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Abstract

Bombesin receptors are under intense investigation as molecular targets since they are overexpressed in several prevalent
solid tumors. We rationally designed and synthesized a series of modified bombesin (BN) peptide analogs to study the
influence of charge and spacers at the N-terminus, as well as amino acid substitutions, on both receptor binding affinity and
pharmacokinetics. This enabled development of a novel 64/67Cu-labeled BN peptide for PET imaging and targeted
radiotherapy of BN receptor-positive tumors. Our results show that N-terminally positively charged peptide ligands had
significantly higher affinity to human gastrin releasing peptide receptor (GRPr) than negatively charged or uncharged
ligands (IC50: 3.260.5 vs 26.363.5 vs 41.562.5 nM). The replacement of Nle14 by Met, and deletion of D-Tyr6, further
resulted in 8-fold higher affinity. Contrary to significant changes to human GRPr binding, modifications at the N-terminal
and at the 6th, 11th, and 14th position of BN induced only slight influences on affinity to mouse GRPr. [CuII]-CPTA-[bAla11]
BN(7–14) ([CuII]-BZH7) showed the highest internalization rate into PC-3 cells with relatively slow efflux because of its
subnanomolar affinity to GRPr. Interestingly, [64/67Cu]-BZH7 also displayed similar affinities to the other 2 human BN
receptor subtypes. In vivo studies showed that [64/67Cu]-BZH7 had a high accumulation in PC-3 xenografts and allowed for
clear-cut visualization of the tumor in PET imaging. In addition, a CPTA-glycine derivative, forming a hippurane-type spacer,
enhanced kidney clearance of the radiotracer. These data indicate that the species variation of BN receptor plays an
important role in screening radiolabeled BN. As well, the positive charge from the metallated complex at the N-terminal
significantly increases affinity to human GRPr. Application of these observations enabled the novel ligand [64/67Cu]-BZH7 to
clearly visualize PC-3 tumors in vivo. This study provides a strong starting point for optimizing radiopeptides for targeting
carcinomas that express any of the BN receptor subtypes.
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Introduction

In recent years, bombesin (BN) receptors have attracted interest

as molecular targets for imaging and therapy pertaining to the fact

that all three BN receptor subtypes are overexpressed in many

human tumor types [1]. For example, gastrin releasing peptide

receptor (GRPr) has been shown to be overexpressed in prostate

[2,3], breast [4], small cell lung cancer [5] and gastrointestinal

stromal tumors [6]. Prostate cancer has been traditionally among

the most difficult malignancies to image due to its multifocal

nature, demanding imaging solutions that have high sensitivity and

good resolution. Radiolabeled BN-based peptides have significant

potential as agents for preoperative tumor localization, assessment

of lymph node involvement, staging of disease and possibly for

therapeutic monitoring of prostate cancer. As such, a number of

radiolabeled BN peptide analogs have been developed as targeting

vectors for imaging and radionuclide therapy of GRPr positive

tumors [7–13].

Clinical studies with 99mTc- and 68Ga-labeled BN-based

peptides have been reported for the imaging of metastasized

prostate, breast and gastrointestinal stromal tumors [10,14–16]. A

potent BN agonist based peptide labeled with 177Lu has been

studied in phase 1 clinical trials [10,17]. More recently, preclinical

studies demonstrated that radiolabeled antagonist based BN

peptides might even be superior as targeting vectors compared

to agonist peptides [18–21]. Despite these advances, the limitation

imposed by peptide pharmacokinetics with respect to binding and

clearance demonstrates that significant improvements of these

radiolabeled probes are still required.

PET (Positron Emission Tomography) is a powerful diagnostic

imaging modality that enables tomographic, whole body, high

sensitivity and quantitative imaging of the distribution of positron

emitter-labeled molecules, such as peptides. 68Ga-labeled peptides

have been extensively studied and effectively implemented in the

clinical setting [22]. On the other hand, copper-64 is an interesting

radionuclide as it is both a positron- (17.8%, Eb
+

max = 656 keV)
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and a b–emitter (39.6%, Eb
2

max = 573 keV) with a half-life of

12.7 h. Long-lived isotopes such as copper-64 may therefore

provide the ability to visualize the anatomy of interest after

unbound probe has been cleared from nearby structures, such as

the bladder. This has the potential to improve detection of disease

[23]. Several 64Cu-labeled BN analogs have been evaluated as

PET tracers targeting GRP receptor positive tumors [24].

In the present study, a series of BN peptides were synthesized

and conjugated to DOTA (1,4,7,10-tetraazacyclododecane-

1,4,7,10-tetraacetic acid) and CPTA (4-(1,4,8,11-tetraazacyclote-

tradec-1-yl)-methyl benzoic acid) chelator for labeling with

radiocopper. We had several goals in mind when designing this

study. Initially, we sought to study the influence of charge at the N-

terminus of the radiopeptides on their pharmacologic and biologic

properties. Earlier work has suggested that the replacement of a

tetraamine ligand (antagonistic BN analog) for 99 mTc-labeling

[25] by negatively charged DTPA (diethylenetriaminepentaacetic

acid) caused affinity drop by a factor of approximately 103 (Reubi,

Schmitt, Maecke, unpublished results). A decrease in binding

affinity of a BN antagonist was also observed when a tetraamine

ligand was replaced by DOTA [26]. We hypothesized that the

same effect could also be seen in the class of radiopeptides

presented here (agonistic BN analogs). Secondly, the structure of

CPTA-ligand allows a modification with glycine to afford a

hippurane-like structural spacer. This structure modification was

studied here to evaluate its effect on kidney clearance.

In addition, we and others have recently observed that species-

specific differences may be of significant importance in the

evaluation of bombesin receptor ligands [27]. We therefore

studied modifications of BN(7–14) with regard to amino acid

substitution at several positions. The final goal of our research is to

develop BN-based potent conjugates for labeling with 64Cu (67Cu:

t1/2 = 61 h, 100%, Eb
2

max = 577 keV, Ec= 185 keV), which

could be used in imaging and potentially in radionuclide therapy

of BN receptor-positive tumors. As CPTA allows for high labeling

yields under very mild labeling conditions, it has been chosen as a

bifunctional chelator for the labeling of monoclonal antibodies

[28], octreotide [29] and CXCR4 (chemokine receptor 4) ligand

[30,31] with radiocopper. On this basis, a series of CPTA/DOTA

conjugated BN analogs were constructed for these research goals.

This work is the first to investigate the influence of different

charges at the N-terminus of BN analogs on binding affinity, of the

hippurane-like spacer molecule on kidney clearance, and of a

modification at the 6th, 11th and 14th position of these (radio)-

metallobombesin analogs in different species. Together, we show

these investigations play an important role towards optimizing

radioligands for diagnosis and targeted radionuclide therapy of

bombesin receptor-positive tumors.

Materials and Methods

All chemicals were obtained from commercial sources and used

without further purification. 64Cu/67Cu nuclides were produced

for in vitro assays and the biodistribution studies at the 72 MeV

accelerator of the Paul Scherrer Institute (Villigen, Switzerland) by

irradiating natZn with protons [32]. For small-animal PET

imaging, 64Cu was obtained from Washington University in St.

Louis. CPTA was synthesized as described previously [33]. Rink

amide MBHA resin and all Fmoc-protected amino acids were

commercially available from NovaBiochem (Läufelfingen, Swit-

zerland). DOTA-tris(tBu)-ester was purchased from CheMatech

(Dijon, France). [111In]Cl3 was purchased from Covidien plc

(Dublin 2, Ireland). Electrospray ionization (ESI) mass spectros-

copy was carried out with a Finnigan SSQ 7000 spectrometer, fast

atom bombardment (FAB) mass spectroscopy with a VG 70SE

spectrometer and MALDI-MS measurement on a Voyager sSTR

equipped with an Nd:YAG laser (Applied Biosystems, Framing-

ham, USA). Analytical HPLC was performed on a Hewlett

Packard 1050 HPLC system (Waldbronn 2, Germany) with a

multiwavelength detector and a flow-through Berthold LB 506 Cl

g-detector (Wildbad, Germany) using a Macherey-Nagel Nucleosil

120 C18 column (Oensingen, Switzerland). Preparative HPLC was

performed on a Metrohm HPLC system LC-CaDI 22–14

(Herisau, Switzerland) with a Macherey-Nagel VP 250/21

Nucleosil 100-5 C18 column. Quantitative gamma counting was

performed on a COBRA 5003 gamma system well counter from

Packard Instruments (Meriden, CT, USA). Solid phase peptide

synthesis was performed on a semiautomatic peptide synthesizer

commercially available from Rink Combichem (Bubendorf,

Switzerland). The PC-3 cell line was obtained from ATCC

(Manassas, VA) and cultured in Dulbecco’s minimal essential

medium (DMEM) with 10% fetal calf serum (FCS) from

BioConcept (Allschwil, Switzerland). Small-animal PET imaging

was performed on a R4 microPET scanner (Concorde Micro-

systems, Knoxville, TN).

Synthesis
The peptides were synthesized on solid phase using standard

Fmoc strategy. The bifunctional chelator CPTA was coupled to

the resin-assembled peptide as follows: 6 equivalents CPTA were

mixed together with 18 equivalents PyBop, 18 equivalents HoBt

and 80 equivalents DIPEA in NMP and immediately incubated

with the resin-assembled peptide until the TNBS test was negative

(approximately 5 h). DOTA-tris(tBu)-ester was coupled to the N-

terminus of the peptide on resin as follows: 3 equivalents of

DOTA-tris(tBu)-ester, which was pre-activated with 3.3 equiva-

lents of HATU in NMP, was treated with 6 equivalents of DIPEA

and immediately incubated with the resin-assembled peptide until

the Kaiser test was negative (approximately 4 h).

Preparation of Metallated Conjugates
The peptides used in the following studies are listed in Table 1.

Peptide (0.5 mmol) dissolved in 500 mL 0.5 M ammonium-acetate-

buffer (pH 5) was incubated with 1.5 mmol CuCl2?2H2O pre-

dissolved in 0.04 M HCl for 1 h at room temperature, and

purified over a SepPak C18 cartridge (Waters Corp. Milford, MA)

preconditioned with 10 mL ethanol and 10 mL water. The

cartridge was eluted with 10 mL water followed by 3 mL

methanol resulting in CuII-peptides after evaporation of the

methanol. The final product was analyzed with analytical HPLC

and MALDI. Using 3 equivalents InCl3?5H2O, [InIII]-BZH4 was

synthesized at elevated temperature (95uC, 20–25 min) and

purified as described above.

Preparation of Radiotracer for in vitro and in vivo Studies
[64/67Cu]-BZH7, denoting a mixture of [64Cu]-BZH7 and

[67Cu]-BZH7, was prepared by dissolving 10 mg of BZH7

(7.5 nmol) in ammonium acetate buffer (300 mL, 0.5 M,

pH 5.5); after the addition of 64/67CuCl2 (about 185 MBq 64Cu

and 37 MBq 67Cu), the solution was incubated at room

temperature for 1 h. A 1.5 molar excess of CuCl2?2H2O was

added and incubated again for 0.5 h. Subsequently, radiolabeled

peptides were purified utilizing a SepPak C18 cartridge precon-

ditioned with 10 mL methanol and 10 mL water; the cartridge

was eluted with 3 mL water, followed by 2 mL ethanol, to afford

the pure 64/67Cu-labeled ligand. For biodistribution studies, the

labeling was performed accordingly without adding cold

CuCl2?2H2O. The solution was prepared for injection by dilution
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with 0.9% NaCl (0.1% BSA) to afford the radioligand solution. All
64/67Cu-labeled conjugates were prepared in the same way. The

preparation of [111In]-BZH4 was described previously [12]. All

radiolabeled peptides were analyzed with HPLC (eluents:

A = 0.1% TFA in water and B = acetonitrile; gradient: 0–

20 min, 80%–50% A; 20–21 min, 100% B; 21–24 min, 100% B;

25 min, 80% A). Pure 64Cu was used for small animal PET

imaging of PC-3 xenografts.

Binding Affinity and Receptor Subtype Profile
Using [125I-Tyr4] BN as a GRP receptor preferring ligand, the

IC50 values of the natCu/natIn-labeled peptides were measured by

in vitro autoradiography of sections of human prostate cancer

tissue overexpressing GRP receptors or mouse pancreas tissue

expressing mouse GRP receptors. The prostate cancer tissues

originated from samples investigated previously [2] or collected

prospectively at the Institute of Pathology of the University of

Berne in accordance with international ethical guidelines, includ-

ing informed written consent and approval by the institutional

review board. The binding affinity profile of [CuII]-BZH7 for

three bombesin receptor subtypes was determined by using [125I-

D-Tyr6, bAla11, Phe13, Nle14] BN(6–14) as an universal radioli-

gand. The procedures were described in detail previously [34].

Internalization and Externalization (efflux) Studies
Internalization and externalization experiments were performed

in 6-well plates as described previously [12]. Briefly, for

internalization studies, approximately 1.3 kBq (0.25 pmol) of

radioligand was added to the medium and PC-3 cells, 1 million

cells per well, incubated in triplicate for 0.5, 1, 2, 4, and 6 h at

37uC, 5% CO2. One hundred and fifty mL of a 5.8 mM BZH2

solution (DOTA-GABA-[D-Tyr6, bAla11, Thi13, Nle14] BN(6–14)

was used to determine nonspecific internalization. For external-

ization studies, PC-3 cells were allowed to internalize the

radioligands for a period of 2 h at 37uC and were then exposed

to 1 mL of culture medium to measure efflux kinetics.

Serum Stability
The procedures were previously described in details [12].

Briefly, 50 mL, 0.6 nmol 111In- or 64/67Cu-labeled conjugates were

used and incubated with human serum at different time points (0,

1, 4, and 8 h), in triplicate. The HPLC profiles from sample

analysis were used to calculate the half-life of disappearance of

intact peptide.

Biodistribution Studies with Mice Bearing PC-3 Tumor
After being brought to the condition of anesthesia with

isoflurane in an air/oxygen mixture, female athymic nude mice

were implanted subcutaneously with approximately 10 million

PC-3 tumor cells, which were freshly expanded in 100 mL

sterilized PBS solution. Seven to ten days after inoculation the

tumors weighed 60–130 mg. The xenografts were injected via tail

vein with 10 pmol radiolabeled peptides (about 0.24 MBq 64Cu

and 0.05 MBq 67Cu), diluted in 0.9% NaCl (0.1% BSA, pH 7.4,

total injected volume = 100 mL). For the determination of non-

specific uptake in the tumor or receptor-positive organs, a group of

4 animals were injected with a mixture of 10 pmol radiolabeled

peptide/50 mg [CuII]-BZH7 in 0.9% NaCl solution (injected

volume 150 mL). Mice were sacrificed at 1, 4 and 24 h, and organs

of interest collected, rinsed of excess blood, blotted, weighed and

counted in a c-counter. The percentage of injected activity per

gram (% IA/g) for each tissue was calculated. The total counts

injected per animal were determined by extrapolation from counts

of an aliquot taken from the injected solution as a standard. All

animal experiments were performed in compliance with the Swiss

regulations for animal treatment, as approved by the Federal

Veterinary Office (Bundesamt für Veterinärwesen, approval

no. 789). Written consent in the form of an official internal

document was given.

Small Animal PET Imaging
Nude female mice with a PC-3 tumor xenograft on the right

shoulder were injected with 1.0 nmol 4.6 MBq [64Cu]-BZH7 via

tail vein. Small-animal PET imaging was performed at 1, 4 and

24 h p.i. using the R4 microPET scanner (Concorde Micro-

systems, Knoxville, TN), with the tumors centered in the field of

Table 1. Characteristics of compounds BZH4, BZH5, BZH6, BZH7 and BZH8, and their corresponding cold metallated compounds.

Compound{ Calculated MW Measured MW
RP-HPLC{ retention
time (min)

ESI (+) ESI (2) MALDI

BZH4 1570.79 1609.1 ([M+K]+) 1607.7 ([M+K2H]2) 1570.5 ([M+H]+) 13.61

BZH5 1415.73 1416.5 ([M+H]+) 1414.8 ([M2H]2) 1415.7 ([M+H]+) 14.54

BZH6 1433.77 1434.1 ([M+H]+) 1432.3 ([M2H]2) 1433.8 ([M+H]+) 12.76

BZH7 1270.59 1270.9 ([M+H]+) 1269.7 ([M2H]2) 1270.5 ([M+H]+) 12.97

BZH8 1327.64 1328.1 ([M+H]+) 1326.7 ([M2H]2) 1327.8 [M+H]+ 12.54

[CuII]-BZH4 1632.32 816.5 ([M+2H]2+) 814.3 ([M22H]22) 1632.4 [M+H]+ 15.28

[InIII]-BZH4 1682.58 ND ND 1682.4 [M+H]+ 14.81

[CuII]-BZH5 1479.27 ND ND 1477.6 [M+H]+ 16.20

[CuII]-BZH6 1497.31 ND ND 1497.7 [M+H]+ 13.18

[CuII]-BZH7 1334.14 ND ND 1332.4 [M+H]+ 13.83

[CuII]-BZH8 1391.19 ND ND 1392.3 [M+H]+ 13.32

Note: {MW: molecular weight; BZH4: DOTA-GABA-[D-Tyr6, bAla11, Nle14] BN(6–14); BZH5: CPTA-[D-Tyr6, bAla11, Nle14] BN(6–14); BZH6: CPTA-[D-Tyr6,
bAla11] BN(6–14); BZH7: CPTA-[bAla11] BN(7–14); BZH8: CPTA-[Gly6, bAla11] BN(6–14).
{RP HPLC eluents: A = 0.1% TFA in water and B = acetonitrile; gradient: 0–20 min, 80%–50% A; 20–21 min, 100% B; 21–24 min, 100% B; 25 min, 80% A.
doi:10.1371/journal.pone.0044046.t001
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view. Mice were maintained at 2% isoflurane/air anesthesia for

the duration of the imaging. Data acquisitions were performed for

10 min with an energy window of 250–750 keV and a

coincidence-timing window of 6 ns. Analysis of the acquired

images was performed using ASIPro software (Siemens Medical

Solutions USA, Inc., Malvern, PA).

PET imaging studies were conducted at Memorial Sloan-

Kettering Cancer Center (MSKCC). All work was evaluated and

approved by the Institutional Animal Care and Utilization

Committee (IACUC) of MSKCC (approval no. 08-07-011).

Written consent of this protocol was provided by IACUC.

Statistical Analysis
Data are expressed as mean 6 SD, calculated using Microsoft

Excel. The Student’s t-test (Origin 6, Microcal Software, Inc.,

Northampton, MA) was used to determine statistical significance

at the 95% confidence level. Values of P,0.05 were considered

significantly different.

Results

Synthesis and Labeling
All conjugates (Table 1, Figures 1 and 2) were synthesized using

an Fmoc strategy affording a maximum yield of approximately

30% based on the removal of the first Fmoc group; the purity

analyzed by HPLC was $97%. BZH4 was labeled with 111In at an

elevated temperature (95uC) for 20–25 min, and all other

conjugates were labeled with 64/67Cu at room temperature. In

all cases, radiolabeling yields of $98% at specific activities of

.24 GBq mmol21 were achieved for 64Cu, .5 GBq mmol21 for
67Cu and .37 GBq mmol21 for [111In]-BZH4.

Receptor Binding Affinity
Competitive binding assays were performed with human GRP

receptor-positive cancerous tissue and mouse pancreas tissue

(expressing mouse GRP receptor) using [125I-Tyr4]bombesin as

radioligand. Table 2 summarizes the binding affinities of the

metallopeptides to GRP receptors of mouse and human origin.

The CuII- and InIII-complexed peptides exhibit a wide dynamic

range of binding (high to moderate affinity) to human GRP

receptor (0.4260.13 nM to 41.562.5 nM). In contrast, all of these

probes display similar high affinity to mouse GRP receptor

(0.2260.07 nM to 1.160.33 nM).

The most promising peptide, Cu-BZH7, was also studied with

respect to BN receptor subtype profiles using human cancerous

tissues shown to express predominantly a single bombesin receptor

subtype. The peptide showed very high binding affinity to all 3

human BN receptor subtypes (0.2760.16 nM to NMB-R;

0.3060.07 nM to GRP-R; 1.460.6 nM to BNRS-3).

Internalization and Efflux Studies
The internalization kinetics of [64/67Cu]-BZH5–8 and [111In]-

BZH4 in PC-3 cells at 37uC is summarized in Figure 3. All

radiopeptides showed specific, receptor-mediated cell uptake. [64/

67Cu]-BZH5 and [64/67Cu]-BZH7 internalized into PC-3 cells

very efficiently, reaching about 80% of total activity added to a

well containing 1 million cells within 6 h. [64/67Cu]-BZH6, [64/

67Cu]-BZH8 and [111In]-BZH4 had internalization rates of 64%,

46%, and 36% at 6 h under the same experimental conditions.

Internalization was almost completely blocked (nonspecific inter-

nalization was ,1% of the added activity) in presence of 0.57 mM

unlabeled DOTA-GABA-[D-Tyr6, bAla11, Thi13, Nle14] BN(6–

14). Surface-bound peptide (radioactivity removable by acid wash)

was ,3% of the added radiopeptide at each time point.

The efflux kinetics were studied in PC-3 cells that were exposed

to radioligand for 2 h as described for internalization, followed by

an acid wash, and then incubated with medium (1% FCS). The

results are summarized in Figure 4. Upon 8 h incubation, 36% of

the pre-internalized [64/67Cu]-BZH7, 45% of [64/67Cu]-BZH6,

51% and 52% of [64/67Cu]-BZH5 and [64Cu]- BZH8, and 60% of

[111In]-BZH4 were washed out from the PC-3 cells.

To identify the composition of the externalized peptides,

[111In]-BZH4 (111In-DOTA-GABA-D-Tyr-Gln-Trp-Ala-Val-

bAla-His-Leu-Nle-NH2) was used as a surrogate peptide with

high specific activity, required for metabolic studies. Upon 2 h of

internalization and acid wash, the externalized radioactivity after

2 h incubation already consisted of approximately 84% metabo-

lites (111In-DOTA: 14%; 111In-DOTA-GABA-D-Tyr-Gln: main

peak, 64%; 111In-DOTA-GABA-D-Tyr-Gln-Trp-Ala-Val-bAla:

6%) and 16% intact peptide. These results indicate that the

internalized ligands can be decomposed quickly in the targeted

cells; and their retention in cells is determined mainly by their

metabolic stability.

Stability in Human Serum
Serum stability was studied to determine the half-life of

disappearance of intact peptides in serum (Table 3). There was

less than 3% of radiometal transfer to serum proteins during serum

incubation studies. Using the equation of A = A0*exp(-k1*t), the

half-lives (t1/2) of disappearance of intact peptides in serum were

calculated [12]; they varied between 0.55 and 5.1 h. The N-

terminally attached chelate, [111In]-DOTA in [111In]-BZH4 and

[64/67Cu]-CPTA in [64/67Cu]-BZH5 did not influence metabolic

stability in serum (0.6160.11 h versus 0.5560.11 h). The

Figure 1. Scheme of metal-complexed conjugates generating different charges at the N-terminus under the condition of pH 7.4.
doi:10.1371/journal.pone.0044046.g001
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replacement of methionine ([64/67Cu]-BZH5) by norleucine ([64/

67Cu]-BZH6) increased the t1/2 value by 40%. The t1/2 values of

[64/67Cu]-BZH7 and [64/67Cu]-BZH8 were 5.161.7 h and

4.561.2 h, respectively.

Biodistribution Studies
64/67Cu-labeled peptides were validated with athymic nude

mice bearing PC-3 tumor xenograft. Results are presented in

Tables 4 and 5 as percentage of injected activity per gram of tissue

(%IA/g).

Figure 2. Scheme of modification on BN peptide to optimize affinity unit, form hippurane-like spacer and to functionalize for
radiolabeling with 64/67Cu and 111In.
doi:10.1371/journal.pone.0044046.g002
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All [64/67Cu]-CPTA conjugated ligands display a similar rapid

blood clearance from PC-3 tumor-bearing mice, varying between

0.142%IA/g to 0.182%IA/g at 4 h (Table 4). There was also a

rapid clearance from GRP-R-negative organs except kidneys and

liver. High uptakes were observed both in human prostate tumor

xenografts and mouse GRP-R-positive organs; e.g. at 4 h p.i.,

tumor uptake was 3.4760.15%IA/g for [64/67Cu]-BZH5,

5.0560.46%IA/g for [64/67Cu]-BZH6, 6.6360.80%IA/g for

[64/67Cu]-BZH7, and 4.2960.70%IA/g for [64/67Cu]-BZH8.

Their uptake in the pancreas was 34.961.6%IA/g,

58.063.9%IA/g, 57.262.7%IA/g, and 36.463.4%IA/g, respec-

tively. Of these four conjugates, [64/67Cu]-BZH7 showed the

lowest liver uptake.

In vivo competition experiments (Table 5) using 50 mg [CuII]-

BZH7 co-injected with [64/67Cu]-BZH7 resulted in a .89%

reduction of tumor uptake and also a reduction of uptake in GRP-

R-positive organs, e.g. .97% in pancreas, 96% in adrenals, 91%

in bowel, 84% in stomach, 76% in spleen and bone. These uptake

values through co-injected peptide blocking were all significantly

decreased (P,0.05). The co-injection of [CuII]-BZH7 led to a

somewhat increased liver uptake, whereas the uptake in kidneys

was partially blocked. The injection of a blocking dose had no

significant influence on the uptake in other non-target organs

(p.0.05). Due to rapid clearance of the peptides, high tumor-to-

background ratios were obtained (Tables 4 and 5). [64/67Cu]-

BZH7 showed the greatest tumor-to-background and tumor-to-

liver ratios. The kinetics of [64/67Cu]-BZH7 (Table 5) showed a

high initial accumulation in the tumor (11.261.5%IA/g at 1 h

p.i.), followed by a decreased uptake to 6.6360.80%IA/g at 4 h

and to 4.1460.55%IA/g at 24 h p.i., indicating a rapid initial

wash out. The ratios between tumor and background (blood and

muscle) were .20 at 1 h p.i. and increased to .40 at 24 h. The

ratios between tumor and liver or kidney also increased slightly

from 1 to 24 h.

The CPTA-glycine derivative, forming hippurane-type spacer

(Figure 2) reduced the retention of radioactivity in kidneys

(Table 4, Figure 5). The uptake of [64/67Cu]-BZH7 and [64/

67Cu]-BZH8 in kidney differed by a factor of 1.8 at 1 h p.i.

(P,0.001) and of about 1.4 at 4 h (6.961.2%IA/g versus

5.060.5%IA/g, P = 1.461023). Under the condition of excessive

Cu-BZH7, the uptake of [64/67Cu]-BZH8 in kidney was also lower

significantly than that of [64/67Cu]-BZH7 (2.0260.13%IA/g

versus 2.4460.10%IA/g, (P = 2.961023).

Small Animal PET Imaging
Whole-body PET scanning of PC-3 tumor bearing mice was

performed with [64Cu]-BZH7, as shown in Figure 6. The PC-3

tumor on the right shoulder was clearly visualized at 1, 4, and 24 h

p.i.; and it could be distinguished well from other organs. [64Cu]-

BZH7 displayed a high uptake in gut. Pancreas (mouse GRP

receptor positive organ), liver, kidneys and the urinary bladder also

displayed some activity. The low uptake of [64Cu]-BZH7 was

found in the blood pool, which resulted in a high tumor-to-

background ratio. There was a negligible hepatobiliary elimination

of the radiopeptide, as implied by a low accumulation in intestine.

Discussion

This study describes synthesis, characterization and evaluation

of radiocopper-chelated BN analogs for PET imaging. [64Cu]-

BZH7 has shown to be a potential candidate for further

development as PET tracer. This is due to its high affinity to

NMB, GRP and BB3 receptors and a high rate of internalization

into GRP receptor expressing cells.

Table 2. IC50 values for displacement of GRP receptor-bound [125I-Tyr4] BN by increasing concentration of BN analogs.

Code No. Peptide structure Charge GRP receptor

human mouse

[CuII]-BZH4 CuII-DOTA-GABA-[D-Tyr6, bAla11, Nle14] BN(6–14) 21 26.363.5 (3) 1.160.3 (3)

[InIII]-BZH4 InIII-DOTA-GABA-[D-Tyr6, bAla11, Nle14] BN(6–14) 0 41.562.5 (2) 0.860.4 (2)

[CuII]-BZH5 CuII-CPTA -[D-Tyr6, bAla11, Nle14] BN(6–14) +2 3.260.5 (3) 0.660.2 (3)

[CuII]-BZH6 CuII-CPTA-[D-Tyr6, bAla11] BN(6–14) +2 1.060.2 (3) 0.860.2 (3)

[CuII]-BZH7 CuII-CPTA-[bAla11] BN(7–14) +2 0.4260.13 (4) 0.2260.07 (3)

[CuII]-BZH8 CuII-CPTA-[Gly6, bAla11] BN(6–14) +2 1.860.6 (3) 0.860.2 (3)

IC50 values (nM 6 SD) are in triplicates. Number of independent studies is in brackets.
doi:10.1371/journal.pone.0044046.t002

Figure 3. Comparison of the internalization of [111In]-BZH4 and
[64/67Cu]-labeled BZH5, BZH6, BZH7 and BZH8 into PC-3 cells
demonstrated both higher affinity of ligand and positive
charge at the N-terminus of ligand determined a faster and
higher internalization rate in GRP receptor expressing cells.
Results from two independent experiments with triplicates in each
experiment, expressed as specific internalization.
doi:10.1371/journal.pone.0044046.g003
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Binding Affinity
Our earlier unpublished work has suggested that charge

differences at the N-terminus of BN targeting peptides could

effect drastic changes on receptor binding. Here, charges were

introduced at the N-terminus of BN peptides in a dual-purpose

strategy to change the charge and functionalize the peptides for

radiolabeling by attaching different metal-chelate complexes.

Compared to negative- or neutral charges, positive charge was

found to significantly improve IC50 values of BN peptides by a

factor of 8.2 and 13.0, respectively, for human GRP receptor. This

result indicates that bifunctional chelators which serve to introduce

an N-terminal positive charge may be a good choice for the

development of copper-64 labeled BN analogs. These findings

explain why the positively charged [99 mTc]-labeled bombesin

analog [25] displays high affinity to GRP receptor and high

accumulation in PC-3 tumors whereas non-positively charged

analogs, such as 64Cu-labeled DOTA-Aoc-BN(7–14) [35] or 111In-

labeled DOTA-[Lys3] BN [36] show low affinities.

In contrast to the effect of these charge differences on binding to

human GRP receptor, the three differently charged peptides

(Table 2 and Figure 1) show only slight differences in the affinity to

mouse GRP receptor. This surprising result indicates that mouse

GRP receptor is not sensitive to the modifications at the N-

terminus. Further, we have shown that the other BN peptide

modifications performed in this study are also of little effect. This is

a strong indication that the mouse pancreas, which is commonly

used to screen the performance of new BN based ligands, may in

fact not be a good predictor of probe utility.

The substitution of methionine by norleucine is expected to

prevent radio-oxidation of thioether group and potentially has a

negligible effect on binding affinity to GRP receptor. We

previously found that the replacement of methionine by norleucine

does not change IC50 values of our panbombesin analogs

(norleucine in the 14th position). The data in Table 2 show that

the substitution of Met14 ([CuII]-BZH6) by Nle14 ([CuII]-BZH5)

decreased binding affinity to human GRP receptors from

1.060.2 nM to 3.260.5 nM whereas it had no significant

influence on their affinities to mouse GRP receptors

(0.860.2 nM versus 0.660.2 nM).

[CuII]-BZH7 showed the highest affinity to human and mouse

GRP receptors (0.4260.13 nM versus 0.2260.07 nM) that we

have found in more than 100 BN analogs tested in our lab. By

introducing Gly (D-Tyr) between CPTA and [bAla11] BN(7–14)

the binding affinity toward human GRP receptor dropped by a

factor of 4.3 (2.4) and to mouse GRP receptor by a factor of 3.6

(3.6), respectively, indicating that the insertion of glycine or D-

Tyrosine does not improve binding affinity when there is a metal-

complexed bifunctional chelator at the N-terminus. This is not the

case with D-Phe or D-Tyr in the sequence of [D-Tyr6, bAla11,

Phe13, Nle14] BN(6–14) [37,38] or BN(6–14) [39] which have been

shown to be important to maintain high binding affinity.

Figure 4. Comparison of the externalization of [111In]-BZH4, [64/67Cu]-labeled BZH7, BZH5, BZH6 and BZH8 from PC-3 cells showed
[64/67Cu]-labeled BZH7 had a relatively slow efflux as a result of its high affinity. Result from two independent experiments with triplicates
in each experiment.
doi:10.1371/journal.pone.0044046.g004

Table 3. Kinetic metabolic degradation of 111In/64/67Cu-
labeled bombesin analogs, which was calculated according to
the equation of A = A0*exp(-k1*t).

Conjugates k1 (h21) T1/2 (h)

[111In]-BZH4 1.1460.26 0.6160.11

[64/67Cu]-BZH5 1.2660.31 0.5560.11

[64/67Cu]-BZH6 0.75660.168 0.9260.17

[64/67Cu]-BZH7 0.13760.066 5.161.7

[64/67Cu]-BZH8 0.15460.054 4.561.2

doi:10.1371/journal.pone.0044046.t003
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[CuII]-BZH7 (cyclam-(4-methylbenzoyl)-[bAla11] BN(7–14))

displayed very high affinities to all 3 human BN receptor subtypes,

as does the known pan-bombesin ligand [D-Tyr6, bAla11, Phe13,

Nle14] BN (6–14) [37,38] and the metallated panbombesin peptide

[YIII-DOTA0, GABA1, D-Tyr6, bAla11, Thi13, Nle14] BN (6–14)

[12]. Nock et al [9] developed a BN-based peptide with an N-

terminal open-chain tetraamine framework ([(N4-Bzdig)0] BN (7–

14)) for 99 mTc-labeling, which has high affinity to NMB-R

Table 4. Comparison of biodistribution of [64/67Cu]-BZH5, [64/67Cu]-BZH6, [64/67Cu]-BZH7, and [64/67Cu]-BZH8 at 4 h p.i. in PC-3
tumor-bearing nude mice.

Site [64/67Cu]-BZH5 [64/67Cu]-BZH6 [64/67Cu]-BZH7 [64/67Cu]-BZH8

Blood 0.18260.011 0.17560.021 0.15460.033 0.14260.004

Muscle 0.08760.006 0.10960.025 0.12360.032 0.06460.011

Kidneys 4.5960.65 5.8460.55 6.8761.16 4.9760.46

Adrenals 25.762.2 27.363.7 30.864.1 25.361.3

Pancreas 34.961.6 58.063.9 57.262.7 36.463.4

Spleen 2.6660.06 3.6760.25 3.7760.62 2.9360.40

Stomach 1.8160.17 3.4260.82 3.7660.48 2.8160.29

Bowel 4.6260.23 8.1961.06 7.2560.74 6.4460.21

Liver 10.7861.32 10.0161.03 7.3160.87 8.5160.44

Lung 0.4860.16 0.7260.12 0.6760.13 0.7860.18

Heart 0.2560.04 0.3560.08 0.2260.05 0.2060.02

Bone 0.3460.04 1.0560.23 0.9060.16 0.4960.07

Tumor 3.4760.15 5.0560.46 6.6360.80 4.2960.70

Tumor to normal tissue radioactivity ratio

Tumor/Blood 19 29 43 30

Tumor/Muscle 40 46 54 67

Tumor/Liver 0.3 0.5 0.9 0.5

Tumor/Kidney 0.8 0.9 1.0 0.9

Results are the mean (%IA/g) of groups of eight or four animals.
doi:10.1371/journal.pone.0044046.t004

Table 5. Kinetic biodistribution of [64/67Cu]-BZH7 in PC-3
tumor-bearing nude mice.

Site 1 h 4 h 24 h 4 h, Blocked

Blood 0.46160.078 0.15460.033 0.10260.010 0.14960.013

Muscle 0.53960.384 0.12360.032 0.07260.018 0.08260.002

Kidneys 10.461.2 6.8761.16 2.4860.25 2.4460.10

Adrenals 36.565.7 30.864.1 5.2960.36 1.3960.06

Pancreas 81.3615.2 57.262.7 18.761.6 1.3060.08

Spleen 5.0360.40 3.7760.62 2.1560.21 0.8860.05

Stomach 3.9860.32 3.7660.48 2.2360.39 0.5160.07

Bowel 10.861.42 7.2560.74 5.1460.20 0.6360.16

Liver 9.8960.89 7.3160.87 3.0160.47 8.9060.43

Lung 1.0161.42 0.6760.13 0.6460.31 0.5860.02

Heart 0.3460.05 0.2260.05 0.2160.03 0.1460.01

Bone 1.1660.20 0.9060.16 0.4360.10 0.2160.06

Tumor 11.261.5 6.6360.80 4.1460.55 0.7160.08

Tumor to normal tissue radioactivity ratio

Tumor/Blood 24 43 41

Tumor/Muscle 21 54 58

Tumor/Liver 1.1 0.9 1.4

Tumor/Kidney 1.1 1.0 1.7

Results are the mean (%IA/g) of groups of eight or four animals. The 4 h time
point data is reproduced from Table 4.
doi:10.1371/journal.pone.0044046.t005

Figure 5. CPTA-glycine derivative, forming a hippurane-type
spacer molecule, demonstrates a significantly decreased
uptake in kidney at 1, 4 h p.i. and 4 h p.i. blocked with an
excess of BN peptide.
doi:10.1371/journal.pone.0044046.g005
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(0.65 nM) and GRP-R (0.9 nM) but negligible affinity to BNRS-3

(37 nM). Our previous published [natGa/natLu]-DOTA-PESIN

(DOTA-PEG4-BN(7–14) [40] also showed moderate affinities to

NMB-R (12.5 nM) and GRP-R (10.0 nM), and no affinity to

BNRS-3 (.1000 nM). These results underscore the role of bAla11

as a key factor in maintaining high affinity to BNRS-3.

Metabolic Stability
Compared to our previously developed radiopeptide, [111In]-

BZH2 (111In-DOTA-[D-Tyr6, bAla11, Thi13, Nle14] BN(6–14))

[12], [111In]-BZH4 has a 3.5 times lower stability in serum, which

indicates that the replacement of Leu13 by an unnatural amino

acid (Thi) stabilizes the peptide significantly. This result also

implies that the peptidases (CD10/NEP) [41] may be responsible

for the cleavage of His12-Leu13 or His12-Thi13. In the prototype of

[D-Tyr6, bAla11, Nle14] BN(6–14), DOTA-GABA and CPTA

conjugated to the peptide have a similar stability. However,

compared to natCu-CPTA-D-Tyr-[bAla11] BN(7–14), both natCu-

CPTA and natCu-CPTA-Gly conjugated-[bAla11] BN(7–14) ana-

logues showed a 5-fold higher stability. Furthermore, Met14 ([64/

67Cu]-BZH6) afforded two fold higher stability than Nle14 ([64/

67Cu]-BZH5).

In vivo Evaluation
Rapid internalization and efficient trapping allow for an optimal

tumor-to-background ratio for imaging and are even more

important for success of targeted radionuclide therapy. All [64/

67Cu]-labeled BN analogs showed a specific uptake in PC-3 tumor

and GRP receptor-positive organs such as pancreas. This was

further illustrated through the decreased uptake of the probe in

GRP-R expressing tissues when a cold blocking dose was co-

administered. The [64/67Cu]-BZH7 showed the greatest uptake

and long retention time in PC-3 tumors. This is likely due to its

highest binding affinity and internalisation rate (among the tested

compounds) and a relatively slow externalization rate. These

results are comparatively better than those of negatively charged

BN analogs such as [64Cu]-DOTA-Aoc-BN(7–14) [35] and

[64Cu]-DOTA-[Lys3] BN [36]. As a result, [64Cu]-BZH7 has

significant potential to perform as a high-resolution tool for clinical

diagnosis, e.g. in the detection of micro-size metastases.

The uptake of all [64Cu-CPTA] BN analogs in liver and kidneys

were high; which also held for the other [64Cu-DOTA]-

conjugated BN analogs [35,36]. High liver uptake of other

CPTA-labeled peptides (octreotide) has previously been observed

[29]. These results indicate that the charge of 64Cu-labeled BN (or
64Cu-CPTA/DOTA systems) has no influence on the excretion

pathway. However, high liver accumulation of radioactivity in the

case of [64Cu-DOTA]-conjugated BN analogs was attributed to

possible in vivo demetallation of Cu-64 from DOTA [42]. Garrison

et al. have shown that the cross-bridged cyclam based radioligand,

[64Cu]-CB-TE2A-Aoc-BN(7–14) (CB-TE2A, 1,4,8,11-tetraazabi-

cyclo[6.6.2]hexadecane-4,11-diacetic acid) exhibits lower liver

uptake and improved in vivo stability compared to [64Cu]-

DOTA-Aoc-BN(7–14) [42]. Recently, application of the triazacy-

Figure 6. PET imaging of a PC-3 tumor bearing nude mice with 4.6 MBq [64Cu]-BZH7 at 1, 4 and 24 h post-injection. PC-3 tumor
inoculated in mouse shoulder is visualized and can be clearly distinguished from liver, kidneys and adjacent tissue.
doi:10.1371/journal.pone.0044046.g006
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clononane-based ligand framework showed high in vivo kinetic

stability of the 64Cu2+ complex. The more compact 64Cu-NOTA

complex of [64Cu]-NOTA-Aoc-BN(7–14) (NOTA, 1,4,7-triazacy-

clononane-1,4,7-triacetic acid) appears to overcome demetallation

and uptake of radiometal by hepatobiliary proteins and accumu-

lation and retention in renal tissue in vivo [43]. We have recently

shown that NODAGA (1,4,7-triazacyclonane, 1,4-acetic acid, 7-

glutaric acid) enables labeling with 64Cu at room temperature and

high in vivo stability [44]. Another interesting Cu2+-chelator family

is the macrobicyclic cage amine ligands, SarAr (1-N-(4-amino-

benzyl)-3,6,10,13,16,19-hexaazabicyclo [6,6,6]-eicosane-1,8-di-

amine) that can form very stable Cu2+ complexes, and has

recently been functionalized with bombesin analogs [45]. How-

ever, cyclam (1,4,8,11-tetraazacyclotetradecane) was chosen be-

cause it has been successfully used in vivo when coupled to MAbs

[28]; in addition, the Pomper group showed excellent in vivo

pharmacoknetics of 64Cu-labeled bis-cyclam analog for targeting

CXCR4 receptor, such as 64Cu-AMD3465 [31]. These recent

studies signify that BN analogs conjugated to cross-bridged (or

macrobicylized) cyclam- or triazacyclononane- based chelators

may be more preferable for radionuclide therapy with 64/67Cu.

Therefore the CPTA-chelator may not be ideal when coupled to

peptides despite the very high kinetic and thermodynamic stability

of its Cu(II) complexes in vitro.

A hippurane-type molecule might facilitate clearance through

kidney (as is generally preferred for radioligands), and the

introduction of a glycine after CPTA leads to a hippurane-type

spacer molecule. Therefore, this structural modification was

expected to show similar behaviour. Our results (Figure 5)

confirmed this hypothesis. Even when GRP receptor expressed

in mice was blocked by an excess of [CuII]-BZH7, [64/67Cu]-

BZH8 was excreted faster from the kidney than [64/67Cu]-BZH7.

This clearly indicates that the hippurane-type spacer molecule

integrated in BN analogues hastens renal excretion of injected

radioactivity. However, the tumor-to-kidney ratio of [64/67Cu]-

BZH8 was not improved because this modification also resulted in

a lower GRP receptor affinity and concomitantly a lower tumor

uptake.

Conclusion
In this work, we pursued a series of modifications of bombesin

receptor targeting peptides in order to generate improved PET

and therapeutic radioligands for pre- and clinical investigation.

These studies show that charge at the N-terminus of radiometal

labeled BN peptides has a significant influence on the rate of

internalization and the binding affinity to human GRP receptor.

Interestingly, this effect is substantially less significant for binding

to mouse GRP receptor. This observation supports earlier findings

that the careful selection of animal species and tumor origin is

absolutely mandatory in order to evaluate new radioligands in

general [46], and for the radiolabeled bombesin analogs in

particular [27].

Pharmacokinetic considerations were also evaluated through

the introduction of a hippurane-like spacer into a 64/67Cu-labeled

BN analogue. This led to an improved kidney clearance. The

replacement of Met14 by Nle14 lowered the binding affinity of BN

analog to human GRP receptor, which might be a potential cause

for the lower internalization rate, as well as decreased tumor and

pancreas uptake. The 64/67Cu labeled BZH7 (CPTA-[bAla11]

BN(7–14)) showed favorable qualities as a targeting vector, which

suggest its potential for localization and treatment of GRP-

receptor positive tumors. The relatively low in vivo stability of the

CuII-CPTA complexes may be improved by cross-bridging CPTA,

a strategy which we are pursuing currently.
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