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Confinement and entanglement 
dynamics on a digital quantum 
computer
Joseph Vovrosh1 & Johannes Knolle1,2,3*

Confinement describes the phenomenon when the attraction between two particles grows with their 
distance, most prominently found in quantum chromodynamics (QCD) between quarks. In condensed 
matter physics, confinement can appear in quantum spin chains, for example, in the one dimensional 
transverse field Ising model (TFIM) with an additional longitudinal field, famously observed in the 
quantum material cobalt niobate or in optical lattices. Here, we establish that state-of-the-art 
quantum computers have reached capabilities to simulate confinement physics in spin chains. We 
report quantitative confinement signatures of the TFIM on an IBM quantum computer observed 
via two distinct velocities for information propagation from domain walls and their mesonic bound 
states. We also find the confinement induced slow down of entanglement spreading by implementing 
randomized measurement protocols for the second order Rényi entanglement entropy. Our results 
are a crucial step for probing non-perturbative interacting quantum phenomena on digital quantum 
computers beyond the capabilities of classical hardware.

Quantum computers are proposed to out-perform their classical counterparts for selected applications1. It is Rich-
ard Feynman’s prediction from 1982 that a quantum device would have the ability to directly simulate quantum 
systems which has most potential for solving a number of long-standing fundamental problems in science2–4, 
for example in chemistry5 or for lattice gauge theories (LGT) relevant in high energy physics6–8.

In recent years there has been a tremendous push in order to realise a digital quantum computer, e.g., based on 
superconducting circuits. Despite these efforts, current working computers are described as Noisy Intermediate-
Scale Quantum (NISQ) devices9, which do not have enough qubits or small enough errors to perform error 
correction. The uses of NISQ devices are still in question but we show here that they have reached capabilities 
for observing quantum confinement physics.

Our basic understanding of confinement in QCD is limited because it is an example of a non-perturbative 
quantum many body effect. LGT descriptions thereof10 are hard to simulate on classical computers and remain 
beyond the reach of current NISQ devices. As a first step for proving the usefulness of quantum computers 
as quantum simulators one can study one dimensional lattice systems of condensed matter physics display-
ing similar confinement physics. Examples include, the transverse field Ising model (TFIM) with long range 
interactions11, the lattice Schwinger model6, the XXZ spin-1/2 chain12 and, the model considered here, the 
TFIM with an additional longitudinal field13–19. The pure TFIM has free fermion excitations that correspond to 
domain walls between spin-aligned segments. An additional longitudinal field gives rise to an emergent confin-
ing potential between these fermionic excitations which can be described as ‘mesonic’ bound states of domain 
walls20,21. Fig.1(a+b) shows the different velocities of free (dashed) and bound (solid) particles that govern the 
time evolution of correlation spreading. Together with the confinement induced halting of entanglement spread-
ing, Fig.1(c), this provides direct signatures of confinement physics on a digital quantum computer.

The TFIM has been studied with analytical methods14,21,22 but the full time evolution of the non-integrable 
model with a longitudinal field has been restricted to numerical simulations for limited system sizes or time 
windows, e.g. with the density matrix renormalization group (DMRG)18. In general, out-of-equilibrium quantum 
dynamics of many-body systems are notoriously difficult to simulate with classical computers because the mem-
ory required scales exponentially with system size. In principle, quantum computers are free of such problems, 
however, available NISQ devices come with their own limitations. Firstly, they only have a restricted number of 
available qubits. Secondly, their large errors when executing a quantum circuit limit circuit depth and in turn 
the accessible simulation time. Nevertheless, there have already been promising results for the magnetization 
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dynamics of different spin chains23–25. However, up to now the accuracy of the devices was barely enough to 
qualitatively distinguish genuine interaction from disorder/noise effects26. Here, we take the next step and report 
digital quantum simulation of confinement in out-of-equilibrium dynamics of spin chains of up to nine spins 
on the latest IBM machines code-named Boeblingen and Paris.

Model and the two kink subspace.  The one dimensional TFIM with an additional longitudinal field is 
described by the following Hamiltonian

Figure 1.   Velocities and entanglement Renyi entropy from the IBM device. (a) Real time dynamics of domain 
wall positions within the two kink subspace following a quantum quench to the TFIM without and with 
additional longitudinal field hz . These results are calculated via exact diagonalisation of the two kink subspace. 
Here, L = 101 , hx = 0.5 and the initial state is ferromagnetic with a single flipped spin in the centre. For hz = 0 
the light cone structure of free particles is visible. For the confining case hz  = 0 two velocities are observable, an 
initial velocity (dashed) equal to the free case and the meson velocity (solid) at longer times. (b) Comparisons 
of the two velocities, the initial velocity (IV) and meson velocity (MV), as measured on the IBM quantum 
computer ( hx = 0.5 and L = 9 ) after error mitigation and as theoretically predicted. Error bars displayed are 
the standard deviation of a range of velocities obtained, more details are given in the Supplementary Material. 
(c) Data from randomized measurements for the half chain second order Rényi entropy after a global quantum 
quench to the TFIM with varying a longitudinal field strengths on the state | L

2
− 1, 2� for hx = 0.5 , L = 6 . The 

ballistic entanglement growth of the free case is suppressed because of confinement for increasing longitudinal 
field. Here, error bars are calculated by jacknife resampling. The inherent error in the IBM device leads to offset 
which has been removed, see the Supplementary Material for details.
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where σα
i  , α ∈ x, y, z are the Pauli matrices acting on the i th site, i ∈ {0, 1, 2, ..., L− 1} , L is the length of the chain, 

J is the Ising exchange of nearest neighbour spin 1/2 and hx/z are the relative strengths of the transverse and longi-
tudinal fields. For hz = 0 , the TFIM can be exactly diagonalised via Jordan-Wigner transformation and describes 
free fermions. Here we restrict ourselves to transverse field strengths below its critical value, hc = J , in the ordered 
phase, where fermions are approximately described by domain wall (or kink) excitations |... ↑↑↓↓ ...� aligned in 
the z direction. The longitudinal field then gives rise to a confining potential between kinks strongly affecting 
the non-equilibrium dynamics of the system. An established way to elucidate the confinement physics is to study 
the dynamics in a restricted two-kink subspace which not only allows us to predict analytically the velocities 
and masses of the mesons, see Fig. 1, but crucially for this work, it also forms the basis of our error mitigation 
protocol. We project Eq. (1) into the two kink subspace written in the basis |j, n� = | ↑↑ ... ↑↓j ... ↓j+n−1↑ .. ↑↑� . 
This gives H = P−1HP , in which P is the projection operator and (up to constant terms).

with V(n) = 2hzn . The first term of this subspace Hamiltonian is a kinetic term that allows the kinks to ‘hop’, 
and the second term is the effective potential, V(n), linearly increasing with kink separation n. Thus, the out-
of-equilibrium motion of kinks will be similar to that of quarks; pairs of kinks that are produced propagate in 
opposite directions until the confining potential halts their motion and pulls them back, leading to oscillatory 
motion, this is what we call a meson. These mesonic bound states of kinks are then able to propagate as a pair 
with a much slower velocity than if they were free.

Signatures of confinement.  A hallmark signature of confinement is the formation of mesons whose prop-
erties, e.g. masses, have been measured with different observables depending on the experimental or numerical 
feasibility15–18. In order to use NISQ devices as new tools for quantum simulations it is necessary to carefully 
design the measurement set-up to obtain unambiguous signatures for the available system sizes and time win-
dows. Among the many different protocols we have checked, the three following measures can give qualitative as 
well as quantitative results on the IBM devices. 

	 (i)	 Confinement physics can be observed in the probability dynamics of kinks as a function of time given 
by 

 This function gives the local probability of kink position on a chain. Thus, it provides a very clear picture 
of kink motion. In fact, it not only shows the kinks position with time, it also shows the mesons position 
once they form. We have benchmarked that both of the two velocities can be extracted from �zz

i  with 
quantitative agreement to the theory described above.

	 (ii)	 Another key signature is the suppression of half chain entanglement entropy spreading due to confine-
ment. In the free case, hz = 0 , the entanglement entropy is expected to increase linearly27. However, 
with a non-zero confining field hz this growth is suppressed in a characteristic fashion18. In general, 
entanglement entropy is not easy to calculate on a real quantum computer as it requires some form of 
state tomography. Here, building on recent progress for randomized measurement algorithms28 we are 
able to measure—for the first time on a digital quantum computer – the second order Réyni entangle-
ment defined as 

Here, ρA is the reduced density matrix for the half-chain subsystem A. With a repeated measurement 
of a set of random single qubit gates on each site in the subsystem A, S(2)(ρA) can be approximated by 

 where sA denotes a measurement outcome, P(sA) is the probability of measuring sA , D[sA, s′A] is the 
Hamming distance between sA and s′A , NA is the dimension of A and X̄ denotes the ensemble average of 
X over the set of different random single qubit gates used28.

	 (iii)	 The last viable diagnostic of confinement are the probability maps of kink positions12. After time evolu-
tion the probabilities of the first kink position with respect to the position of the second kink is mapped 
to show that, in the presence of an additional longitudinal field, it is favourable for the two kinks to reside 
close to each other, i.e. the kinks form a meson.
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Error mitigation and post selection.  When implementing dynamics on the IBM quantum computers 
there are four main sources of error: initialisation and measurement error, single qubit gate error, controlled-
NOT (CNOT) gate error and decoherence. A crucial ingredient for obtaining quantitative results are the follow-
ing error mitigations.

	 (i)	 The best subset of qubits is chosen. This is done by calculating the average error for each subset of qubits 
with the desired topology, a chain of length L, within the machine. Error types are not weighted evenly 
as the gate error is more important than the readout error for the protocols used in this work. Although 
this method is not scalable with increasing number of qubits, it is well suited for current devices.

	 (ii)	 The initial states considered here have an inherent inversion symmetry around the centre site such that 
the data should reflect this symmetry. However, because of inhomogeneous errors in the quantum com-
puter there are sizeable deviations which we correct by averaging the data and with its mirror image.

	 (iii)	 The last and crucial error mitigation technique is the projection of the data into the two kink subspace. 
For our initial states and quench set-up, the error-free time evolution mainly takes place within this 
subspace, and crucially, it contains the desired confinement physics. Hence, this post selection to the 
two kink subspace is a viable tool for eliminating errors, more details are given in the Supplementary 
Material.

With the error mitigation described above, as well as repeating measurements on different days26, simulations 
for meson velocities and probability maps with up to nine qubits and times of up to tJ = 8 were obtained. For the 
second order Rényi entanglement entropy it is necessary to apply random unitaries before measurements such 
that only mitigation technique i) can be used. Times that can be simulated for the second order Rényi entropy 
are up to tJ ∼ 3.

Results
Data for the probability maps as well as �zz

i  was collected from the IBM computer Boeblingen which has a total 
of 20 qubits. We employed a global quench protocol from an initially aligned state with a single spin flipped at 
the centre (the state | L−1

2 , 1� ) to the TFIM with and without a longitudinal field. Randomized measurements 
for the second order Rényi entanglement entropy were carried out on the IBM device Paris with a total of 27 
qubits. We employed a global quench from an initially aligned state with two spins flipped at the centre (the state 
| L2 − 1, 2� ). We used open boundary conditions in all cases.

	 (i)	 In Fig.2 we show results for �zz
i  (with hz = 0, 0.5 and hx = 0.5 ) from the IBM machine obtained via 

trotterised time evolution (more details are given in the Supplementary Material) compared to continu-
ous time exact diagonalization (ED) and trotterised ED, both projected to the two kink subspace. The 
short time dynamics is governed by the free motion of kinks (dashed) before the bound states form and 
propagate at the slower meson velocity (solid). From these results, initial velocities and subsequent slower 
velocities were extracted for varying longitudinal fields and compared to theoretically predicted values, 
which are summarised in Fig.1b. Details how the velocities and error bars were obtained are given in 
the Supplementary Material. The extracted meson velocities, shown in Fig.1b, match quantitatively the 
predictions from the two kink subspace analysis.

	 (ii)	 The second order Rényi entanglement entropy results are presented in Fig.1c. Here, we compare the 
exact results calculated via ED and trotterisation with the data from the IBM device. It reproduces the 
suppression of entanglement spreading that depends on the strength of the confining longitudinal field. 
We note that the inherent error on IBM devices leads to a constant shift which is removed in Fig.1c, 
more details are given in the Supplementary Material.

	 (iii)	 Finally, Fig.3(a) displays the probability maps of kink motion collected from the quantum computer. 
These maps show how the longitudinal field favours the two kinks to stay together as expected by con-
finement dynamics12.

To corroborate our findings, it is crucial to confirm that the halting of domain wall spreading for increasing 
hz arises from coherent quantum dynamics and not just disorder or noise from the machine which have plagued 
previous attempts26. In Fig.3b we show the evolution of the local magnetisation for a quench with hx = hz = 0.5 
and L = 7 . Clear oscillatory patterns of the confined kink motion are observed in Fig.3c which provide direct 
evidence of higher order interaction effects and not a simple featureless decay of correlations.

Discussion
We have established that current state-of-the-art quantum computers are able to simulate non-perturbative 
quantum effects like confinement. Using a specially designed quench set-up has allowed us to show confinement 
signatures and the formation of domain wall bound states in the paradigmatic TFIM with a longitudinal field. 
Randomized measurement protocols have enabled us to show the confinement-induced slow-down of entangle-
ment spreading on a digital quantum computer. Next on the agenda will be quantum simulations of confinement 
effects in spin chains as discussed in relation with scattering experiments of real materials15,16,29. On a different 
front, digital quantum simulations and especially entanglement measurements as presented here will help to 
further our understanding of non-ergodic quantum dynamics30, for example the interplay of confinement and 
quantum many body scars19,31.
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Our benchmark results are a crucial step towards the simulation of many-body quantum phenomena beyond 
the reach of classical computers. The added advantage to similar quantum simulation endeavours in cold atomic 
gases17 or trapped ion quantum simulators32 is the ease of initial/final-state preparation/selection, as well as the 
potential freedom to engineer more complicated theories also in higher dimensions, e.g., for quantum field/
gauge theories7,8. For example, a next step for digital quantum simulations would be to simulate the Schwinger 
model in order to observe out-of-equilibrium properties of 1+ 1 dimensional quantum electrodynamics6 before 
going to higher dimensions. The good news for NISQ limited devices is that signatures of confinement, like pair 
production or string breaking33, are visible already at short times for moderate system sizes. In the long run, a 
potentially disruptive advantage of digital quantum simulators is the ease of access to experimental hardware. 
We provide a first example how to use remote access to a NISQ device as a new numerical tool which can per-
form specific experiments, for example on confinement dynamics, without the need for purpose built set ups32.

This work highlights the capabilities of quantum computers in the NISQ era. They can already deliver on 
Feynman’s original quantum simulation promise — for the time being at least for phenomena like confinement 
which are observable in intermediate-time dynamics and for moderate system sizes.

While finalising this manuscript, we became aware of a complimentary work34 observing confinement dynam-
ics on a trapped ion simulator.

Figure 2.   Time evolution of probability dynamics of kinks. Data for �zz
i

 after a global quantum quench to 
the TFIM with and without a longitudinal field starting from the state | L−1

2
, 1� . In all presented data hx = 0.5 

and L = 9 . The graphs on the left show the free kink case, hz = 0 and the graphs on the right the confined one 
hz = 0.5 . Clear suppression of the kink separation can be seen in the latter as well as the emergence of a second 
slower velocity – both signatures of confinement.
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