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Abstract

Background: Recent progress in computational methods for predicting physical and functional protein-protein interactions
has provided new insights into the complexity of biological processes. Most of these methods assume that functionally
interacting proteins are likely to have a shared evolutionary history. This history can be traced out for the protein pairs of a
query genome by correlating different evolutionary aspects of their homologs in multiple genomes known as the reference
genomes. These methods include phylogenetic profiling, gene neighborhood and co-occurrence of the orthologous protein
coding genes in the same cluster or operon. These are collectively known as genomic context methods. On the other hand a
method called mirrortree is based on the similarity of phylogenetic trees between two interacting proteins. Comprehensive
performance analyses of these methods have been frequently reported in literature. However, very few studies provide
insight into the effect of reference genome selection on detection of meaningful protein interactions.

Methods: We analyzed the performance of four methods and their variants to understand the effect of reference genome
selection on prediction efficacy. We used six sets of reference genomes, sampled in accordance with phylogenetic diversity
and relationship between organisms from 565 bacteria. We used Escherichia coli as a model organism and the gold standard
datasets of interacting proteins reported in DIP, EcoCyc and KEGG databases to compare the performance of the prediction
methods.

Conclusions: Higher performance for predicting protein-protein interactions was achievable even with 100–150 bacterial
genomes out of 565 genomes. Inclusion of archaeal genomes in the reference genome set improves performance. We find
that in order to obtain a good performance, it is better to sample few genomes of related genera of prokaryotes from the
large number of available genomes. Moreover, such a sampling allows for selecting 50–100 genomes for comparable
accuracy of predictions when computational resources are limited.
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Introduction

In the last few years, computational methods of predicting

physical and functional Protein-Protein Interaction (PPI) have

gained popularity [1,2,3,4,5]. The interactions of an uncharacter-

ized protein with known proteins in the predicted network often

provide pointers for its functions [4,6,7,8]. These networks also

help in understanding the organization and the higher order

functional relationships of proteins in various cellular processes

[9,10,11,12]. Most of these methods assume that functionally

interacting proteins are likely to have a shared evolutionary history

which can be traced out for all possible pairs of proteins present in

the query genome (genome of interest). This is done by correlating

different evolutionary aspects of their homologous proteins in

multiple genomes referred to as reference genomes

[7,13,14,15,16,17]. These methods include phylogenetic profiling

[14,18,19,20], gene cluster [21,22,23], gene neighbor [24,25,26]

and gene fusion [27]. They are collectively known as genomic

context methods.

Phylogenetic profiling assumes that proteins gained or lost

together during evolution are functionally interdependent and

hence their co-occurrence is likely due to the mutual dependence.

Phylogenetic profile or phyletic pattern is defined as a vector

representing the presence or absence of a given protein in a set of

reference genomes. Originally, the phylogenetic profile of a

protein was represented qualitatively as a binary vector, where

‘1’ represented the presence of the protein in a reference genome

and ‘0’ represented its absence [19]. Similarly, the presence of a

given protein in phylogenetic profiles can also be quantitatively

represented by transformed e-value scores and bit scores in the

vector positions of the reference genomes [28,29,30]. The degree
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of similarity between phylogenetic profiles of two proteins reflects

the strength of the functional association between them.

Chromosomal proximity of genes, irrespective of the relative

gene orientation, has been shown to be an indicative of their co-

regulation [26], as genes that participate in related biological

processes are often observed to be co-regulated [31]. Hence

chromosomal proximity of genes has been proposed as a

parameter indicative of functional linkages. The genomic neigh-

borhood of many prokaryotic genes have been broken down

during evolution due to the frequently occurring dynamic re-

arrangements [32,33]. However, these rearrangements are con-

servative and maintain individual genes in very specific functional

and regulatory contexts [24,25]. Hence, it is possible to deduce

these gene rearrangements based on chromosomal proximity of

orthologous genes in multiple reference genomes. This approach is

commonly referred to as the gene neighbor method [11,25]. The

gene cluster method also identifies the protein pairs that are

encoded by neighboring genes on the reference genome sequence

but they should be coded from the same genomic strand within a

certain threshold of intergenic distance cutoff [21,22,23]. There-

fore, this method discovers operonic rearrangements of a query

genome based on the evidence of their operon structure in

multiple reference genomes.

Another class of methods called mirrortree allows inference of

physically interacting proteins based on the co-evolving amino

acids in their protein sequences [34,35,36,37,38]. The assumption

here is that the mutations in the residues responsible for

interaction between two proteins may be compensated by

complementary mutations to preserve or restore the interaction.

The performance of all these methods depends on the

organisms selected for analysis, since the biological context of a

protein is derived from the evolutionary information retained in

the reference genomes. Therefore, we believe that the choice of

reference genomes is one of the most critical parameters that can

affect the performance of the aforementioned methods. However,

most of the studies on the reference genome selection have been

carried out for phylogenetic profiling [39,40,41,42,43,44]. Jothi

and coworkers analyzed the phylogenetic profiles constructed

using a combination of 16 sets of reference genomes composed of

eukaryotes, bacteria and archaea [40]. Their study suggested that

the composition of the reference genome sets determines the

prediction accuracy of the PPIs involved in various biological

processes. Similarly, Anis-Karimpour and coworkers demonstrat-

ed the utility of phylogenetic profiles constructed from phenotyp-

ically and genotypically related organisms for prediction of PPIs

that were missed when the reference genome set was assembled

using phylogenetically diverse organisms [41]. A recent study on

the genomic context methods also suggested a significant influence

of the varying size and composition of the reference genomes on

the prediction accuracy [45]. The mirrortree related methodolo-

gies were also tested for reference genome selection. It was

observed that the certain subsets of reference genomes were more

suitable for the predictions of certain types of interactions [39].

Our study focused on four methods that consider protein pairs

and the evolutionary information of their orthologous pairs in

various reference genomes to predict functional or physical

linkages. Since their original implementations, these methods

have diversified into a number of modified forms

[22,45,46,47,48,49]. We selected the variant methods that have

not been evaluated against the effect of reference genome

selection. These selected methods include variants of phylogenetic

profiling, gene cluster and gene neighbor [22]. Apart from these

genomic context methods, we have also studied mirrortree and

Tree Of Life-mirrortree (Tol-mirrortree). We also introduced a

new method to exclude speciation information called Genome

Distance-mirrortree (GD-mirrortree) [34,35]. We report compre-

hensive analyses of reference genome selection and its effect on

prediction accuracy of the aforementioned prediction methods.

Considering the availability of a large number of completely

sequenced genomes, it is challenging to select the organisms that

would lead to the prediction of high-quality interactions.

Furthermore, the processing time to compare these reference

genomes is proportional to the number of genomes in the

reference set. This study has important implications on the

selection of reference organisms, a critical step in computational

prediction of protein interactions.

Results and Discussion

Generation of reference genome sets
In order to evaluate the effect of reference genome selection on

PPI predictions, the 565 reference genomes used in this study were

grouped into six sets ALL, BAAC, BAS, BAC, GAMMA and

BANR. The total number of genomes in ‘‘ALL’’ set included all

the 565 prokaryotic genomes. Many genomes in ALL set were

biased due to the presence of multiple species of the same genus.

We created a ‘‘BAAC’’ set, which represented non-redundant 448

prokaryotic genomes, selected on the basis of shared E. coli

orthologs. ‘‘BAS’’ set had a single genome of a particular genus

and the closely related genera were removed. ‘‘BAC’’ set

exclusively represented genomes of 86 phylogenetically diverse

bacteria. Similarly, we created ‘‘GAMMA’’ set represented by 46

c-proteobacterial genomes and ‘‘BANR’’ set represented by 41

reference genomes including 20 bacteria and 21 archaea. This

filtering step was used to minimize the overrepresentation of

certain genomes as many genera of prokaryotes have single species

while others have multiple species. The composition in terms of

phylogenetic distribution of each set is given in Table 1.

Gold standard dataset used for comparisons
In order to evaluate the effect of reference genome selection on

the accuracies of PPI prediction methods, we required gold

standard datasets. Two gold standard datasets were created using

Database of Interacting Partners (DIP), EcoCyc protein complexes

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway annotations [50,51,52]. Our first gold standard dataset,

called High-Quality Gold standard (HQG), consisted of positive

protein pairs (for which the orthologs were present in 200 or more

genomes) with the evidence of physical and/or complex associated

interactions and they belonged to the same functional category

according to EcoCyc or KEGG pathway annotations. Our second

gold standard dataset called Low-Quality Gold standard (LQG),

was a union of the above three resources without phyletic

distribution constraint as mentioned above. The phylogenetic

distribution constraint for HQG was applied in order to ensure

that only genomic signals and not the phyletic distribution of

proteins determine the prediction accuracy. For obtaining a

negative dataset, the simplest way is to generate all possible pairs

among the proteins of an organism and then remove all potential

positive pairs from that dataset. The remaining pairs can then be

used as negative datasets given that the partners in each pair

should neither be present in the same pathway nor in the same

subcellular compartment [53]. This additional filtering step is

recommended due to incomplete knowledge of actual positive

dataset. We first generated all possible protein pairs among the

proteins that constituted positive pairs for HQG dataset and then

removed positive pairs from the same. The resulting subset was

used as negative examples for HQG dataset. We also cross-
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checked results obtained on HQG and LQG datasets with the

complete set of DIP and EcoCyc co-complex PPIs (referred

hereafter EcoCyc) independently.

Effect on Phylogenetic Profile Method (PPM)
Previous studies have used the transformed e-values to create

phylogenetic profiles since the authors in such instances believed

that e-value measures sequence divergence [30,40,54,55]. We

suggest that the e-value based phylogenetic profiling does not

capture sequence divergence information as well as bit score

profiling does. E-value is a measure of the probability that a given

BLAST search hit is obtained by chance for a size of a given

database whereas bit score is a normalized sequence similarity

score representing the quality of the match based on sequence

alignment [56]. Hence in our opinion, it is preferable to construct

phylogenetic profiles using bit scores as opposed to transformed e-

values to capture sequence divergence in a better way. The results

obtained using bit score profiles were compared with that of binary

profiles since the previous studies lack such comparisons with

respect to the reference genome selection. In our study, the

interaction scoring using binary profiles is referred to as Binary

Phylogenetic Profile Method (BPPM) whereas interaction scoring

using normalized bit scores is referred as Sequence similarity based

Phylogenetic Profile Method (SPPM).

SPPM outperforms BPPM for all reference genome

sets. We have compared the prediction accuracy of BPPM

and SPPM using Receiver Operating Characteristic (ROC)

curves. SPPM outperformed BPPM for all the six reference

genome sets that we tested (Figure 1). The performance of SPPM

was almost similar for ALL, BAAC, BAS and GAMMA reference

genome sets. All these sets achieved AUC value of 0.97 (Table 2).

The performance of BAC (AUC 0.94) and BANR (AUC 0.93) was

poorer than that of the above mentioned sets. The poor

performance of BANR was expected due to its small size (41

genomes) and the inclusion of almost equal proportion of bacterial

and archaeal genomes. However, the poor performance of BAC

with respect to that of GAMMA was intriguing. BAC set

represented diverse bacterial genomes whereas GAMMA was

formed by an exclusive set of c-proteobacteria to which the query

organism E. coli belongs. Upon close inspection of the phyletic

distribution of the numbers of genomes in each set, it was observed

that the BAC set included only 11 c-proteobacterial genomes as

compared to the 129, 88, 24 and 46 genomes in ALL, BAAC, BAS

and GAMMA sets respectively (Table 1). We corroborated these

numbers with the AUC values (Table 2) which suggests that an

inclusion of higher number of c-proteobacterial genomes in

various reference sets improved the performance of the SPPM. It

has been observed that phylogenetic profiling using a diverse set of

genomes gives better performance accuracy [40,55,57]. However,

Table 1. Composition of reference genome sets used for analysis.

Class/Group ALL BAAC BAS BAC GAMMA BANR

Acidobacteria 2 2 0 1 0 1

Actinobacteria 46 37 9 7 0 2

Alphaproteobacteria 65 56 16 8 0 1

Aquificae 1 1 1 1 0 1

Bacteroidetes/Chlorobi 17 16 5 4 0 1

Betaproteobacteria 29 24 9 10 0 1

Chlamydiae 11 7 3 3 0 1

Chloroflexi 7 6 1 3 0 1

Cyanobacteria 29 24 7 4 0 1

Deinococcus-Thermus 3 2 1 1 0 0

Deltaproteobacteria 17 16 5 4 0 1

Epsilonproteobacteria 19 13 2 4 0 1

Firmicutes 128 96 17 9 0 4

Fusobacteria 1 1 1 1 0 1

Gammaproteobacteria 129 88 24 11 46 2

Other Bacteria 3 3 0 3 0 2

Planctomycetes 1 1 1 1 0 1

Spirochaetes 5 4 2 5 0 1

Thermotogae 6 5 1 6 0 1

Nanoarchaeota* 1 1 1 0 0 1

Crenarchaeota* 15 15 3 0 0 3

Euryarchaeota* 30 30 13 0 0 13

Total number of reference genomes 565 448 122 86 46 41

Total number of protein sequences (in thousands) 1734 1389 364 265 151 113

Notes: ALL - All prokaryotic genomes; BAAC – Automatically selected diverse prokaryotic genomes (see method for details); BAS – Only single representative genomes
of species from same genus and related genera; BAC – Non-redundant bacterial genomes; GAMMA – Non-redundant c-proteobacterial genomes; BANR – Non-
redundant Bacterial and Archaeal genomes. Asterisk marks represent groups that belong to Archaea super-kingdom. Classification is extracted from http://www.ncbi.
nlm.nih.gov/genomes/lproks.cgi.
doi:10.1371/journal.pone.0042057.t001
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our results suggest that the closely related genera are providing

evolutionary information resulting in a better performance in the

case of SPPM. Our results were consistent with an observation of a

previous study [41] that many unique interactions were obtained

when closely related genomes constituted the reference set. While

these interactions were missed if distantly related genomes were

used. Even with EcoCyc gold standard we observed that AUC

value for GAMMA (0.87) was better than that of BAC (0.83) set

(Table S3). However, in the case of DIP we observed AUC values

were comparable (Table S2). Overall, these results reflect relatively

similar performance of SPPM irrespective of the size and the

composition of the reference genome sets.

Performance of BPPM is influenced by reference genome

set. ROC curves of BPPM show almost similar performance for

ALL, BAAC and BAS sets (Figure 1). The AUC value for ALL

and BAAC was 0.90 whereas for BAS was 0.89 (Table 2). The

relative trends of ROC curves for BPPM using BAC, GAMMA

and BANR (to some extent) sets showed a wide variation

compared to SPPM curves. It reflects the influence of reference

genome selection on the BPPM performance. BANR achieved

AUC value of 0.84 whereas BAC and GAMMA sets showed worse

performance with AUC values of 0.75 and 0.68 respectively. The

TPR values of BAC and GAMMA sharply decline when the

BPPM interaction scores are relaxed. The number of genomes in

BAC and GAMMA sets was less compared to that of ALL, BAAC

and BAS (Table 1). The effect of higher number of genomes on the

performance of PPM has been controversial as some reports have

suggested a better prediction accuracy is associated with higher

number of genomes in the reference set [44,55] while Jothi and

coworkers have contradicted it [40]. Our results are in agreement

with the former observation when HQG and EcoCyc datasets

were used (Table 2 & Table S3). Counter-intuitively, BPPM

performance using a small number of genomes was comparable

Figure 1. ROC curves for six reference genome sets using Phylogenetic Profiling Methods. The solid lines depict the phylogenetic profile
constructed using normalized bit scores (SPPM) whereas the dotted lines depict the binary phylogenetic profile (BPPM). The colors of the lines
correspond to the six reference genome sets (ALL, BAAC, BAS, BAC, GAMMA and BANR) for which performance was evaluated. As evident in the
figure, SPPM gives superior performance compared to BPPM for all reference genome sets. The ROC curves clearly show that the reference genome
selection has profound influence on the performance of BPPM compared to that of SPPM.
doi:10.1371/journal.pone.0042057.g001

Table 2. Performance summary for four computational
methods and their variants using six reference genome sets.

Method Variant ALL BAAC BAS BAC GAMMA BANR

PPM BPPM 0.90 0.90 0.89 0.75 0.68 0.84

SPPM 0.97 0.97 0.97 0.94 0.97 0.93

GCM GCM 0.76 0.76 0.78 0.76 0.80 0.75

MDM MDM 0.88 0.88 0.90 0.89 0.90 0.90

Mirrortree Mirrortree NA NA 0.90 0.90 0.78 0.84

Tol-mirrortree NA NA 0.82 0.91 0.80 0.74

GD-mirrortree NA NA 0.94 0.92 0.86 0.81

Notes: The performance summary of protein-protein prediction methods
measured as Area Under the ROC Curve (AUC). BPPM stands for Binary
Phylogenetic Profile Method; SPPM stands for Sequence Similarity (bit scores)
based Phylogenetic Profiling Method; GCM is Gene Cluster Method, MDM is
gene neighborhood based Minimum Distance Method; GD is genome distance;
NA stands for sets that are not analyzed for corresponding method. ALL, BAAC,
BAS, BAC, GAMMA and BANR are reference genome sets whose compositions is
given in Table 1.
doi:10.1371/journal.pone.0042057.t002
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with higher number of genomes, provided the set included

phylogenetically distant genomes. This is due to the fact that

BANR (41 genomes) set which was composed of an almost equal

proportion of bacterial and archaeal genomes predicted interac-

tions with the AUC value of 0.84 which was less but comparable to

the same achieved for ALL (565 genomes), BAAC (448 genomes)

and BAS (122 genomes) (Figure 1). So the contradictory

observation made by Jothi and coworkers is possibly due to the

selection of phylogenetically diverse sets of 95 organisms which

consists of representative organisms from various branches of the

canonical tree of life in their study [40]. This can be supported by

the fact that performances of BAC (86 genomes) and GAMMA (46

genomes) were poor as compared to BANR (41 genomes). These

observations reveal the fact that close relatives of query genome

are not suitable as reference organisms for binary phylogenetic

profiling and would probably result in the over scoring for

functionally unrelated protein pairs [57]. We made similar

observations for BAC and GAMMA sets using LQG and DIP

while EcoCyc showed a comparable AUC score. Overall, our

results suggest that performance of BPPM is profoundly dependent

on the reference genome selection as compared to the SPPM. It is

mostly influenced by inclusion of closely related genomes.

However, it was unclear whether small size of reference genome

selected from distantly related species or the set with higher

number of genomes is responsible for higher performance

accuracy of BPPM, since different gold standard datasets were

supporting both the findings (Table 2,S1,S2 & S3).

Bit scores used in SPPM reduce the influence of reference

genome selection. As explained above, the performance of the

BPPM was influenced by the composition and the size of reference

genome sets. The BPPM AUC values for BAC and GAMMA sets

were 0.75 and 0.68 respectively. The reason for the poor

performance of BAC and GAMMA reference sets in case of

BPPM was possibly due to the profiles containing runs of ‘1’ for

several proteins of E. coli which were shared among bacterial and

the sub-class c-proteobacterial lineage respectively. Although these

sets include only the representative species but still due to close

relatedness to E. coli, these species share many common genes and

hence result into similar phylogenetic profiles for a number of

proteins irrespective of their functional relevance [40,57]. It might

be a case for the worst performance of GAMMA when BPPM was

used for prediction.

Compared to BPPM, SPPM was robust against reference

genome selection with comparable performance accuracy for each

reference genome set (Figure 1 and Table 2, S1,S2,S3). We

speculate that the bit score based profiles minimize the effect of

reference genome selection. Furthermore, we performed two

normalizations on the phylogenetic profile matrix [22,29]. First

normalization was performed for a particular E. coli protein profile

using the maximum bit score obtained over all its orthologs in a

given reference genome set. The second normalization was

performed using the minimum bit score which was obtained from

all the orthologs in a particular genome in a given reference set.

These two steps minimized the effect of higher protein sequence

divergence and species divergence. Therefore the phylogenetic

profiles constructed using bit scores followed by double normal-

ization are expected to contain information of amino acid changes

due to functional constraints instead of speciation events. Our

results supported the argument put forward by Kensche and

coworkers that the bit score representation of phylogenetic profiles

gets the benefit of sequence similarity in addition to co-occurrence

of proteins [20] and thereby further improves the information

content [22,29]. Similar results were obtained using the LQG

dataset as shown in Figure S1A and Table S1. PR curves also led

to the same results as observed for ROC measures (Figure S2A).

Our results remained broadly consistent when cross-checked on

DIP and EcoCyc. We observed that average AUC values

remarkably differ for BPPM when BAC and GAMMA sets were

used as reference, as compared to that of SPPM for the same sets

(Table 2,S1,S2 & S3).

Effect on Gene Cluster Method (GCM)
Gene cluster is defined as a set of consecutive co-directional

genes with intergenic distance(s) less than a certain threshold

nucleotide bases in a microbial genome sequence [21,58]. For

given two proteins, GCM calculates the probability of co-

occurrence of genes encoding their orthologs in the same gene

clusters in the reference genomes [22]. Thus, GCM identifies

operons rearranged in a query genome during evolution. In our

analysis, gene clusters were defined in all reference genome sets

using intergenic distance threshold of 100 nucleotide bases and

propensity scores were calculated for all gold standard protein

pairs. As the intergenic distance threshold of 100 nucleotide bases

gave accuracy better than that of 200, 300, 400 and 500 (Table

S4).

GCM is a highly specific predictor of functionally linked

proteins. It was observed that the propensity scores calculated

for the positive examples of the gold standard datasets were very

low. Surprisingly, we observed few negative examples with the

propensity scores above zero which were not enough to evaluate

GCM performance (Table 3). It also suggested that negative

examples chosen for evaluation were likely to be non-interacting.

The higher propensity scores for E. coli protein pairs reflect the

frequent co-occurrence of their ortholog encoding genes in the

same cluster. It suggests their coupled transcription in reference

genomes. Therefore, the higher propensity scores for positives

than that of negative examples (mostly with score zero) suggesting

the reliability of negative pairs in the gold standard dataset and the

higher specificity of GCM.

In order to address the problem of less number of negative

examples for evaluation, pathway similarity scores for 1,013,176

possible pairs among 1,424 proteins annotated in KEGG database

were calculated using Jaccard coefficient [30]. The protein pairs

having the pathway similarity scores and the GCM scores above

zero were treated as positive examples. While the protein pairs

having the pathway similarity scores equal to zero and the GCM

Table 3. Gold Standard protein pairs with GCM propensity scores above zero for six reference genome sets.

Dataset ALL BAAC BAS BAC GAMMA BANR

LQG 2312/363 2306/357 1948/182 1834/172 1606/81 1403/67

KEGG 4507/15396 4465/15114 3299/7338 2942/6019 2152/2574 2036/2873

Notes: ALL, BAAC, BAS, BAC, GAMMA and BANR are reference genome sets whose compositions is given in Table 1. Numbers represent positive/negative pairs with
GCM scores above zero for KEGG and LQG datasets.
doi:10.1371/journal.pone.0042057.t003
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scores above zero were treated as negative examples. These pairs

used for evaluation and were termed as the KEGG gold standard

dataset (Table 3).

GCM performance is better using closely related species

in reference genome set. The performance of GCM in the

low FPR region was better for the sets that consisted of higher

numbers of genomes (Figure 2). For full range, GAMMA and BAS

sets outperformed the other sets. AUC values, for six reference

genome sets, ranged from 0.75 to 0.80 (Table 2). The highest

AUC value was obtained for GAMMA set whereas the lowest was

obtained for BANR. The better performance of GAMMA could

be explained by the fact that the gene order, gene content and

regulatory mechanisms of operons are not conserved even in

closely related species [23,24,32,59]. In other words, reference sets

containing closely related genomes provide many gene clusters or

operons that are rearranged in the distantly related ones.

Furthermore, the number of positives (2152 pairs) of KEGG gold

standard compared to the negatives (2574 pairs) with GCM score

above zero was better when GAMMA set was used (Table 3). This

proportion of positives and negatives achieved by GCM is much

better than the BANR set with 2036 positives and 2873 negatives.

The BANR set include 41 most distantly related genomes.

However, this observation is consistent only with evaluation on

DIP, while performance for ALL reference genome set was better

when EcoCyc used as benchmark (Table S2 & S3).

ROC curves show similar trends for four out of six reference

genome sets (Figure 2). The difference became more apparent

when PR was used as the complementary performance measure

and HQG as benchmark. PR curves suggest that performance of

all the six sets in the region of high precision values and less recall

(i.e. the region where GCM scores are high) is almost similar

(Figure S2B). We observed recall of 0.20 at 0.90 precision in this

region reflecting very few falsely predicted interactions. Remark-

ably, the PR curves reached 100% recall for majority of the

reference genome sets well above the precision value of 0.3. From

these observations, we suggest that reliable predictions could be

achieved using GCM that are likely to be free of false positives.

Overall, the outperformance of GAMMA reference set of

closely related genomes to the query genome was unexpected.

However, KEGG and DIP gold standards support these findings.

Therefore, the highest accuracy for GAMMA set could be

attributed to the higher numbers of intact neighborhoods with

capacity to encode functionally related proteins in closely related

genomes as compared to the distantly related ones.

Effect on Minimum Distance Method (MDM)
MDM method identifies proteins that are no longer encoded by

neighboring genes in the query genome but genes encoding their

orthologs are present in proximity in any one genome of the

reference set [11,22]. ROC curves for MDM suggest substantial

similarity in the performance of each reference genome set

(Figure 3). The range of AUC values obtained fall in between 0.88

to 0.90 (Table 2). These results suggest that the performance of

MDM is not influenced by reference genome selection. MDM

calculates an interaction score based on the minimum chromo-

somal distance between two genes from any one genome probably

making MDM less sensitive to the reference genome set. The

performance of MDM on LQG dataset also showed robustness

against the reference genome selection (Figure S1B). At 0.20 FPR

Figure 2. ROC curves for six reference genome sets using Gene Cluster Method. The colors of the lines correspond to the six reference
genome sets (ALL, BAAC, BAS, BAC, GAMMA and BANR) for which performance was evaluated. The reference genome set GAMMA relatively performs
better.
doi:10.1371/journal.pone.0042057.g002
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we found that BAS set performed reasonably well on HQG and

LQG with TPR of 0.86 and 0.53, respectively.

MDM is a variant of Gene Neighbor Method (GNM) and the

previous report suggested that the GNM outperforms PPM [45].

Contrary to the previous report, we observed that the performance

of PPM is substantially better than MDM when HQG dataset was

used for evaluation (Table 2). On the LQG dataset, however, we

observed that the performance of MDM was slightly raised over

PPM and which is consistent with reference [45]. We confirmed

that this difference was due to the gold standard dataset used for

evaluation. Unlike the HQG dataset which consisted of physical

PPIs, the LQG positives were dominated by KEGG pathway PPIs

i.e. out of 7,217 positives, 6240 were KEGG pathway pairs.

Similarly, Ferrer and coworkers used gold standard set, which was

mostly composed of known enzymes that participates in various

metabolic pathways [45]. The effectiveness of GNM to predict

metabolic PPIs is observed in previous studies [25,11]. Recent

analysis suggested GNM was the most effective method to

reconstruct metabolic pathways based on chromosomal proximity

of proteins [48]. Therefore, the outperformance of MDM/GNM

over PPM on the LQG or the gold standard used in the previous

study is not surprising [45]. Gene neighbor variants would always

outperform PPM when it comes to predictions of metabolic PPIs

due to the independent evolutionary histories of metabolic

pathways [40].

We observed more or less similar AUC values for six reference

genome sets when cross-checked with DIP and EcoCyc (Table S2

& S3).Therefore the reference set with 50–150 phylogenetically

diverse prokaryotic genomes would be a good choice for high

confidence predictions using MDM. PR curves also led to the

same results as observed for ROC measures (Figure S2C).

Effect on Mirrortree Based Methods
The mirrortree method compares the similarity between two

sets of distance matrices computed for potentially interacting

protein pair using a correlation coefficient, which is indicative of

similarity in phylogenetic trees and hence suggesting a possible co-

evolution. These distance matrices were computed from Multiple

Sequence Alignment (MSA) for each protein pair of query

organism (E. coli) [34,60]. The matrix for each protein represented

distances among amino acid sequences of its orthologs. Being

mindful of the computational complexity and time requirement for

MSAs construction, we carried out an analysis for 122 reference

genomes represented in the BAS set. The BAS set was further sub-

divided into four reference genome sets based on phylogenetic

diversity (Table 4).

In order to exclude the background similarity due to the

underlying speciation events, one can correct the protein distance

matrices using various approaches [35,61]. It is suggested that a

16S rRNA based correction of distance matrices of protein families

represents a coordinated evolutionary history and does not contain

speciation information. This approach improves the prediction

accuracy and it is called as Tol-mirrortree method [35]. However,

we think that the organisms thriving in a specific ecological niche

evolve traits, which can help them withstand the surrounding

environmental conditions [62]. Such events in the evolutionary

history of organisms are taking place at protein or gene level and

not at the non-coding 16S rRNA sequence level. Hence this

information can be better captured by comparing total protein

Figure 3. ROC curves for six reference genome sets using Minimum Distance Method. The colors of the lines correspond to the six
reference genome sets (ALL, BAAC, BAS, BAC, GAMMA and BANR) for which performance was evaluated. ROC plot shows that the method is robust
against choice of reference genome sets. All reference sets performed equally well.
doi:10.1371/journal.pone.0042057.g003
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content of reference genomes with one another. We suggested an

alternate correction approach based on comparison of proteins

present in the reference genomes termed as GD-mirrortree.

GD-Mirrortree outperformed Tol-mirrortree. ROC

curves shown in Figure 4 illustrate the superiority of GD-

mirrortree method compared to Tol-mirrortree. Our GD-mirror-

tree approach outperformed Tol-mirrortree using all reference

genome sets. The best performing reference genome set in case of

GD-mirrortree was BAS whereas for Tol-mirrortree was BAC.

ROC curves of BAC set for both approaches were almost similar

and to some extent to that of GAMMA set. However, as the

interaction scores calculated by Tol-mirrortree were relaxed, there

was a decline in the TPR for BAS and BANR reference genome

sets whereas curves of BAC and GAMMA sets were relatively

stable and gradually increased. We observed that the corrections

using 16S rRNA distances performed efficiently only when the

phylogenetic distances among the organisms in the reference set

were low. ROC curves of GD-mirrortree method for various

reference genome sets were quite stable for full range of calculated

interaction scores as compared to the behavior of Tol-mirrortree

(Figure 4). The prediction accuracy was observed highest for BAS

and lowest for BANR suggesting that the higher number of

genomes in the reference set was better for prediction accuracy.

PR curves also led to the same results as observed for ROC

measures (Figure S2D).

Performance results are reported in the form of AUCs for

mirrortree, Tol-mirrortree and GD-mirrortree in Table 2. It was

expected that performance of Tol-mirrortree would be better than

mirrortree [35]. Our results suggest that the prediction accuracy of

Tol-mirrortree was better than mirrortree but not for all reference

genome sets. Tol-mirrortree performed better than the mirrortree

for BAC and GAMMA sets. However, Tol-mirrortree showed

poor performance than the mirrortree for BAS and BANR sets

with AUC values of 0.82 and 0.74 compared to 0.90 and 0.84

respectively. It suggests that the bias caused by closely related

genomes was effectively corrected by Tol-mirrortree. However, if

the reference genome set contained distantly related genomes (as

in case of BAS and BANR), then the 16S rRNA distance based

correction caused deterioration of performance.

The aforementioned results remain broadly consistent even

when DIP and EcoCyc gold standard datasets were used (Table S2

& S3). However, on LQG dataset the performance of GD-

mirrortree and Tol-mirrortree methods was better for BAC and

BANR than that of BAS and GAMMA (Figure S1C). Nonetheless,

GD-mirrortree again performed slightly better than Tol-mirror-

tree. The probable reason for such a discrepancy of ROC curves

on LQG dataset is unexplainable. We believe that the source of

such discrepancy was 80% positive pairs of LQG that consist of

functional interactions of proteins co-occuring in the same KEGG

pathways, whereas inherently, mirrortree based methods are

known to be predictors of physical interactions.

Conclusions
The optimal performance of phylogenetic profiling, gene

neighbor, gene cluster and mirrortree methods for protein-protein

interaction predictions depends on the evolutionary information

retained in reference genomes selected for analysis. We compared

performance of these methods and their variants using carefully

chosen six reference genome sets in accordance with phylogenetic

diversity and show that all methods except GCM showed

substantially improved performance when a subset of phylogenet-

ically diverse archaeal genomes was used with eubacteria.

Phylogenetic profiling using bit scores as compared to the binary

digits performed relatively similar for all reference genome sets.

We conclude that the use of sequence similarity scores (bit scores)

to construct phylogenetic profiles minimizes the effect of reference

genome selection. Likewise, the gene neighbor variant used in our

study also showed robustness against the reference genome

selection. Arguably, our study suggests that the gene cluster

method performs best using reference set of genomes that are

phylogenetically close relatives of the query organism.

We have verified these results on number of gold standards and

found comparable results. There were subtle differences in the

performance of various methods when different gold standards

were used for evaluation of reference genome sets. Therefore, we

presented results that were derived from majority of gold standard

datasets. Among other sets, the BAS reference set of 121

phylogenetically diverse genomes gave accuracy comparable to

that achieved when other reference sets with about four times

higher numbers of genomes were used. Hence, it can be inferred

that the set with 100–150 genomes from each genus and related

genera representing all known classes/groups of prokaryotes

should be good enough to predict interactions with high accuracy.

Notably, the variants of phylogenetic profiling, gene neighbor and

gene cluster methods analyzed in our study can be used effectively

for protein-protein interaction predictions with small subset of

available several hundred prokaryotic genomes. In fact, phyloge-

netic profiling and gene neighbor variants should work with any

combination of reference genomes. Our observations are limited

to eubacterial query genome and prokaryotic genomes as the

reference set. Therefore, it would be interesting to study whether

these observations also hold true for other two domains of life i.e.

eukaryotes, and archaea.

Table 4. A statistical summary of reference genome sets used for mirrortree based analyses.

Reference genome set Number of genomes Scaling factor

GD-mirrortree Tol-mirrortree GD-mirrortree Tol-mirrortree

GAMMA 24 24 0.50 0.66

BANR 36 34 0.37 0.38

BAC 66 66 0.45 0.47

BAS 122 120 0.54 0.89

Notes: BAS, BAC, GAMMA and BANR are reference genome sets. GD is genome distance. Scaling factor is the highest correlation coefficient obtained between GD or 16S
rRNA distance matrix when compared with protein distance matrices derived for each reference genome set. Tol-mirrortree analysis using BANR and BAS set performed
using 34 and 120 reference genomes since 16S rRNA sequences for two Archaeal genomes could not be retrieve from Ribosomal database [69].
doi:10.1371/journal.pone.0042057.t004
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Materials and Methods

We chose the genome of Escherichia coli K12 MG1655 (E. coli) as

the query genome. Completely sequenced genomes of bacteria

available as on December 2007 at National Center for Biotech-

nology Information (NCBI) were downloaded from ftp://ftp.ncbi.

nih.gov/genomes/Bacteria [63]. A total of 566 prokaryotic species

with single chromosome were used for analysis. Orthologs of each

E. coli protein were identified by performing reciprocal best hit

search using standalone BLAST against the remaining 565

genomes [56]. The reciprocal hits with e-value less than or equal

to 1e-4 were retained as potential orthologs of E. coli proteins.

Given two proteins X and Y of the query genome, each

prediction method generates a numerical value based on various

aspects of their evolution computed through orthologs in a set of

reference genomes referred as interaction score. The interaction

score reflects the degree with which two proteins are functionally

linked. Considering the computational resources required to

compute the interaction scores for all possible pairs of E. coli

proteins, we performed analyses only for protein pairs that are

identified as positive and negative gold standard (explained in next

section).

Each prediction method requires a set of reference genomes to

compute interaction scores. We created six sets of reference

genomes from initial set of 565 that are called ALL, BAAC, BAS,

BAC, GAMMA and BANR (Table 1). BAAC set is composed of

448 diverse reference genomes, automatically detected based on

the shared orthologs of E. coli proteins between them. To remove

reference genomes with similar proportion of orthologs detected in

E. coli, a fraction of similarity between the two reference genomes

was calculated using Tanimoto coefficient as follows,

SAB~
nA\B

nAznB{(nA\B)

Where nA and nB are the number of E. coli orthologs in reference

genomes A and B respectively. nA>B is the number of E. coli

orthologs shared by genomes A and B [64]. The resulting

Tanimoto coefficients (SAB) between all possible pairs of reference

genomes were sorted and those having coefficient of 0.9 or more

were selected for clustering. The clustering was carried out using

Markov Cluster algorithm (MCL) [65] and only one genome was

retained from each cluster. A total of 448 genomes remained after

filtering 117 out of 565 original reference genomes.

Gold standard dataset for evaluation of prediction
methods

Physical and functional interactions reported in the EcoCyc

database (version 13), the DIP (January 2009 version) and the

KEGG database were used to create a gold standard dataset

[50,52,66]. First, we extracted 1,072 and 55,779 pairs constituting

proteins that co-occur in the same EcoCyc protein complexes or

KEGG pathways, respectively, 541 physically interacting protein

Figure 4. ROC curves for four reference genome sets using Mirrortree based methods. We have used here two variants of the mirrortree
methods i.e. the Tol-mirrortree and GD-mirrortree. The Tol-mirrortree (represented by dotted lines in the plot) uses 16S rRNA distance between two
genomes as a factor to correct the phylogenetic distance whereas the GD-mirrortree (represented by solid lines in the plot) uses a genomic distance
parameter reflecting the shared orthologs between two genomes to correct the corresponding phylogenetic distance (See methods for detail). The
colors of the lines correspond to the four reference genome sets (BAS, BAC, GAMMA and BANR) for which performance was evaluated. The plot
clearly shows that the GD-mirrortree method is superior to Tol-mirrortree method for these four reference genome sets. BAS and BAC perform better
than GAMMA and BANR with comparable level of accuracy.
doi:10.1371/journal.pone.0042057.g004
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pairs reported in DIP with evidence of low throughput experi-

mental analysis, and 3,873 functionally associated protein pairs

from EcoCyc database. Using these proteins pairs, we constructed

two positive (i.e. proteins that interact) gold standard datasets. First

set consisted of 289 pairs that are a part of DIP or protein complex

and have been reported in either KEGG or EcoCyc functional

interactions. So each protein pair of this dataset had evidence of

their physical association and participates in the same functional

pathway. Prior to selection, proteins with their orthologs in less

than 200 reference genomes were removed. We referred this

dataset as High Quality Gold standard (HQG) dataset. Second set

of 7,217 positive examples were created by combining interactions

reported in DIP, Complex and KEGG dataset. As stated above,

KEGG constitutes 55,779 protein pairs whose proteins co-occur in

at least one KEGG pathway. It is possible that one protein can

participate in multiple pathways. Hence, we only considered 6,240

protein pairs that participate in only one KEGG pathway. This

dataset was referred as Low-Quality Gold standard dataset (LQG).

For testing the prediction methods, it was necessary to have

protein pairs that do not interact with each other, i.e., negative

examples. Defining reliable negative examples for predicting PPI

has been acknowledged to be a challenging task [53,67]. As

described in previous studies, the negative dataset was formulated

based on different sub-cellular localization [22,53]. The presence

of signal sequence and transmembrane helix were predicted in all

E. coli proteins using Phobius web server (http://phobius.sbc.su.

se/) [68]. There is always a possibility of false prediction of signal

sequences as a transmembrane helix or vice-versa due to the

presence of hydrophobic amino acids in their sequences.

Therefore, the proteins with the presence of both signal sequence

and transmembrane helix or only transmembrane helix were

removed. Proteins that belong to more than one KEGG third level

categories were also removed to avoid possible functional overlap

[53]. Remaining proteins from different KEGG III level categories

were paired to form 3,52,673 potential non-interacting protein

pairs, each protein in a pair was from a different sub-cellular

localization (e.g. secretory and cytosolic).

We randomly selected 1,445 and 36,085 negative examples

among the proteins that constituted HQG and LQG positive

examples respectively. These negative pairs were incorporated into

HQG and LQG dataset to make the ratio of positive versus

negative examples 1:5 which resulted into 17,34 and 43,302

protein pairs in HQG and LQG dataset for evaluation respec-

tively. Additionally, we used complete DIP and EcoCyc co-

complex PPIs as gold standards to cross-validate the results

obtained by HQG and LQG datasets. The positive datasets then

combined with 1,14,504 negative protein pairs that belong to the

different sub-cellular localization and the different functional

categories at the first level of KEGG Orthology definition [50].

Computation of interaction scores
Interaction scores for gold standard protein pairs were

calculated using variants of five prediction methods which include

phylogenetic profiling, gene cluster, gene neighbor and mirrortree

as follow,

Phylogenetic Profiling Method. Phylogenetic profile matri-

ces were created for six reference genome sets. Rows in such

matrices were E. coli proteins, i1, i2…i4132 and columns were

reference genomes, j1, j2…jn, where n is the number of genomes in

a reference set. Each (i,j) cell of this matrix was filled with the bit

score of E. coli protein i and its homolog in the jth reference

genome. If a protein was absent in any reference genome then it

was denoted with score zero. Each cell or point of the phylogenetic

profile matrix of a protein, i (i.e., row) was normalized as

NBSij = BSij/BSmax, where BSij is the bit score of the alignment

between E. coli protein i and its ortholog in reference genome j.

BSmax is the maximum value of bit score obtained for protein i over

all its orthologs from n reference genomes. Second normalization

was carried out on reference genomes (i.e., column) by dividing the

minimum bit score over all E. coli protein orthologs in jth reference

genome [22,29]. Likewise, another set of profile matrices created

as a control where the presence and absence of E. coli protein

orthologs in matrix was represented with ‘1’ and ‘0’, respectively

[19]. Two proteins X and Y of E. coli displaying similar

phylogenetic profiles were assessed by calculating standard

Pearson Correlation Coefficient (PCC) between their vectors.

Gene Cluster Method (GCM). A gene cluster in a genome is

defined as a set of continuous co-directional genes with an

intergenic distance of 100 nucleotide bases or less between them.

The gene clusters were identified in all the reference genomes. The

propensity scores for gold standard protein pairs were calculated

as,

propensity(X ,Y )~
1

n

Xn

i~1

XY

Where n is the number of genomes in a reference set, XY = 1 if

orthologs of E. coli protein X,YMgene cluster in ith reference

genome, otherwise 0 [22].

Minimum Distance Method (MDM). The minimum dis-

tance between genes encoding protein X and Y of E. coli on the

basis of genes encoding their orthologs in the reference genomes is

calculated as described in [22]. Briefly, if the query proteins X and

Y are present in the reference genome i, then the probability that

genes encoding their orthologs are separated by fewer than d

nucleotide bases is given by

pn
i~1 (ƒd)~

2d

N

Where, d is the distance between translation start sites of genes

encoding orthologs of X and Y in the ith reference genome. N is

the length of the chromosome of ith reference genome in

nucleotide bases. n is the total number of reference genomes in a

set. Since the genomes under consideration are circular, the

distances between the gene pairs were calculated in both clockwise

and anti-clockwise direction. Minimum of these two values is d.

The minimum probability in any one reference genome is

considered as the interaction score for query proteins X and Y.

Mirrortree based methods. To quantify the co-evolution of

amino acids, Multiple Sequence Alignments (MSA) of the proteins

with their orthologs obtained from reference genomes were

generated. Then the distance matrices derived from the MSAs

were compared to find out the extent of co-evolving amino acids.

Considering the high computational cost of MSA construction, E.

coli proteins and their orthologs selected from 122 reference

genomes only (i.e., BAS set) were used for the construction of

MSAs by ClustalW [69]. Phylogenetic distance matrices were

generated for each E. coli protein using their MSAs. Each protein

matrix was of size n6n, where n represents the number of reference

genomes in which orthologs were detected. An element of the

distance matrix D for protein X, i.e. DX(i,j), represented the

genetic distance between reference genomes i and j, which is a

difference in amino acid sequences of protein X from reference

genome i and j.

Distance matrices of two proteins, X and Y are only comparable

when their dimensions are same. However, dimension of each
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protein matrix may differ depending on its phyletic distribution in

the reference genome set. Similar to the original implementation

of mirrortree approach, we considered a minimum of 15 common

reference genomes between distance matrices of both proteins to

calculate PCC between them [34]. We applied Tol-mirrortree and

a variant of this method referred here as GD-mirrortree to exclude

speciation information from these distance matrices.

In Tol-mirrortree method, protein distance matrices were

rescaled and subtracted from the 16S rRNA distance matrix

[35]. Briefly, for aforementioned 122 reference genomes, 16S

rRNA sequences were obtained from Ribosomal Database

(http://rdp.cme.msu.edu/seqcart/view.spr) using NCBI genome

accession numbers [70]. These obtained sequences were aligned

using ClustalW and phylogenetic distance matrix was computed.

The 16S rRNA distance matrices obtained were then compared as

above (mirrortree) with distance matrices of all the E. coli proteins.

The highest correlation coefficient value between 16S rRNA

distance matrix and E. coli protein was obtained and hereafter

referred as ‘‘scaling factor’’ [35]. The scaling factor obtained was

used to re-scale the protein distance matrices as well as 16S rRNA

distance matrix by dividing each distance. The 16S rRNA distance

matrix values were then subtracted from the corresponding

protein distance matrices. These re-scaled distance matrices were

then used to calculate PCC between protein pair as described

above for mirrortree.

In GD-mirrortree method, we used a novel approach that is

similar to Tol-mirrortree, however, the correction of protein

distance matrices was done by subtracting the genome distances

(GD) of the corresponding reference genomes from the distance

values of the protein matrices. Genome distances for a pair of

reference genomes were calculated using the following equation,

GDA,B~1{
nA\B

nAznB{(nA\B)

Where, nA and nB is the total number of proteins present in

genomes A and B, respectively. nA>B is the number of orthologs

shared by species A and B. The orthologs were obtained for each

of the species using a bi-directional BLAST search against the

remaining 121 reference genomes. The same procedure as above

(Tol-mirrortree) was used to re-scale the protein matrices and

genome distance matrix. However, the scaling factor was obtained

by comparing genome distance matrix with protein matrices. The

genome distance matrix values were then subtracted from protein

distance matrices. This approach was referred as GD-mirrortree.

Since the objective of this study was to understand the effect of

reference genome selection on the performance of prediction

methods, we made three reference genome sets using subsets of

total 122 organisms of BAS set. We calculated interaction scores

for gold standard protein pairs using their orthologs from each

reference genome set by mirrortree, Tol-mirrortree and GD-

mirrortree.

Performance evaluation
Since the interaction scores were generated only for gold

standard dataset protein pairs, we knew whether a particular pair

was true positive, i.e., an interacting or true negative, i.e., a

potentially non-interacting pair. These labels and corresponding

interaction scores were then utilized to plot ROC and PR curves

using ROCR package for R (http://www.r-project.org/) [71].

ROC curve visually represents the relative trade-offs between the

FPR and the TPR [72]. A correct PPI prediction method would

have a ROC curve above diagonal and its integral, AUC would be

above 0.5. For 100% correct predictions, this curve is rectangular

and AUC is equal to 1. PR curve visually represents the relative

trade-offs between the precision and recall (or TPR). The TPR,

FPR and precision values were calculated for a series of sorted

interaction score thresholds of each prediction as below,

TPR~
TP

TPzFN

FPR~1{
TN

TNzFP

precision~
TP

TPzFP

Where, TP and TN are the number of predicted true positives and

true negatives for a particular confidence score threshold of PPI

prediction method respectively. FP and FN are the number of

predicted false positives and false negatives, respectively, for a

particular confidence score threshold.

Pathway Similarity
The KEGG database classifies proteins into various pathways

which are associated with each protein in genome. Since a protein

may belong to more than one pathway, Jaccard Coefficient (JC) of

their KEGG pathway annotation was calculated as follows,

JC(X ,Y )~100 � DKEGGX\KEGGY D
DKEGGX|KEGGY D

Where KEGGx and KEGGY are the sets of specific pathways to

which proteins X and Y belongs. The coefficient represented the

degree by which two proteins share pathways [30].

Supporting Information

Figure S1 ROC curves for different reference genome
sets for protein-protein interactions prediction methods
on LQG dataset. (A) ROC curves for six reference genome sets

using Phylogenetic Profiling Methods. The solid lines depict the

phylogenetic profile constructed using normalized bit scores

(SPPM) whereas the dotted lines depict the binary phylogenetic

profile (BPPM). The colors of the lines correspond to the six

reference genome sets (ALL, BAAC, BAS, BAC, GAMMA and

BANR) for which performance was evaluated. As evident in the

figure, SPPM gives superior performance compared to BPPM for

all reference genome sets. The ROC curves clearly show that the

reference genome selection has profound influence on the

performance of BPPM compared to that of SPPM. (B) ROC

curves for six reference genome sets using Minimum Distance

Method. The colors of the lines correspond to the six reference

genome sets (ALL, BAAC, BAS, BAC, GAMMA and BANR) for

which performance was evaluated. ROC plot shows that the

method is broadly robust against choice of reference genome sets.

All reference sets performed equally well except BANR which was

slightly inferior. (C) ROC curves for four reference genome sets

using Mirrortree based methods. We have used here two variants

of the mirrortree methods i.e. the Tol-mirrortree and GD-

mirrortree. The Tol-mirrortree (represented by dotted lines in the

plot) uses 16S rRNA distance between two genomes as a factor to

correct the phylogenetic distance whereas the GD-mirrortree

(represented by solid lines in the plot) uses a genomic distance

parameter reflecting the shared orthologs between two genomes to
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correct the corresponding phylogenetic distance (See methods for

detail). The colors of the lines correspond to four reference

genome sets (BAS, BAC, GAMMA and BANR) for which

performance was evaluated. The plot clearly shows that the GD-

mirrortree method performed slightly better compared to Tol-

mirrortree method for these four reference genome sets.

(TIF)

Figure S2 Precision-Recall (PR) plots for different
reference genome sets for protein-protein interactions
prediction methods. (A) PR curves for six reference genome

sets using Phylogenetic Profiling Methods on HQG dataset. The

solid lines depict the phylogenetic profile constructed using

normalized bit scores (SPPM) whereas the dotted lines depict the

binary phylogenetic profile (BPPM). The colors of the lines

correspond to the six reference genome sets (ALL, BAAC, BAS,

BAC, GAMMA and BANR) for which performance was

evaluated. As evident in the figure, SPPM gives superior

performance compared to BPPM for all reference genome sets.

The PR curves clearly show that the reference genome selection

has profound influence on the performance of BPPM compared to

that of SPPM. (B) PR curves for six reference genome sets using

Gene Cluster Method on KEGG dataset. The colors of the lines

correspond to the six reference genome sets (ALL, BAAC, BAS,

BAC, GAMMA and BANR) for which performance was

evaluated. The reference genome set GAMMA outperforms

others however the PR curves diverge at higher recall values.

(C) PR curves for six reference genome sets using Minimum

Distance Method on HQG dataset. The colors of the lines

correspond to the six reference genome sets (ALL, BAAC, BAS,

BAC, GAMMA and BANR) for which performance was

evaluated. PR plot shows that the method is robust against choice

of reference genome sets. All reference sets performed equally well.

(D) PR curves for four reference genome sets using Mirrortree

based methods on HQG dataset. We have used here two variants

of the mirrortree methods i.e. the Tol-mirrortree and GD-

mirrortree. The Tol-mirrortree (represented by dotted lines in the

plot) uses 16S rRNA distance between two genomes as a factor to

correct the phylogenetic distance whereas the GD-mirrortree

(represented by solid lines in the plot) uses a genomic distance

parameter reflecting the shared orthologs between two genomes to

correct the corresponding phylogenetic distance (See methods for

detail). The colors of the lines correspond to the four reference

genome sets (BAS, BAC, GAMMA and BANR) for which

performance was evaluated. The plot clearly shows that the GD-

mirrortree method is superior to Tol-mirrortree method for these

four reference genome sets. For GD-mirrortree method BAS and

BAC perform better than GAMMA and BANR.

(TIFF)

Table S1 Performance summary for four computational meth-

ods using different reference genome sets on LQG dataset.

(PDF)

Table S2 Performance summary for four computational meth-

ods using different reference genome sets on DIP protein-protein

interactions.

(PDF)

Table S3 Performance summary for four computational meth-

ods using different reference genome sets on EcoCyc co-complex

protein-protein interactions.

(PDF)

Table S4 Performance summary for Gene Cluster Method

(GCM) at various Intergenic Distance Cutoffs (IDC) on KEGG

pathway associations as benchmark for six reference genome sets.

(PDF)
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