)) — L X(EBV,) = it; — i,
i.e. the average EBV of the “s” selected animals minus
the average EBV of the “c” animals candidates to selec-
tion. To avoid surprises (over- or under-estimation of

0.38 0.75
* r=-0.548 . r=-0.838
0.36 0.73
.
0.34 0.71
0.69
0.32
3 0.67
S 03 &
S Py 2 065
S 028 <
< . 0.63 -
0.26 0.61
.
0.24 0.59 .
.
.
0.22 0.57
5.5 6 6.5 7 7.5 8 5.5 6 6.5 7 7.5 8
v v
dW.P dW.p
Fig. 3 Scatter plot of the relationship of the absolute difference in EBV between the whole and partial datasets (d:,’ ) with the correlation of the
EBV based on the partial data with the adjusted phenotypes (r(yv, &V); left panel) and the correlation between EBV based on the whole and partial
data (PK/,pF right panel) across the 1000 partial (random 50%) beef cattle datasets
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selected animals), we need 7, = iz, i.e., the estimate of
the mean and the true mean of breeding values should
be the same for selected animals. For this to hold, we
must avoid two kinds of systematic errors: bias (wrong
estimate of genetic trend) and over-/under-dispersion,
which is often incorrectly referred to as “bias” in ani-
mal breeding literature. If selection is by truncation on
EBV, the true mean after selection, under multivariate
normality, is ur = its = (1'u)/n + iroy, where (1'u)/n
is the mean of all selection candidates and iro, is the
genetic gain. This genetic mean is (implicitly) predicted
before selection as ur = (l/il)/l/l—i-iO',;. For ur = ug
to hold, we need an unbiasedness condition (i.e. & = i
among all selection candidates) and a second condi-
tion that is o;; = roy,. The latter condition, however, only
holds if cov(u, &) = var (&), which amounts to the regres-
cov(u,it)
var (it)
cov (u, it) = var (it) holds under quite restrictive condi-
tions [30, 33]. In a frequentist context, Henderson [28,
32] proved that selection can be ignored if the model is
correct, selection is contained “in the data”, and under
the assumption of multivariate normality. In a Bayes-
ian context, Sorensen et al. [34] proved that selection
can be ignored if the evaluation model is correct. How-
ever, models are rarely correct, at most they are robust.
In particular, the widely used animal model that includes
unknown parent groups [51] is biased by construction,
because genetic groups are due to genetic selection but
fitted as fixed effects, which ignores established genetic
theory [52].

It may be argued that for the results in [14] to hold
(roughly, future errors in prediction are not correlated to
current errors in prediction), future data does not need
to depend on past data. This is, however, not the case if
there is selection: unborn progeny of unselected animals
do not yield data. In principle, models should consider
selection correctly, if all information is included. A coun-
terexample where, old data affect future errors of pre-
diction is as follows. Consider EBV (i) of a young bull
based on one record of the dam, with var (up) = %, and a
subsequent EBV based on # progeny records (u,) but not
on maternal performance. Then, cov(up,uw) = %h‘L n%:‘/l,
which is not equal to var (up) because the dam perfor-
mance was not included in #,,. If there is no selection,
there is no problem, but this is rarely the case, and it is
actually selection that creates bias due to an increase in
the genetic level of the trait and a reduction in genetic
variance.

Thus, we see the process of estimation of accuracy and
bias of EBV by our proposed method LR as a double pro-
cess. First, checking of the model in order to have a model
that empirically has the “best” properties (estimation of

sion coefficient to be 1. However, the equality
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bias); and then, estimation of its accuracy. We propose
the following two-step praxis approach. First, to ascertain
as best as possible that models are empirically unbiased
using the statistics u, — uy and by, which should have
values 0 and 1, respectively—perhaps using, if not all,
many animals (as in the original paper of Reverter et al.
[14]). Second, for all models that are empirically unbi-
ased, accuracies can be compared based on the proposed
statistics, which rely on unbiasedness.

Still, there is a problem in method LR, and in all meth-
ods that rely on linear regression of “predictands”
(pseudo-TBV from accurate progeny testing, less accu-
rate EBV or precorrected records) on “predictors” (typi-
cally EBV). As shown in the “Appendix’, due to family
structure and the not complete accuracy of EBV, the true
value of the regression of TBV on EBYV, i.e. the “true” b,
has an expectation lower than 1, E(b) < 1. Accordingly,
regression of “whole data” EBV (or of precorrected data)
on “partial data” may seem to indicate bias: E(Ig) <1

because for the “true” b, E(b) < 1. In other words, EBV
may appear to be over-dispersed when they are actually
not, which holds for method LR and for any other similar
method such as “predictivity” or the Interbull tests, since
it is a fundamental property of the crude regression of a
vector of TBV u on a vector of EBV u. It seems relevant
to assess, in practice, the extent of this inequality
E(b) < 1, since evaluations are often scaled such that b
(actually its estimate) is equal to 1, which implies that
EBV may be too much deflated after the scaling. How-
ever, we will not address these points here, since this
should be the subject of a simulation study that goes far
beyond this paper. The deviation of E(b) from 1 is impor-
tant if the cohort, or focal group, is small and related, and
it does not depend on the quality of the “predictand”.
Therefore, our recommendation is to use large cohorts
for validation. This bias inherent to cross-validation anal-
ysis deserves further examination in future studies.

Fixing the models to observe constraints on estimated
bias should be based on rigorous genetic or statistical
arguments (i.e. re-estimating variance components and
heritabilities), rather than quick fixing procedures such
as multiplying by constants, manipulating relationships
or changing hyper-parameters of prior distributions.
For instance, [53] found empirically that equaling sta-
tistics of Ay and G provided unbiased predictions, but
this has a genetic interpretation of modelling selection
and drift from the base to the genotyped population
[54, 55].

In the analysis of genetic trend for litter size in pigs,
Sorensen et al. [48] also emphasized “forward” cross-
validation for model checking, using what we called
in this paper “predictivity’, instead of relying solely on
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model-based predictions. Recently, Putz et al. [56] tested
by simulation several methods to validate accuracies by
cross-validation. They reported poor performance of
comparisons of (in our notation) it,, and i1, without real-
izing that r (i, i) is not an estimator of accuracy but of
ratios of accuracies. In addition, they did not simulate
selection, in which case theoretical accuracy is equal to
validation accuracies.

We have shown that precorrection of phenotypes
using whole data may bias the result of predictivity.
This is particularly relevant for small contemporary
groups such as in dairy or beef cattle as opposed to, say,
sheep or aquaculture species. Some measure of error
in precorrection due to estimation of contemporary
groups should be reported in cross-validation results.
Although the ranking of methods should be similar,
estimates of population accuracies may be biased. Com-
paring i, and i, as we propose in this work, might be
a better option, although it involves more parametric
assumptions.

One final consideration involves discussing the differ-
ence between population and individual accuracy. Quot-
ing [18]: “For response to selection, the [population]
accuracy should reflect the correlation between true and
EBV in the candidates for selection, which is a property
of a population, not of an individual. For the stability of
EBYV, the accuracy should reflect the standard error of an
EBYV, which can be defined for a single individual” Our
work deals with population accuracies, not with individ-
ual accuracies. The former are useful for model selection
and for genetic gain; the latter are useful for individual
decisions. The population accuracy is not a function of
individual accuracies. For instance, consider full sibs that
are evaluated by using parent average and for which their
parents are known exactly: individual accuracy is 0.71.
However, population accuracy is 0, since all full-sibs have
exactly the same parent average. Thus, population accu-
racies involve both individual reliabilities and co-reliabil-
ities [24, 25].

Conclusions

In this paper, we present properties of cross-validation
measures obtained from successive genetic evaluations.
These measures allow estimation of population accu-
racies and biases, which are of interest to quantitative
geneticists in general, and animal and plant breeders in
particular. We hope that with these tools, researchers
can report and compare competing prediction models,
in particular for complex cases such as for lowly herit-
able traits or for indirect genetic values such as maternal
effects.
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Additional file

Additional file 1: Tables S1 and S2. Correlation among the 16 statis-
tics employed in the cross-validation study of the beef cattle dataset

using the pedigree-based NRM or the SNP-based GRM (NB: These are
the values used to generate the left and right panels of Fig. 2
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Appendix

In this Appendix, we quantify the possible systematic
error in E (%) ~ %, where X and Y are successive EBV,
or EBV and TBV. Here, we show that this systematic
error is small if the number of EBV in X and Y is large (in
the hundreds or thousands). The second-order approxi-

mation of E(%)is E(%) A % - % [57]. Consider

’
e A(a_a)(ﬁ_a)
. covuy,u 4 y4 w w
for instance, by, = (Gp.8) _ . The

var (4, . 2\ (s oz
() %(“p*“p) (“p*“p)
systematic error incurred in the approximation
X\ ~ EX) . Cov(X,Y)
E(Y) ~ EY) 1S _W, where

/

X = %(ﬁp - l_ip) (ﬁw - l_iw) = (ﬁpSﬁw) where

To simplify notation, consider K =G — C;*, K = {k,',- }
Thus,
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2
E(Y)? = (ltr(SK)> — (diag(l() - 1'()2.
n

The expression for the covariance of bilinear forms is
Cov(x]A12X2,X3A34x4) = tr(A12C23A34Ca1 + A12C24A13C31)
+ n1A12Co3A34 0y + L] A12Cos A3 3 + IL/2A21C13A34IL4
+ n5A21CraAgzps
(C is the covariance matrix across &;; p 58 [30]). Applied
to our case, COV(XiAlZXZ,X3A34X4> =
Cov (l:lpSEiw, ﬁpSﬁp), o this yields (as
Cov(f,,1y,) = Cov(liy, Gi,) = K):

2
Cov(X,Y) = — tr(SKSK).
n

The terms linked to the means disappear, as before,
because they have the form ©1’S'’KS1p which has a
value of 0. The expression Cov(X,Y) = n%tr(SKSI() can
be computed explicitly for ideal cases. A slightly more
enlightening expression is, after algebra,

Cov(X,Y) = 2var (ki) — 2var (l_(i,:),
twice the average variance within rows minus the vari-

ance of rows means of K = G — CJ*. Putting all together
results in:

Cov(X,Y) . 2var (k,',;) — 2var(l_(i,¢)
E(Y): diagK) —K

This is always positive, which means that the b esti-
mated as the linear regression of @, but also the “true”
b of the regression of true EBV u on 1y, has an expecta-
tion less than 1, even when the model is correct, contrary

to common assertions. The expectation of b is actually
_ 2var (k) —2var (k;;) 2var (k. )—2var(k;;)

1 Tl K When the value of T 00K
is high (i.e. sufficiently larger than 0), a punctual esti-
~ cov(i,,uy)

mate of by, = with value equal to 1 means

var (l,)
that the estimators iz, are deflated—too much regressed.
This raises questions on the use of cross-validation to
choose the best model for evaluation. The underestima-
tion depends on the total number of individuals in the
focal set, on their relationships (on G) and the accuracies
and co-reliabilities on the “partial” dataset (on C%#) but it
does not depend on the final reliabilities on C%* (which
implies that the derivation applies for TBV). Inclusion
of sibs increases systematic error. For instance, n = 100
with half-sibs of size 10 and information in “partial” eval-
uation equal to 1 observation with W% = 0.3, results in
E(b) = 0.94. Increasing to n = 400 results in E(b) = 0.98.

Page 17 of 18

Setting n = 100 with families of five half-sibs results on
E(b) = 0.96. These systematic errors deserve further
exploration (e.g. properties of the estimators for different
accuracies and family structures)—but this is out of the
scope of this paper.
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