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Abstract: Duchenne muscular dystrophy (DMD) is a progressive, X-linked childhood neuromuscular
disorder that results from loss-of-function mutations in the DYSTROPHIN gene. DMD patients
exhibit muscle necrosis, cardiomyopathy, respiratory failure, and loss of ambulation. One of the
major driving forces of DMD disease pathology is chronic inflammation. The current DMD standard
of care is corticosteroids; however, there are serious side effects with long-term use, thus identifying
novel anti-inflammatory and anti-fibrotic treatments for DMD is of high priority. We investigated the
next-generation SINE compound, KPT−8602 (eltanexor) as an oral therapeutic to alleviate dystrophic
symptoms. We performed pre-clinical evaluation of the effects of KPT−8602 in DMD zebrafish
(sapje) and mouse (D2-mdx) models. KPT−8602 improved dystrophic skeletal muscle pathologies,
muscle architecture and integrity, and overall outcomes in both animal models. KPT−8602 treatment
ameliorated DMD pathology in D2-mdx mice, with increased locomotor behavior and improved
muscle histology. KPT−8602 altered the immunological profile of the dystrophic mice, and reduced
circulating osteopontin serum levels. These findings demonstrate KPT−8602 as an effective therapeu-
tic in DMD through by promotion of an anti-inflammatory environment and overall improvement of
DMD pathological outcomes.

Keywords: DMD; SINE compound; KPT−8602; inflammation

1. Introduction

Duchenne muscular dystrophy (DMD) is a progressive X-linked neuromuscular disor-
der that affects 1:5000 live male births worldwide, making it the most common childhood
neuromuscular disorder [1]. DMD results from mutations in the DYSTROPHIN gene,
which prevent the production of functional dystrophin protein [2]. DMD patients de-
velop progressive muscle weakness, respiratory and cardiac issues, and loss of ambulation
typically by their teenage years. Much of DMD pathology is attributed to the increased
permeability of the sarcolemma due to the loss of membrane stability without dystrophin.
Consequentially, this leads to muscle cell death, which triggers immune cell infiltration
into the muscle and chronic inflammation, a major driver of DMD disease progression and
disease pathologies [3–6]. Although corticosteroids are the current standard of care, there
are many studies that report the long-term use of these drugs can cause unwanted side
effects, such as excessive weight gain, hypertension, mood alteration, and increased risk of
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bone fractures [7–10]. Thus, investigating and identifying new anti-inflammatory DMD
therapeutic options with less severe side effects are critical.

A key element to improving DMD pathology is to control the inflammatory response,
which is not currently addressed by gene therapies. Prior to muscle weakness, membrane
instability of DMD myofibers leads to rapid cycles of degeneration and regeneration [11].
With asynchronous regeneration, myofibers enter the necrotic stage at different times
promoting a constant pro-inflammatory micro-environment, marked by the release of
cytokines such as CCL22 and CCL14. In the DMD pro-inflammatory state, damaged
myofibers release high mobility group box (HMGB1) which binds Toll-like Receptor 4
(TLR4) to activate innate immunity and chronic inflammation [12,13]. A hallmark feature
of chronically inflamed dystrophic muscle is the accumulation of M1 and M2 macrophages
that contribute to dystrophic pathology by promoting myofiber damage and fibrosis,
respectively [14].

Inflammation is regulated in part by the trafficking of RNAs encoding inflammatory
mediators that are elevated in DMD to the cytoplasm through the nuclear pore complex
(NPC) [15]. One crucial component of the NPC is the nuclear export protein exportin
1 (XPO1). Although XPO1 inhibitors were developed as a treatment strategy for many
types of cancer including leukemia and lymphoma, they also possess anti-inflammatory
properties [16–22]. The first XPO1 inhibitor discovered was leptomycin B, which was
extracted from a strain of Streptomyces and blocks nuclear export [23,24]. Selective Inhibitor
of Nuclear Export (SINE) compounds bind reversibly to XPO1 allowing for therapeutic
benefit with fewer side effects and an increased dosing regimen, as compared to lepto-
mycin B, which forms an irreversible bond [16,25,26]. A synthetically designed group of
inhibitors referred to as selective inhibitor of nuclear export (SINE) compounds have been
developed, including selinexor/XPOVIO (KPT−330), verdinexor (KPT−335), KPT−350,
and KPT−8602 (eltanexor) to directly block XPO1 nuclear export function. KPT−350, now
renamed BIIB100, is currently in clinical development for Amyotrophic Lateral Sclerosis
(ALS) patients (A Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharma-
codynamics of BIIB100 Administered Orally to Adults with Amyotrophic Lateral Sclerosis;
ClinicalTrials# NCT03945279). KPT−8602 is currently in a clinical trial for relapsed and re-
fractory cancers (Study of the Safety, Tolerability and Efficacy of KPT−8602 in Participants
With Relapsed/Refractory Cancer Indications; ClinicalTrials# NCT02649790).

Our lab previously demonstrated the beneficial effects of KPT−350 treatment in DMD
zebrafish and mice. KPT−350 reduced the severity and delayed onset of dystrophic patholo-
gies in both animal models [27]. Pre-clinical animal models treated with KPT−8602 have
demonstrated reduced penetration of the blood–brain barrier and increased tolerability
allowing for daily dosing. The efficacy of KPT−8602 treatment has been validated in differ-
ent cancer types, similar to KPT−350 and has proven tolerable in human patients in a Phase
1/2 clinical trial for colorectal cancer. This clinic-ready oral compound is uniquely suited to
a pediatric indication such as DMD [28–32]. Here, we sought to evaluate KPT−8602 in our
DMD zebrafish and mouse models to determine if KPT−8602 had therapeutic efficacy in
blocking or ameliorating dystrophic pathologies.

2. Materials and Methods
2.1. Zebrafish Care and KPT−8602 Dosing Experiments

Wild type (AB strain) and sapje (dmdta222a backcrossed to the AB background over
10 generations), were maintained at University of Alabama at Birmingham (UAB) aquatics
facility under standard housing and feeding conditions (IACUC protocol number 20320).
Zebrafish were assessed using birefringence for effects of KPT−8602 treatment as previously
described [33,34]. Briefly, sapje heterozygotes were mated and the resulting embryos were
incubated in the treatment compounds starting at 1 day-post fertilization (dpf). According
to Mendelian genetics, approximately 25% of embryos should be homozygous for the sapje
mutation and display a phenotype though some deviation from this ratio is predicted.
Treatments assessed in this assay were vehicle (KPT−8602 formulating agent), KPT−8602
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(2.5 µM), and aminophylline (2.5 µM; positive control). Drug compounds were changed
every other day until 5 dpf. Larvae (5 dpf) were assessed for birefringence and were
categorized as either unaffected or affected (represented as a percentage of the clutch). This
was repeated with three (n = 3) independent experimental clutches, with at least twenty
larvae (n = 20) for each trial per treatment group.

2.2. Mice

WT (DBA/2J strain; stock number 000671) and D2-mdx (DMD model of DBA/2J; stock
number 013141) one month old male mice were originally purchased from Jackson Labs
(Bar Harbor, ME, USA) and maintained at UAB under standard housing and feeding
conditions (IACUC protocol 21485). All mice were housed under sterile, pathogen-free
conditions with ad libitum access to food and water.

2.3. KPT−8602 Drug Treatment in Mice

KPT−8602 was delivered orally by mixing the drug compound in peanut butter (Jif
Creamy; J.M. Smucker Company; Orrville, OH, USA) pellets as previously described [35].
KPT−8602 drug was obtained directly from Karyopharm Therapeutics and synthesized by
Piramal Pharma Solutions (Lexington, KY, USA). The peanut butter pellets contained either
vehicle or KPT−8602 (5 mg/kg body weight) and was molded in pellets using 1 mm3

squares in plastic mold (CAT#106A; Ted Pella, Redding, CA, USA). Pellets were frozen
at −80 ◦C for at least 4 h to allow for solidification. Mice began treatment regimen at
8 weeks of age and were treated for 8 weeks. Mice were either given vehicle pellets or
KPT−8602 (5 mg/kg) pellets for 3 times per week, or given KPT−8602 (5 mg/kg) pellets
5 times per week. Each mouse was given 15 min to consume the peanut butter pellet. After
8 weeks of treatment, mice were assessed in an open field test, followed by euthanization
and tissue harvest.

2.4. Open Field Test–Basal Activity Tracking

Mice were placed individually in box arenas (60 cm × 60 cm) to monitor basal activity,
in terms of total distance traveled and average velocity. Mice were monitored for 5 min in
the arena and movements were tracked and analyzed by EthoVision XT Version 15 (Noldus,
Leesburg, VA, USA).

2.5. Histological Analysis

Tibialis anterior (TA) muscles were immersed in 10% neutral-buffered formalin (CAT#:
HT501128, Sigma-Aldrich, St. Louis, MO, USA) for 24 h and subsequently embedded
and sectioned in paraffin blocks. Immunostaining was performed on sectioned muscle
tissue using flow cytometry validated antibodies against CD206 (Abcam, Waltham
MA, USA; ab64693), Ki67 (Abcam; ab15580), and F4–80 (ThermoFisher, Waltham, MA,
USA; 14–4801−82). Hematoxylin and Eosin stained histology was assessed for centralized
myonuclei (manual counts of at least 300 fibers per muscle section, 5 muscle sections per
animal). Fiber size was analyzed using ImageJ software to measure around each fiber to
produce a fiber size frequency distribution curve for each animal [36].

2.6. Muscle Single-Cell Suspension

Immune cells from a single quadriceps were isolated as previously described with
some modifications [37]. Briefly, the quadriceps from KPT−8602 treated mice and control
mice were minced and then digested in 0.2 mg/mL collagenase P solution supplemented
with 20 µg/mL of DNase for two rounds of 20 min enzymatic digestion. The muscle
suspension is then sequentially filtered through a 40 and 70 µm filter-basket. Following a
final suspension using a 35-µm strainer mesh, immune cells are counted and stained for
flow cytometry analysis.
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2.7. Flow Cytometry Analysis

Flow cytometry analysis of muscle single-cell suspension were performed as described
previously [37]. Briefly, to discriminate between live and dead cells, cells are resuspended
in 100 µL of Zombie NIR viability dye (1:1000 in 1X PBS; 423105; BioLegend, San Diego,
CA, USA) for 15 min on ice while protected from light. Fc receptor blocking of muscle
single-cell suspensions was performed by incubating cells with an anti-CD16/32 antibody
(clone 2.4G2) prior to staining. Single-cell suspensions were stained with a panel of anti-
bodies against several cell surface antigens to identify macrophages (CD11b and F4/80),
or eosinophils (Siglec F). Analysis was performed on live cells on a BD FACSAria Fusion
flow cytometer with FACSDiva software (BD Biosciences). Post-acquisition analysis was
performed using the FlowJo software version 10.8 (BD Biosciences).

2.8. Osteopontin ELISA

A commercial osteopontin (OPN) ELISA kit was purchased (CAT# MOST00, R&D
Systems; Minneapolis, MN, USA) and the corresponding protocol was followed. Whole
blood serum samples obtained from mouse tail vein bleeds prior to euthanization were
added to wells that were pre-coated with OPN polyclonal antibodies. After 1 h of incubation
and four washes, OPN conjugate was added to each well. After an additional 2 h of
incubation and four additional washes, substrate solution was added. Stop solution was
added 30 min later, and the plate was immediately read at 450 nm and 540 nm. Using
the standards provided with the assay, OPN concentration (pg/mL) was extrapolated for
each sample.

2.9. Statistical Analysis

All statistical analysis was performed using GraphPad Prism 9 (GraphPad Software;
San Diego, CA, USA). Statistical tests used are described in each figure legend. Unless
otherwise stated, statistical analysis between two cohorts used a two-tailed T-test, normality
was assessed utilizing a histogram and Q-Q plots for normal distribution, and Levene’s
test for homogeneity of variance. Analysis across three or more groups used a one-way
ANOVA with a Tukey’s HSD (honest significant difference) test, the residuals were as-
sessed with histograms, Q-Q plots, boxplots, and a Shapiro–Wilks test for normality. An a
priori hypothesis stated that p < 0.05 is considered significant, with * p < 0.05, ** p < 0.01,
*** p < 0.001, and **** p < 0.0001.

3. Results
3.1. KPT−8602 Treatment Reduced Dystrophic Muscle Pathology in Zebrafish Model of DMD

The sapje DMD model of zebrafish larvae were treated with either 2.5 µM KPT−8602,
2.5 µM aminophylline (positive control), or vehicle control starting at 1 dpf (Figure 1A).
Dorsal muscle architecture and integrity of fish larvae were assessed using polarized light
in the birefringence assay. When the rigid architecture of skeletal muscle is disrupted,
the polarized light is not refracted giving the muscle a patchy or dark appearance due
to light passing through the disorganized myofibers [33]. The zebrafish dorsal muscle
is significantly affected in sapje mutants, which can be clearly observed by the overall
disruption of dorsal myofibers shown in the birefringence assay (Figure 1B). Representative
bright field and birefringence images from each drug treatment including correction by
KPT−8602 and aminophylline are shown (Supplemental Figure S1). KPT−8602 treatment
significantly reduced the number of affected larvae, similar to the positive control com-
pound, aminophylline (Figure 1C). KPT−8602 treatment had no effect on basal activity in
sapje zebrafish larvae at 6 dpf (Supplemental Figure S2).
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clutch) across untreated, vehicle-treated, KPT−8602-treated and aminophylline-treated (positive 
control) fish. KPT−8602 and aminophylline treatment significantly reduced the number of affected 
fish compared to untreated and vehicle-treated fish (data is represented as mean ± SEM, n = 60 per 
cohort, across 3 independent trials of n = 20 each; * p < 0.05; one-way ANOVA with Tukey’s HSD 
test). 
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Figure 1. KPT−8602 improves dystrophic muscle pathology in zebrafish larvae. (A) Zebrafish
drug dosing timeline; (B) Representative images of brightfield and birefringence for both unaffected
(WT) and affected (sapje) zebrafish larvae. Scale bars represent 500 µm; (C) Graph summarizing the
birefringence score (in percentage of affected/unaffected over total number of larvae assessed in
the clutch) across untreated, vehicle-treated, KPT−8602-treated and aminophylline-treated (positive
control) fish. KPT−8602 and aminophylline treatment significantly reduced the number of affected
fish compared to untreated and vehicle-treated fish (data is represented as mean ± SEM, n = 60 per
cohort, across 3 independent trials of n = 20 each; * p < 0.05; one-way ANOVA with Tukey’s HSD test).

3.2. D2-Mdx Mice Treated with 5x/Week KPT−8602 Had Significantly Improved Activity and
Myofiber Size

D2-mdx mice show decreased muscle mass and decreased force transmission in the
skeletal muscle as early as 7 weeks [38,39]. To test the efficacy of KPT−8602 in dystrophic
mice we performed oral administration of KPT−8602 in eight-week-old D2-mdx mice that
were treated for 2 months at two separate dosing regimens. The first regimen was 3x/week
at 5 mg/kg body weight) while the second was 5x/week at 5 mg/kg body weight with a
single vehicle cohort serving as an internal control (Figure 2A). These dosing treatment reg-
imens were selected based on previous studies with KPT−350 treatment, where 3x/week
treatment of KPT−350 (5 mg/kg) resulted in significant reduction of dystrophic pathol-
ogy in D2-mdx mice [27]. KPT−8602 was formulated to have a more-reversible binding
affinity to XPO1 along with less ability to cross the blood–brain barrier, with the intent
that it can be treated more frequently than KPT−350 [40]. Overall locomotor basal activity
improved within the 5x/week treatment cohort of D2-mdx mice, which was comparable
to WT levels of basal activity (Figure 2B,C). Specifically, 5x/week KPT−8602 treatment
significantly increased total distance traveled (Figure 2B), and average velocity (Figure 2C)
compared to vehicle-treated D2-mdx mice. Interestingly, while 3x/week KPT−8602 treat-
ment slightly improved these parameters the 5x/week dosing regimen was overall better
at ameliorating dystrophic locomotive deficits (Figure 2B,C). We performed a histological
analysis on the tibialis anterior (TA) muscle harvested from all cohorts (Figure 2D). Consis-
tent with previous studies, the vehicle-treated D2-mdx cohort had increased centralized
myonuclei, a biomarker of regeneration, compared to WT TA muscle (Figure 2E) [41,42].
Interestingly, neither dose regimen of KPT−8602 affected the number of centralized my-
onuclei in D2-mdx mice (Figure 2E), however both dosing regimens significantly affected
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the fiber size frequency distribution curve (Figure 2F). In vehicle-treated D2-mdx mice,
there is a large frequency of smaller fibers, indicative of the degenerative/regenerative
cycles consistent with DMD muscle pathology [38]. KPT−8602 treatment, in particular
the 5x/week dosing regimen, shifted the fiber size distribution, as evident by larger, more
hypertrophic myofibers (Figure 2F). These findings were reflective of our previous findings
demonstrating that KPT−350 also resulted in larger, more hypertrophic dystrophic my-
ofibers [27]. Additionally, these findings may be a result of the blockade of NF-KB signaling
by KPT−8602-mediated XPO1 inhibition, which has been shown to be a viable strategy for
increasing myofiber size and reducing overall dystrophic pathologies [43,44].
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activity tracking (B,C). Graphs summarizing total distance traveled (B) and average velocity (C) in an
open field test. KPT−8602 treatment in D2-mdx mice significantly increased total distance travelled
and average velocity compared to vehicle-treated D2-mdx mice (data is presented as mean ± SEM,
n = 6; * p < 0.05, ** p < 0.01; one-way ANOVA with Tukey’s HSD test); (D) Representative images
of tibialis anterior (TA) muscles stained with H&E across D2-mdx mice treated with either vehicle,
3x/week KPT−8602 or 5x/week KPT−8602. Scale bar = 200 µm; (E) KPT−8602 treatment did not
reduce the number of centralized myonuclei, which is significantly increased in DMD pathology (data
is presented as mean ± SEM, n = 6; **** p < 0.0001; one-way ANOVA with Tukey’s HSD test); (F) Fiber
size frequency distribution curves of the cross-sectional area of myofibers revealed that KPT−8602
treatment decreased the number of small fibers and increased number of large fibers, indicative of a
hypertrophy response compared to D2-mdx vehicle (data points are presented as mean ± SEM, n = 6;
* p < 0.05, ** p < 0.01; one-way ANOVA with Tukey’s HSD test).

3.3. KPT−8602 Improves Immunological Profiles in Dystrophic Mouse Muscles

We next examined the effect of KPT−8602 on the cellular composition of dystrophic
muscle. KPT−8602 treatment 3x/week had no effect on the overall cellularity of muscle
single-cell suspensions prepared from D2-mdx (Figure 3D). However, D2-mdx treated
5x/week with KPT−8602 have significantly reduced total cellularity compared to vehicle-
treated mice (Figure 3D). We interrogated the myeloid cell composition by flow cytometry
and found that the frequency (Figure 3E) and absolute number (Figure 3F) of eosinophils
was significantly reduced in D2-mdx treated 5x/week with KPT−8602 compared to mice
treated 3x/week. KPT−8602 treatment at 3x/week did not influence eosinophil frequency
or numbers compared to vehicle-treated D2-mdx mice.

KPT−8602 increased the proportion of macrophages when D2-mdx mice were treated
3x/week (Figure 3F). Although KPT−8602 administered 5x/week only slightly reduced
the frequency of macrophages compared to D2-mdx mice treated 3x/week, it significantly re-
duced the number of total macrophages (Figure 3H). In prior studies, we found that KPT−350
increased CD206+ M2 macrophages [27]. Therefore, we enumerated CD206+ macrophages by
immunohistochemistry, to determine whether the modulation of macrophage frequency
and number by KPT−8602 in D2-mdx mice were attributed to changes in the CD206+
macrophage subpopulation. Representative images of immunohistochemical staining
of CD206 revealed that CD206+ macrophages are elevated in D2-mdx mice treated with
KPT−8602 3x/week but not mice treated 5x/week (Figure 3C). Total macrophages were
quantified using F4–80 staining. There was no significant change in the amount of CD206-
macrophages (Supplemental Figure S3). The quantification of CD206+ macrophages sug-
gests that modulation of total macrophages by KPT−8602 is partly attributed to a reduction
in CD206+ macrophages (Figure 3A,B). Additionally KPT−8602 treatment had no effect on
the amount of fibrosis in either the 3x/week or 5x/week dose (Supplemental Figure S4).

3.4. KPT−8602 Reduced Osteopontin Serum Levels in D2-Mdx Mice

OPN is a critical inflammatory DMD serum biomarker that is secreted by dystrophic
inflammatory cells to drive fibrosis and inflammation, and extra-cellular matrix remodel-
ing [45]. Thus, we investigated the effects of KPT−8602 on OPN protein levels in serum.
As has been previously established, the vehicle-treated D2-mdx had significantly higher
levels of serum osteopontin compared to vehicle-treated WT (Figure 4). The KPT−8602
5x/week dosing regimen reduced OPN to a level comparable to WT (Figure 4). These
findings demonstrate that oral KPT−8602 administration in DMD mice effectively blocks
a known serum biomarker of DMD muscle as a consequence of altering solely the DMD
immunological profile.
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KPT−8602 3x/week, and D2-mdx 5x/week experimental mouse cohorts. Arrows indicate CD206
stained macrophages. Boxed area magnified in B. Scale bar = 50 µm; (B) Magnified inset of a
CD206+ macrophage from the D2-mdx sample; (C) Quantification of the total number of CD206+
M2 macrophages normalized to the total number of myofibers per area quantified to a minimum
of 500 myofibers. All data is presented as mean ± SEM, n = 6; * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001; one-way ANOVA with Tukey’s HSD test); (D) Total cellularity measured in quadricep
muscle cell preparations from the 4 experimental cohorts: WT vehicle (grey), D2-mdx vehicle (black),
D2-mdx 3x/week (red); D2-mdx 5x/week (blue); (E,F) graphs showing the percentage of eosinophils
and the total eosinophil number/gram muscle wet weight; (G,H) Graphs showing the percentage of
macrophages and the total macrophage number/gram muscle wet weight.
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Figure 4. KPT−8602 reduces osteopontin serum levels in D2-mdx mice. Osteopontin (OPN) in
circulating serum levels was assessed by ELISA assay. KPT−8602 (5x/week) treatment significantly
reduced osteopontin levels compared to vehicle-treated D2-mdx, demonstrating levels comparable to
WT mice (data is presented as mean ± SEM, n = 4–5 mice per cohort; * p < 0.05, ** p < 0.01; one-way
ANOVA with Tukey’s HSD test).

4. Discussion

Our findings demonstrate that the SINE compound KPT−8602 is effective at reducing
dystrophic symptoms and overall pathologies in DMD zebrafish and mouse models. The
5x/week KPT−8602 dosing regimen in the D2-mdx mice showed efficacy similar to that of
previously reported findings of KPT−350 [27]. The use of XPO1 inhibition to block anti-
inflammatory and anti-fibrotic signaling in dystrophin-deficient muscle remains a viable
option as a combinatorial therapy that could be used with other dystrophin-replacement
and exon-skipping compounds. Recently, using the combinatorial approach of oral ad-
ministration of dantrolene and exon-skipping anti-sense oligonucleotides (AONs) in mdx
mice has been shown to be effective in blocking DMD muscle pathologies [46]. Other
compounds such as using an ActRIIB:ALK4-Fc neutralizing compound with a phosphoro-
diamidate morpholino oligomer (PMO) was also shown to block dystrophic pathologies
in mdx mice [47]. One can envision combining KPT−8602 with an exon-skipping PMO or
a µ-dystrophin adeno-associated viral gene therapy strategy to strengthen the myofiber
membrane integrity while blocking inflammatory signaling and immune cell infiltration in
DMD muscles.

Several studies have demonstrated a critical role for immune cell populations in
dystrophin-deficient muscle and the amplification of dystrophic pathologies [48–50]. T-
cells and macrophage profiling of DMD mouse muscles have shown that pro-regenerative
and pro-inflammatory cells exist in dystrophic muscle and contribute to the progression of
DMD [37]. Additionally, one of the immune cell-secreted cytokines that has been shown to
promote fibrosis and inflammatory signaling in dystrophin-deficient muscles, osteopontin,
was shown to be reduced in circulating serum levels upon KPT−8602 treatment [51–53].
Osteopontin (SPP1) genetic variants have been identified in DMD patient cohorts and shown
to be a predictor of the age of loss-of-ambulation in DMD patients [54,55]. Indeed, both
genetic ablation of osteopontin has been shown to reduce dystrophic pathologies in mdx
muscles, and subsequently anti-osteopontin compounds are being pursued for DMD thera-
pies due to their ability to shift macrophages to a pro-regenerative phenotype [45,56]. We
also demonstrated a shift towards a pro-regenerative macrophages and reduced circulat-
ing osteopontin levels after KPT−8602 treatment, which suggests that XPO1 inhibition
regulates this pathway. Previous nuclear and cytoplasmic mass-spectrometry proteomic
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profiling of XPO1 protein cargos in thymoma cell lines yielded clues into what proteins
were directly affected by XPO1 blockade [57]. Additional transcriptomic and proteomic
analysis of XPO1 protein cargos in skeletal muscle may yield further insight into the exact
mechanism(s) by which XPO1-blockage ameliorates dystrophic muscles.

Together, our findings support the principle of blocking inflammation and fibrosis
as a therapy for DMD. Given the reversibility of KPT−8602 binding, and manageable
safety profile of this newer SINE formulation, KPT−8602 can be given orally at more
frequent dosing to block inflammation and fibrosis independent of DYSTROPHIN genetic
mutation and age of DMD disease onset. Other neuromuscular disorders that have muscle
inflammation and fibrosis (e.g., sarcoglycanopathies and certain limb-girdle muscular
dystrophies) could also potentially benefit from KPT−8602 administration. As newer
exon-skipping and gene therapy strategies emerge for these neuromuscular disorders,
KPT−8602 could be applied in a combinatorial approach to further improve dystrophic
pathologies and prevent disease progression.

Supplementary Materials: The following supporting information can be downloaded at: https:
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treatment did not significantly affect fibrotic area.
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