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CellFM: a large-scale foundation model pre-
trained on transcriptomics of 100 million
human cells

Yuansong Zeng 1,2,3,7 , Jiancong Xie1,7, Ningyuan Shangguan1, Zhuoyi Wei1,4,7,
Wenbing Li1, Yun Su4, Shuangyu Yang5, Chengyang Zhang2, Jinbo Zhang6,
Nan Fang 6,HongyuZhang 2, YutongLu 1, HuiyingZhao 5 , Jue Fan 6 ,
Weijiang Yu 1,4 & Yuedong Yang 1

Single-cell sequencing provides transcriptomic profiling at single-cell resolu-
tion, uncovering cellular heterogeneity with unprecedented precision. Yet,
current single cell data analysis suffers from the inherent data noises, batch
effects, and sparsity, highlighting the requirement of a unified model to
represent cellular states. To circumvent this problem, many recent efforts
focus on training single-cell foundation models based on large datasets.
However, current human foundation models are still limited by the sizes of
training data andmodel parameters. Here, we have collected a diverse dataset
of 100 million human cells, on which we train a single-cell foundation model
(CellFM) containing 800 million parameters. To balance efficiency and per-
formance, the model is trained through a modified RetNet framework on the
MindSpore. Extensive experiments have shown that CellFM outperforms
existing models in cell annotation, perturbation prediction, gene function
prediction, and gene-gene relationship capturing.

Single-cell RNA sequencing (scRNA-seq) technologies have revolutio-
nized molecular biology by enabling the measurement of tran-
scriptome profiles with unparalleled scale and precision1,2. As single-
cell technologies advance, the rapid accumulation of extensive data-
sets has posed significant analytical challenges3,4, primarily due to the
data’s inherent noise, sparsity, and batch effects. Despite the devel-
opment of numerous single-cell-specific tools5–7 to address these
challenges, their performance often falls short when applied to new
datasets and struggles to scale with the growing data size. More
importantly, these tools fail to fully leverage the rich information
embedded in large atlas datasets, underscoring the need for novel
computational strategies.

To address this challenge, several single-cell foundation models
have been developed to analyze single-cell data8. Drawing inspiration
from the remarkable success of large language models (LLMs) in nat-
ural language processing (NLP)9, and aiming to reduce training costs,
researchers have begun exploring the fine-tuning of these LLMs using
relatively small amounts of single-cell data. For example,
Cell2Sentence10 converts gene expression profiles of individual cells
into sequences of gene names ordered by expression levels and uses
these sequences to fine-tune the GPT-2 model. Similarly, GenePT11

utilizes GPT-3.5 to generate gene embeddings based on gene
descriptions andmetadata. While these approaches have improved by
fine-tuning the GPT models, they still fall short of fully harnessing the
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rich gene expression data in large single-cell datasets, highlighting the
need for more comprehensive strategies.

To create single-cell foundation models from scratch, three
types of single-cell foundation models, including ordering, value
categorization, and Value projection were proposed. We first intro-
duce gene-ranking-based models, such as iSEEEK12, which was the
first model trained on over 10 million cells by predicting gene rank.
Similarly, tGPT13 learns gene embeddings by autoregressively mod-
eling gene ranks relative to their neighbors, processing sequences of
genes ordered by expression levels, and predicting the next gene’s
rank based on prior context. Trained on 22.3 million single-cell
transcriptomes from humans and mice, tGPT demonstrated superior
performance across multiple datasets. Geneformer14 predicts gene
positions within the cellular context to derive rank-based gene
embeddings. With training on a dataset of 30 million single-cell
transcriptomes spanning diverse human tissues, Geneformer has
achieved outstanding predictive performance.

Recently, value categorization strategies were applied to leverage
gene counts. By representing each gene with an embedding and bin-
ning its RNA counts, these models convert the continuous gene
expression data into categorical values, enabling the use of methods
designed for categorical data. For example, scBert15 bins gene
expression values into discrete “buckets," transforming the con-
tinuous task of predicting gene expression into a classification pro-
blem. Trained on millions of human cells, scBert has shown improved
performance across various datasets. Similarly, scGPT16 also segments
gene expression values but enhances the process with an attention
mask mechanism for autoregressive prediction. Using a self-
supervised approach, scGPT optimizes both cell and gene repre-
sentations. Trained on over 33 million human cells, scGPT excels in
various single-cell tasks. The Universal Cell Embedding (UCE)17 cap-
tures molecular diversity across species by integrating genetic data
using protein language models. It uses self-supervised learning to
predict gene expression by masking a subset of genes, refining pre-
dictions with binary cross-entropy loss. With over 650 million para-
meters, UCE is trained on more than 36 million cells, offering insights
into gene expression across diverse cellular contexts.

To further predict precise gene values, the value projection-based
single-cellmodelswere proposed. In this strategy, the gene expression
vector xi is expressed as the sum of two components: a projection of
the gene expression vector and apositional or gene embedding.Unlike
ordering andvalue categorizationmethods, the key advantageof value
projection is that it preserves the full resolution of the data. For
example, scFoundation18 directly predicts raw gene expression values
using amask autoencoder (MAE). Trained on a large dataset of around
50 million human cells with ~0.1 billion parameters, scFoundation
demonstrates decent performance in single-cell analysis. Similarly,
GeneCompass19 incorporates four types of biological prior knowledge
to enhance the understanding of gene regulatory mechanisms during
gene expression prediction. Trained on about 50 million human and
50 million mouse cells, GeneCompass has around 100 million para-
meters. To integrate metadata information, scELMo20 leverages LLMs
like GPT-3.5 to generate metadata descriptions and embeddings,
combining them with raw data in both zero-shot and fine-tuning fra-
meworks to address a variety of tasks.

Despite the endeavor, the potential of foundation models trained
exclusively on 100million human cells has yet to be fully explored. The
limited availability of sufficient single-species training data, such as for
human cells, hindered the development of large-scale, single-species
models. Existing single-species models are typically trained on around
50 million cells, resulting in fewer than 100 million parameters. One
reason for this limitation is the difficulty in collecting single-cell data-
sets, which are often stored in various formats (e.g., FASTQ, h5ad,
Seurat objects, 10x Genomics) and dispersed across different reposi-
tories to accommodate diverse data processing and analysis needs.

Here, we collect a lot of single-cell datasets from public databases
and then make these data cleansing and standardization of unified
formats, resulting in compiling a dataset of approximately 100million
human cells sequenced through various technologies. These datasets
are twice as large as those used in the current largest single-species
model, providing a rich foundation for training a larger model21,22. We
proposed a robust single-cell foundationmodel CellFM (Fig. 1) with an
impressive 800 million parameters, marking an eightfold increase in
model parameters over the current largest single-species model. To
enhance the training of CellFM’s extensive parameters and to handle
its substantial dataset, we have integrated ERetNet, a Transformer
architecture variant with linear complexity. ERetNet’s design ensures a
balance between efficiency and performance, serving as the backbone
of ourmodel. CellFM is categorized as a value-projection-based single-
cell foundation model, as it aims to recover the vector embeddings of
masked genes derived from their linear projections based on gene
expression values. CellFM is developed using the MindSpore AI fra-
mework from Huawei and is trained on four Huawei Altas800 servers,
each equipped with eight Ascend910 NPUs. Our comprehensive
experiments have shown that CellFM outperforms existing models
across diverse applications, such as cell annotation, perturbation
prediction, and gene function prediction.

Results
Overview of cellFM
Single-cell sequencing technology is crucial for revealing the detailed
landscape of cellular diversity and function at the single-cell resolu-
tion. With the development of single-cell sequencing technologies, a
vast array of datasets has been amassed, laying a robust groundwork
for the training of single-cell foundation models. However, these
datasets are available across various public repositories, including the
National Center for Biotechnology Information (NCBI) Gene Expres-
sion Omnibus (GEO)23, the European Nucleotide Archive (ENA)24, the
Genome Sequence Archive (GSA)25,26, and the ImmPort27. We have
meticulously curated single-cell data from these esteemed public
databases (Fig. 1a). These datasets are stored inmultiple formats, such
as FASTQdata, expressionmatrices, or Seurat/Scanpy objects.We first
process raw FASTQ data into the gene expression matrix through
primary analysis software provided by manufacturers. Subsequently,
all acquired expression matrices were processed using a standardized
data analysis workflow facilitated by the SynEcoSys® single-cell data-
base (Singleron Biotechnologies)28. This process involved three key
steps including quality control for filtering cells and genes, gene name
standardization according to HUGO Gene Nomenclature Committee
(HGNC) guidelines, and converting the data to a unified sparse matrix
format for subsequent analysis. Our efforts have successfully aggre-
gated 19,914 samples, totaling 102,304,686 human cells fromdifferent
organs and single-cell sequencing technologies. We have provided a
dataset summary (Supplementary Fig. S1) and shared a detailed list of
the sources for the training datasets used in CellFM (Supple-
mentary_Metadata_information.xlsx). Concretely, 46.3 million
cells were derived from normal donors, the other cells were from
diseased donors, such as 7.1 million cells from Viral infections donors
and 3.5 million cells from lung cancer donors. Most datasets were
sequencedby 10xgenomics30 containing66.7million cells. Among the
curated dataset, approximately 70 million cells had annotated cell
types. The training dataset includes a diverse range of cell types, such
as T cells (19.2 million), mononuclear phagocytes (7.01 million), neu-
rons (6.29 million), and fibroblasts (3 million).

Building on our comprehensive collection of human cell data, we
introduce CellFM, an efficient foundation model endowed with 800
million parameters, designed to streamline the analysis of single-cell
data (Fig. 1b). Themodel’s core is comprised of an embeddingmodule,
a series of stacked ERetNet Layers, and the low-rank adaptive module
(LoRA) mechanism. CellFM begins by converting scalar gene
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Fig. 1 | Overview of the CellFM Framework. a CellFM consists of the Embedding
module, the ERetNet module, and the LoRA module. The expression of the cell is
first fed into the Embeddingmodule to obtain the initial token values of each gene.
The embedded gene tokens of the cell are then input into the ERetNet module to
learn the gene-to-gene relationships and gene embeddings. Finally, the Low-Rank
Adaptation (LoRA) is implemented to minimize the number of training parameters

of CellFM. b Each ERetNet Layer block integrates Multi-Head Attention (MHA), the
Simple Gated Linear Unit (SGLU), and Layer Normalization (LN). c The collecting
workflow and constituents of the training dataset employed within CellFM. d The
pre-trained CellFM model is adaptable for a multitude of single-cell downstream
analyzes including cell type annotation, perturbation prediction, gene network
inference, and gene function prediction.
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expression data into rich, high-dimensional embedding features
through its embedding module. These gene embeddings are then fed
into L ERetNet Layers, which are adept at capturing the nuanced
relationships among genes based on their expression profiles. Each
ERetNet Layer is composed of several key components: the Gated
Multi-headAttention (MHA) unit, the Simple Gated LinearUnit (SGLU),
and Layer Normalization (LN). Collectively, these elements empower
the ERetNet Layer to achieve training parallelism, cost-effective infer-
ence, and superior performance (Fig. 1c). Furthermore, CellFM inte-
grates the LoRAmodule to reduce the number of trainable parameters
during thefine-tuningphasewhen adapting themodel to newdatasets.
Once pre-trained, CellFM can be applied to multiple single-cell
downstream applications, such as gene function prediction, cell type
annotation, perturbation effect prediction, and gene network analy-
sis (Fig. 1d).

CellFM improves the accuracy of gene function prediction
Gene function prediction is a cornerstone for deciphering the roles
and properties of genes under diverse conditions14. With the human
genome comprising ~20,000 protein-encoding genes29, and a sig-
nificant portion lacking functional annotations, the accurate predic-
tionof gene functions is imperative for a deeper understandingof their
roles within biological systems. Here, we evaluated the performanceof
CellFM for identifying gene function through three distinct gene
categories including Dosage sensitivity (referred to as T1), Bivalent
methylation status versus non-methylated (T2), and Bivalent methy-
lation versus Lys4-only methylation (T3). These categorizations
represent binary classification challenges, where model predictions
are assessed against actual gene function labels. Since the limited
number of genes in these three tasks, typically fewer than 1000, fine-
tuning existing single-cell foundation models presents a challenge.

To make a fair comparison, we adopted a zero-shot learning
strategy for each model on the gene function prediction task. As
shown in Fig. 2a, our model demonstrated remarkable results,
achieving the best performance on three tasks. CellFM surpassed
existing methods, with a 5.68% and 5.86% increase over the top two
competingmodelsUCE and scGPT in termsof average accuracyvalues,
respectively. A similar trend was observed for Macro-F1 scores
(Fig. 2b). The superior performance of our model was further sub-
stantiated by visualization results generated by Uniform Manifold
Approximation and Projection (UMAP) using the gene embeddings
from each pre-trained model. Our model’s ability to distinctly cate-
gorize dosage-sensitive fromnon-sensitive genes was evident in Fig. 2c
and Supplementary Fig. S2. However, scGPT and Geneformer exhib-
ited an overlap in the embedding space that could undermine gene
functionprediction accuracy. In summary, ourfindings underscore the
model’s proficiency in accurately predicting gene functions utilizing a
zero-shot approach, showcasing its efficacy without the need for
extensive model fine-tuning.

To evaluate the ability of CellFM on multi-class classification, We
further performed the gene function prediction using the data from
the Gene Ontology (GO). This dataset includes three major categories:
biological process (BP), cellular component (CC), and molecular
function (MF). Detailed information about theGOdataset canbe found
in the referenced study30. Given the complexity of predicting all gene
functions (BP: 1578, CC: 253, MF: 299), we focused our evaluation on
the top 10 most frequent functions within each category. This
approach ensures a realistic yet manageable benchmark for model
comparison. To guarantee fairness acrossmethods, we intersected the
gene sets from each foundational single-cell model and maintained
consistent training, validation, and test sets. As shown in Fig. 2d,
CellFM demonstrated superior average performance, outperforming
the top two models GeneCompass and UCE by 1.6% and 1.94% in
average AUPR, respectively. Other models such as scFoundation and
Geneformer also delivered competitive results with scGPT achieving

an AUPR of 71.3%. We didn’t compare with scELMo since scELMo
employed large language models (LLMs) like GPT-3.5 as generators to
generate embeddings from metadata descriptions in the training
phase, which has included gene function information.

CellFM enables predicting perturbation responses
Recent advancements in sequencing and gene editing have enabled
large-scale experimental perturbation simulations to study changes in
gene expression and cellular behavior. These simulations are essential
for understanding cellular responses to various stimuli and are
increasingly applied to investigate drug effects, disease mechanisms,
and therapeutic interventions. However, the vast combinatorial space
of potential gene perturbations quickly exceeds the practical limits of
experimental feasibility. To overcome this, single-cell foundation
models adopt perturbation modeling, leveraging knowledge from
known experimental perturbations to predict responses to unknown
perturbations. By utilizing self-attention mechanisms over the gene
dimension, these models can capture intricate gene interactions and
accurately predict gene expression responses inunseen perturbations.
The predictive power of perturbation modeling becomes especially
valuable in AI-driven drug discovery, where it is used to forecast how
existing drugs or genes will affect cellular processes, identify new drug
targets, and explore drug repurposing opportunities. Additionally,
thesemodels offer deep insights into cellular heterogeneity, crucial for
developing personalized medicine strategies.

To assess CellFM’s proficiency in predicting perturbation
responses, we utilized two Perturb-seq datasets: (1) the Adamson
dataset31, encompassing 87 single-gene perturbations with roughly
100 cells per perturbation and at least 7000 control cells; and (2) the
Norman dataset32, which includes 131 dual-gene and 105 single-gene
perturbations. As depicted in Fig. 3a, we employed the Pearson cor-
relation metric on the top 20 differentially expressed genes (De) to
evaluate each model, where Δ denotes the degree of gene expression
alteration post-perturbation relative to the control state. We evaluated
all single-cell foundation models on the perturbation task by com-
bining them with the classic perturbation model GEARS, as suggested
by the study scFoundation. GEARS is a computational tool specifically
designed for predicting single and multi-gene perturbations based on
scRNA-seq datasets. GEARS operates by integrating a gene-gene
interaction network as prior knowledge, which allows it to leverage
existing biological information to improve prediction accuracy. GEARS
has demonstrated state-of-the-art performance in gene perturbation
predictions, making it a leading choice in the field. Concretely, we
replaced GEARS’ gene embeddings with those derived from CellFM
(Fig. 3a). As shown in Fig. 3b-c, our model consistently outperformed
all competing single-cell foundation models, achieving improvements
of 1% and 1.45% in average PCC and MSE compared to the second-
ranked model scFoundation, respectively. Additionally, CellFM con-
sistently surpassed GEARS with 4.75% and 7% improvement regarding
average PCC andMSE values, respectively. As shown in Supplementary
Fig. S4, CellFM consistently outperformed all other single-cell foun-
dation models, as well as the non-foundational model GEARS, when
measured by the R2 metric. CellFM achieved an R2value that was 1.3%
higher than the second-best scGPT in terms of average R2. The visual
results for two specific perturbation cases from the Adamson dataset
in Fig. 3d have further shown that CellFM could accurately predict the
direction of perturbation.

The Norman dataset targeted 105 genes with 236 perturbations
and represented just 5% of the expansive 5565 possible gene combi-
nations, highlighting the vast unexplored perturbation space. Conse-
quently, we harnessed CellFM to extend the scope of perturbations
virtually and graphically represent the anticipated average response
for each gene combination. Concretely, we trained CellFM on the
existing knockouts (KOs) from the Norman dataset and extrapolated
to other perturbations. CellFM was trained on the original Norman
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Fig. 2 | Comparison of Gene Function Prediction performance in a zero-shot
setting. a accuracy (ACC) scores and (b) Macro-F1 values for CellFM along with
other competing single-cell foundation models on the binary classification data.
c The visualization results of CellFM, scGPT, and Geneformer are plotted by the
Uniform Manifold Approximation and Projection (UMAP) using the gene embed-
ding generated through each model. d The Area Under the Precision-Recall Curve

(AUPR) values for multiple gene functions predicted by CellFM and other com-
peting single-cell foundation models on Gene Ontology (GO) data, where each
gene is annotated with numerous functions. MF Molecular Function, CC Cellular
Component, and BP Biological Process. Source data are provided as a Source
Data file.
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Fig. 3 | Analysis of Perturbation Response and Reverse Perturbation Predic-
tions. a A diagram showcasing the perturbation prediction model leveraging cell-
specific gene embeddings derived from CellFM. b The mean square error (MSE)
between predicted and actual post-gene expressions for the top differentially
expressed (DE) genes in a zero-shot setting. c Comparison of CellFM with other
single-cell foundation models and the perturbation prediction method GERAS.
Pearson correlation coefficients between predicted and actual gene expression
changes are reported for the top differentially expressed (DE) genes in a zero-shot
setting. d Analysis of gene expression changes following perturbations of AHR+ctrl
(n=464cells) andBPGM+ZBTB1 (n= 280cells). Theplots compare predicted versus
actual expression changes for the top 20 differentially expressed genes. Box plot
elements represent: center line, median (50th percentile); box limits, upper (75th)

and lower (25th) quartiles; whiskers, 1.5 × interquartile range (IQR) from the box;
points beyond whiskers are considered outliers. The horizontal dashed line indi-
cates the null effect baseline (0 change). Minimum and maximum values are
represented by the whisker endpoints, with all percentiles calculated from the
empirical distribution of expression changes. e A graphical representation of
potential perturbation combinations across a 20-gene space, differentiated by
experiment type (train, valid, test, unseen). Predicted perturbations are indicated
by square boxes, with the actual source perturbationmarked by a cross. The boxes
are colored as follows: darkpurple for test data, light purple for validation,medium
purple for training, and gray for unseen. f The accuracy of eachmodel in predicting
the correct source of perturbation among the top 10 predictions for test cases in a
fine-tuning setting. Source data are provided as a Source Data file.
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dataset, which covers 236 perturbations targeting 105 genes. We then
used the fine-tuned model to predict and expand the responses to
untested perturbation combinations in silico. These predictions were
visualized as the response for each perturbation combination. We
excluded all perturbed genes and plotted the UMAP graph. As shown
in Supplementary Fig. S5, the clusters exhibited overlap in certain
regions while remaining distinct in others, consistent with the expec-
tation that several perturbations either have no effect or produce
similar effects. The genes depicted in each cluster represent the
“dominant gene" within the perturbation combinations. The results
have demonstrated a strong association between the clusters and their
respective dominant genes. For example, the cluster associated with
the SET gene indicates that the data points in this cluster correspond to
combined perturbations involving SET and another gene (e.g., SET
+CLDN6, SET+MIDN).

In addition to the gene perturbation, we further validate the per-
formanceofCellFMondrug-perturbeddata. Similarly,wealsocombined
CellFMwith a non-single foundationmodel CellOT33, which was a classic
model for drug perturbation prediction. Concretely, we integrated
CellFM and CellOT by replacing the input cell representation of CellOT
with the cell representation from CellFM (Supplementary Fig. S9a), as
CellOT is specifically tailored for drug perturbation anddoes not require
gene embeddings. In this setting, we compared CellFM with CellOT,
scGEN, and Identity. As indicated in Figure S9b, CellFM outperformed
CellOT in perturbation prediction on four drugs, achieving improve-
ments of 66.6% and 2.2% in average l2 and PCC, respectively.

Reverse perturbation prediction in silico using CellFM
Beyond forecasting the outcomes of gene perturbations, the accurate
prediction of CRISPR target genes that prompt cellular recovery from
disease states is equally significant. Here, we conducted “in silico
reverse perturbation prediction” following the study scGPT16, utilizing
the Norman dataset. Concretely, we followed scGPT, selecting 20
perturbation genes from the Norman dataset to construct perturba-
tion cases for fine-tuning and testing. This combinatorial space con-
sists of 210 one-gene or two-gene perturbation combinations. The
subset was selected to maximize the representation of ground truth
perturbation data across both training and testing cases, using a ran-
dom train-test split. Since scGPT did not specify a particular seed for
splitting, we used the default seed. The resulting dataset contained 47
(22%) known perturbations, including 33 training cases, 3 validation
cases, and 11 test cases, with the remaining perturbation cases left as
unseen. Both scGPT and CellFM were evaluated on this newly split
dataset, as we were unable to replicate the exact splits used in the
original scGPT study.

CellFM demonstrated remarkable success, accurately predicting
the perturbations that would yield the observed cellular outcomes. For
example, it accurately identified the combination ofCNN1 and ETS2, as
well as the pairing of ETS2 and IGDCC3, as the top predictions for a
specific test case (Fig. 3e). A similar accuracy trend was observed for
the perturbations involving the combinations of IGDCC3 and MAPK1,
andCEBPE andCNN1 genes (Supplementary Fig. S6). CellFMand scGPT
achieved similar performance in relevant perturbations (purple bars in
Supplementary Fig. S8). However, CellFM achieved an average of
correctly identified perturbations in 81.8% of the top 10 predictions
(Fig. 3f), which was 18.1% higher than scGPT. As the number of top
predictions considered increased, both CellFM and scGPT demon-
strated enhanced performance. However, GEARs did not exhibit a
comparable level of improvement in accuracy. The performance of
GEARS was consistent with the findings reported in the scGPT, where
the hit rates for top 1 to top 8 predictions also remained constant. This
behavior is likely due to the limitations of GEARS as a smaller model,
which struggles to identify perturbation combinations effectively. To
further assess the robustness of CellFM, we performed additional
evaluations by varying the random seeds during the dataset splitting

process to generate the new training and test cases. As shown in
Supplementary Fig. S7b, CellFM outperformed scGPT and GEARS in
terms of average hit rate accuracy. Specifically, CellFM achieved an
average of 36.3% and 54.5% correctly identified perturbations in the
top 3 and top 5 predictions, which were 18.1% and 18.2% higher than
scGPT, respectively. To further examine whether the performance of
CellFMwas affected by random seeds duringmodel fine-tuning, we re-
evaluated CellFM, scGPT, and GEARS under different random seeds.
The results demonstrated that CellFM consistently maintained com-
parable top 1 prediction performance, outperforming scGPT by 9.1%
(Supplementary Fig. S7a). For the reverse perturbation prediction, we
maintained the original comparison for CellFM and only evaluated it
against scGPT andGEARS since the newly added single-cell foundation
models neither provided code nor published corresponding results in
their original studies (Supplementary Fig. S3) and reimplementing
these models would have required substantial programming effort
and time.

The current study is limited to gene perturbation without con-
sidering drug molecules. Thus, our method doesn’t perform reverse
perturbation prediction in silico on the drug perturbation datasets
such as sciPlex, since drug perturbation datasets require additional
information specific to the drug molecules themselves. In the future,
we will expand CellFM’s capabilities to support drug perturbation
datasets, which will involve adapting the model architecture to incor-
porate drug-specific molecular information.

Cell type annotation with CellFM
Cell type annotation is a cornerstone of single-cell data analysis,
essential for uncovering the cellular heterogeneity within biological
samples. To evaluate CellFM’s competency in cell type annotation, we
conducted an exhaustive benchmark against several recent single-cell
foundation models. We have also included two baseline methods—
SVM and scmap—which were also suggested simultaneously in the
benchmark studies34,35. The cell annotation benchmarks used in our
study, including intra-dataset and inter-dataset evaluations, were
based on the latest benchmarking framework, scEval8, designed to
evaluate single-cell foundation models on cell annotation tasks. Fol-
lowing prior studies such as scGPT and scEval, we utilized randomized
train-test splits for intra-dataset evaluation to assess model perfor-
mance under consistent experimental conditions. While intra-datasets
were a part of our evaluation, we also performed inter-dataset testing,
which better reflects real-world scenarios involving large batch effects.
For inter-datasets, we partitioned the data by batch or patient ID,
iteratively using each batch as the test set while training on the
remaining batches. For hPancreas, we directly adopted the train-test
settings established in scGPT, ensuring training and testing data came
from different batches. This cross-batch validation ensures a thorough
and fair assessment of model robustness across batches. Importantly,
the cell annotation datasets used in our study were not included dur-
ing the pre-training of CellFM. For the zero-shot cell type annotation
task, all foundation models, including ours, were fully frozen during
training. Classifiers (e.g., MLP or CNN+MLP) were then trained on
embeddings extracted from these frozen models using labeled train-
ing data and the cross-entropy loss function. These trained classifiers
were subsequently used to predict cell types on test datasets. We used
the default classifiers implemented in each single-cell foundation
model. For models like UCE, which lack a predefined classifier, we
implemented a multi-layer perceptron (MLP) approach, in line with
standard foundation model practices. For the CellFM, we followed it
with the MLP classifier for the classification task.

Based on the findings in the “Scaling of data and model size”
section (Supplementary Note 4), we used CellFM with 80 million
model parameters (CellFM-80M) for cell annotation and batch effect
correction tasks. Our initial evaluation involved eight intra-datasets.
Following the methodology established by scGPT16, we segmented
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Fig. 4 | Zero-shot cell type annotation performance of each model. Heatmaps
illustrating (a) classification accuracy and (b)Macro-F1 scores of eachmodel across
intra-datasets. Red indicates lower performance, and blue represents the highest
performance. cThe river plot ofCellFM illustrates the predicted cell types and their
relationships to the actual cell types on the Immune dataset. d The river plot of
scGPT illustrates the predicted cell types and their relationships to the actual cell
types on the Immune dataset. Heatmaps show (e) classification accuracy and (f)

Macro-F1 scores of each model across inter-datasets, with each value representing
the average accuracy calculated fromfive independent runs usingdifferent random
seeds. Red indicates lower performance, and blue represents the highest perfor-
mance. g The river plot of CellFM illustrates the predicted cell types and their
relationships to the actual cell types on the hPancreas dataset. h The river of scGPT
plot illustrates the predicted cell types and their relationships to the actual cell
types on the hPancreas dataset. Source data are provided as a Source Data file.
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each intra-dataset, allocating 70% for training and the remainder for
testing. As illustrated in Fig. 4a, CellFM(80M) excelled baselines in
terms of ACC across intra-datasets (we simply refer to CellFM(80M) as
CellFM). The average ACC for CellFM was 92.91%, surpassing the
second-ranked single-cell foundation model scFoundation by 2.02%.
CellFM were also 1.97%, 26.86%, and 10.2% higher than those of SVM,
scmap, and scBERT, respectively. A similar trend could be found when
measured by the Macro-F1 values (Fig. 4b). To substantiate the
superior outcomes of CellFM, we present a case study of the immune
dataset. The predictions were visualized in Fig. 4c, d and Supplemen-
tary Fig. S10, 11, CellFM achieved high precision formost cell types. To
evaluate the efficacy of our model in the context of batch effects, we
assessed its performance on 7 paired cross-batch datasets. In each
scenario, a distinct batch of data was designated as the test set,
with the remaining data constituting the training set. As depicted in
Fig. 4e, f and Supplementary Fig. S12, our model continued to out-
perform its competitors and was 2.3% higher than the second-ranked
single-cell foundation model scFoundation. CellFM outperformed
SVM, scmap, and scBERT on inter-dataset cell annotation tasks, with
average accuracy improvements of 2%, 21.1%, and 3.4%, respectively.
We further present a visualization case study of the hPancreas dataset
in Fig. 4g, h and Supplementary Fig. S10-11. CellFM showed a high
precision of most cell types. We also evaluated the embedding quality
of all single-cell foundation models on inter-datasets using the scIB
metric scores. As shown in Supplementary Fig. S15, CellFM out-
performed competing models in AvgBio scores, aligning with its
enhanced cell classification performance. Additionally, we incorpo-
rated the scIB metric scores to evaluate the impact of MLP layers in
CellFM and found minimal performance variation when adjusting lay-
ers from one to three. Supplementary Fig. S16 shows a positive corre-
lation between classification accuracy and AvgBio scores, but both
metrics exhibited only minor changes across layer configurations.

To further assess CellFM’s capability to distinguish subtypes such
as exhausted and activated CD8+ T cells, we evaluated it on the basal
cell carcinoma (BCC) dataset (GSE123813) and the liver hepatocellular
carcinoma (LIHC) dataset (GSE140228), both obtained fromadatabase
article36 due to their availability in h5ad format and detailed cell type
annotations. As shown in Supplementary Figs. S13 and S14, CellFM
consistently outperformed other models across all cell types, achiev-
ing an average accuracy 2.3% higher than the second-best model, UCE.
Notably, CellFM demonstrated exceptional performance in distin-
guishing exhausted and activated CD8+ T cells, surpassing UCE by an
average of 6.5%. On the BCC_GSE123813 dataset, CellFM achieved
accuracy scores of 77% and 74% for exhausted and activated CD8+
T cells, respectively, outperforming UCE by 6% and 7%. A similar trend
was observed on the LIHC_GSE140228 dataset, further confirming
CellFM’s robustness in identifying these cell states.

We made CellFM, scGPT, GeneCompass, and Geneformer to fine-
tune. As shown in Supplementary Fig. S17, the performance of fine-
tuned scGPT aligns closely with the results reported in its original
article and the benchmark study scEval8. For instance, fine-tuned
scGPT achieved 92.2% cell type annotation accuracy on the human
pancreas dataset, comparable to its original study and that reported in
scEval. Similarly, fine-tuned Geneformer reached 85.3% accuracy on
the same dataset, consistent with the performance reported in scEval,
although its original paper did not provide results for cell type classi-
fication. The fine-tuned GeneCompass achieved comparable results
with the fine-tuned CellFM. CellFM(800M) obtained low performance
on the intra- and inter-datasets when evaluated through zero-shot.
However, across all inter-datasets, CellFM (800M) demonstrated an
average fine-tuning accuracy that was 12.8% and 15.92% higher than
scGPT and Geneformer, respectively. This performance indicated the
potential power of the larger model. To evaluate the performance of
CellFM affected by LoRA during the fine-tuning phase, we conducted
the ablation experiments on the cell type annotation task using the

inter-datasets. As shown in Supplementary Fig. S18, the performance
of CellFM showedminimal changes when LoRAwas applied compared
to when it was not, across the inter-datasets. However, using LoRA
reduced the time required for fine-tuning. Based on these findings, we
recommend applying LoRA during the fine-tuning of CellFM to
enhance efficiency without sacrificing performance.

Since LongNon-CodingRNAs (lncRNAs)were included inCellFM’s
training data, we evaluated its ability to identify cell-type-specific
lncRNAs using attention scores. By analyzing CLS-gene attention, we
selected the top 100 genes per cell type, identifying critical lncRNAs
for classification. Trained on PBMC data, CellFM highlighted
HOTAIRM1 as a top gene for CD14+ Monocytes. This myeloid-specific
lncRNA regulates monocyte differentiation via miR-3960 and HOXA1,
with silencing reducing CD14 and monocyte marker expression.
Including HOTAIRM1 in scRNA-seq annotation improves CD14+ Mono
identification accuracy, demonstrating lncRNAs’ value in cell type
classification37.

To evaluate whether alternative normalization methods might
further improve CellFM’s performance, we tested scTransform38,
which corrects the variance-mean bias. Due to computational con-
straints, we performed these experiments using a smaller CellFM
model with 80 million parameters instead of the original 800 million.
As shown in Supplementary Fig. S21(a), the performance with
scTransform was slightly lower than with log1p normalization used in
CellFM. These results suggested that while scTransform addresses
variance-mean bias explicitly, it does not yield substantial improve-
ments in CellFM’s performance for the cell-type annotation tasks
evaluated.

To evaluate the efficiency of the modified ERetNet model used in
CellFM, we further evaluated two key modifications to RetNet: repla-
cing the traditional feedforward network with a gated bilinear net-
work, and substituting the pre-layer LayerNorm with the DeepNorm
layer normalization technique. We also benchmarked it against the
classic Transformer model. All ablation experiments were conducted
using a newly trained CellFMmodel with 80million parameters, with a
focus on the cell type annotation task, due to limitations in time and
computational resources. As shown in Supplementary Fig. S21(b),
removing the Simple Gated Linear Unit and DeepNorm resulted in
decreases of 0.8% and 0.9%, respectively. Additionally, the removal of
the L_cls loss led to a slight drop (0.4%) in performance. When com-
pared to the classic Transformer, CellFM demonstrated a 1.2%
improvement. In conclusion, these modifications collectively con-
tributed to the robust performance of CellFM, as evidenced by the
benchmarking results. Additionally, the implementation of Gated
Multi-head Attention (MHA) in CellFM improved the computational
complexity fromOðl2maxdÞ to Oðlmaxd

2
=hÞ, where d was set to 1536 and

the number of attention heads (h) was set to 48. Consequently, the
actual computational complexity of CellFM is O 2048× 15362

48

� �
, which

is smaller thanO 20482 × 1536
� �

: The formula derivation can be found
in Supplementary Note 1.

To further evaluate the performance of CellFM in integrating
datasets with batch effects, we conducted a comparison among three
single-cell foundation models: scELMo, scGPT, and UCE. We included
scGPT, scELMo, and UCE in the comparison, as their original studies
reported batch correction capabilities. The deep learning framework
used for CellFM, MindSpore, does not support the Gradient Reversal
Layer (GRL) technique. Similarly, other single-cell foundation models
with batch effect correction functionalities also lack GRL imple-
mentation. To ensure a fair comparison, we re-evaluated scGPT by
removing the GRL loss while retaining its other loss functions. We
evaluated CellFM across multiple datasets, including PBMC 10k, the
human brain cell atlas, and two versions of Tabula Sapiens. As
demonstrated in Supplementary Fig. S19, CellFM achieved the highest
average AvgBio scores on these datasets, outperforming the second-
best method, UCE, by 2.1%.
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Deciphering gene relationships with CellFM
The intricate interplay among target genes within a Gene Regulatory
Network (GRN) is pivotal for orchestrating key biological processes.
Here, we examined the ability of CellFM to encode these gene rela-
tionships through its gene embeddings and attention maps. To eval-
uate the gene relationships efficiently captured by the pre-trained
CellFM, we fine-tuned CellFM using 32484 immune cells from the
Immune data and about 200000 non-immune cells from the human
brain data. As shown in Fig. 5a and Supplementary Fig. S22, we present
three gene relationship graphs: Fig. 5(a) shows the pre-trained CellFM,
Figure S22(b) displays CellFM trained on immune cells, and Figure
S22(c) illustrates CellFM trained on non-immune cells. The results
show that the relationships among genes IL-2, IL-3, and IL-4, observed
in the pre-trained CellFM, were preserved when CellFM was fine-tuned
on immune cells. However, these relationships were absent when
CellFM was trained solely on non-immune cells. Previous studies have
shown that IL-2, IL-3, and IL-4 are involved in the JAK/STAT pathway.
IL-2, secreted primarily by Th1 cells, promotes immune activation,
while IL-4, secreted by Th2 cells, facilitates anti-inflammatory signaling.
Together, they regulate immune responses by mediating cell pro-
liferation, differentiation, and immune homeostasis. Additionally, IL-3
stimulates the STAT5 pathway, which regulates cell proliferation, dif-
ferentiation, and anti-apoptotic signaling39,40. In summary, CellFM
effectively preserved biologically relevant immune gene relationships.
On the other hand, we observed that the gene relationship structures
between IL1RAP and IL1R1 were only present in the CellFM trained on
immune cells. Previous studies have shown that IL1RAP and IL1R1 form
a functional receptor complex that mediates IL-1β signaling. This
interaction plays a critical role in neutrophilic inflammation, exacer-
bating airway inflammation and contributing to worsened pulmonary
obstruction.

To further verify the identified gene programs, we followed scGPT
to perform Leiden clustering gene programs on the gene similarity
graph construed by K-Nearest Neighbors (KNN) and extracted gene
programs from gene clusters that consisted of five or more genes.
Subsequently, we conducted a comprehensive pathway enrichment
analysis based on the gene programs using the Kyoto Encyclopedia of
Genes andGenomes (KEEG). As illustrated in Fig. 5b,we juxtaposed the
results yielded by CellFM with those obtained from co-expression
network analysis. CellFM consistently revealed a significantly higher
number of enriched pathways across all clustering resolutions, except
for the resolution at 10. To further validate the efficiency of the path-
ways identified by CellFM, we conducted a comparative analysis of the
pathways between CellFM and the co-expression network at a resolu-
tion of 40. As shown in Supplementary Table S1–S3, both methodol-
ogies identified 25 common pathways. CellFM uniquely identified an
additional 59 pathways, 7 of which were pertinent to immune system
processes. Conversely, the co-expression network uniquely identified
32 pathways, of which only 2 were associated with immune functions.
These comprehensive findings underscore CellFM’s superior capacity
to capture subtle and intricate gene-gene interactions, thereby
enabling the elucidation of specific biological mechanisms within a
broader cellular context.

CellFM efficiently identified genes most affected by
perturbations
In this section, we analyzed the perturbed genes in the perturbation
experiments and their most significantly affected genes through the
attention map (Fig. 5c). Concretely, we modeled the effects of the
perturbing gene by providing the model with the control cell expres-
sion profiles (non-perturbed) and explicitly indicating the gene as the
perturbed gene. Themodel then predicted how the gene perturbation
would affect the expression of other genes. Using the attention
mechanism, we identified the 20 genes most influenced by perturbing
the gene.

We have provided nine cases in Supplementary Fig. S23. Across
nine case genes, among the top 20 genes most influenced by CellFM
for each perturbation gene, an average of 18 were found in the ChIP-
Atlas database41. The results showed that CellFM can correctly identify
influenced genes through attention scores. Additionally, we further
conducted the pathway analysis on case perturbation genes JUN and
SPI1 to show thatCellFM captured distinct pathway-activation patterns
through the genes most influenced by perturbation genes. As illu-
strated in Fig. 5d, in the Adamson dataset, CellFM identified the top 20
genes most influenced by gene SPI1. Most genes were confirmed to be
associated with SPI1, as validated by the ChIP-Atlas database (Fig. 5e).
We noted that SPI1 in the columnhas connectivity, while the SPI1 in the
row doesn’t. The reason may be caused by the attention mechanism
used in CellFM (Supplementary Note 3). Most gene pairs in the heat-
mapof Fig. 5d have values near zero due to our normalization strategy.
We ranked all genes in the perturbed dataset from Adamson based on
their attention scores and recalculated the connection scores by
dividing these ranked scores by the total number of genes. Addition-
ally, the partial relationships between CCNB2, CCNA2, TOP2A, MKI67,
KPNA2, and CENPF in Fig. 5d weren’t captured likely because CellFM
focused on capturing relationships with SPI1. When not designating
perturbation targets in CellFM (i.e., during regular gene recovery
tasks), we could observe relations between these genes as Supple-
mentary Fig. S24. In addition, based on gene embeddings derived from
CellFM, the cosine similarity scores of these genes were significantly
higher compared to those of other genes, indicating that CellFM can
learn strong intrinsic relationships among them.

To further directly demonstrate the relationships between SPI1
and the SPI1 perturbed genes, we obtained the SPI1 ChIP-seq BigWig
files (SRX2770855) from the public ChIP-Atlas database (https://chip-
atlas.org/peak_browser) and visualized them using the Integrative
Genomics Viewer (IGV). To select the top 5 genes with the strongest
SPI1 binding, we identified those with the highest MACS2 scores,
indicating the most significant SPI1 binding at their genomic loci.
These genes were prioritized based on peak intensity and the extent of
overlap with key genomic regions. The IGV snapshots allowed us to
visually confirm the presence and strength of SPI1 binding at these loci,
providing direct evidence of SPI1’s regulatory impact on these genes.
As shown in Supplementary Fig. S25, the results clearly show the
bindingpeaks of SPI1 at the genomic loci of the target genes, indicating
potential regulatory interactions.

To construct a comprehensive gene-transcription factor (TF)
interaction network for the genes influenced by SPI1, we utilized the
TRRUST database42 (http://www.grnpedia.org/trrust) to identify the
top 300 genes most influenced by SPI1. As shown in Supplementary
Fig. S26, the network diagram illustrates the visualization of these
interactions, where nodes represent genes or transcription factors and
edges denote the interactions between them. Red nodes represent
transcription factors, while blue nodes represent genes. Notably,
genes such as MYC emerged as hub genes, interacting with multiple
key TFs, includingCTNNB1, JUNB, andCCNB143–45. This network analysis
provides valuable insights into the regulatory mechanisms underlying
SPI1-mediated gene expression, highlighting potential transcription
factor interactions that may drive downstream cellular processes.

Furthermore, CellFM was able to capture distinct pathway-
activation patterns (Fig. 5f) through the genes most influenced by
SPI146–48. For pathway enrichment analysis, we included all genes from
the KEGG pathway database as the background gene set to provide a
broader biological context. This approach was intentional to highlight
the pathways enriched by the top 20 genes most influenced by SPI1
perturbation. The enriched pathways presented in Fig. 5f emphasize
those in which SPI1 and its perturbed genes may exert a coordinated
influence on important biological processes. For instance, the Human
T-cell leukemia virus 1 infection (HTLV-1) contained SPI1, CCNB2, and
CCNA2, holding particular significance. First, the SPI1 gene plays a
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Fig. 5 | Gene-GeneRelationshipsUnveiled byCellFM. aAgene cluster comprising
IL2, IL3, and IL4 was identified through the cosine similarity of gene embeddings
generated by the pre-trained CellFM (zero-shot). b This analysis compares the
number of enriched pathways derived from gene programs extracted by CellFM
(zero-shot) and a coexpression network within an immune-related human dataset,
across various Leiden clustering resolutions. c This workflow outlines the process
of identifying the most influenced genes through attention maps, where attention
scores from perturbed cell states are sequentially ranked to select the most
impactedgenes.dTheheatmapdisplays the connectivity changes in the networkof

the top 20 genesmost influencedby the gene SPI1 in afine-tuning setting. The color
gradient represents the correlation strength between SPI1 and its perturbed genes,
ranging from blue (weakest) to purple (strongest positive). e The network graph
represents the top 20 genes, with ChIP-seq predicted targets validated in the ChIP-
Atlas database, highlighted in light blue. f The heatmap displays KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathways enriched for the top 20 SPI1-
impacted genes, identified through one-sided hypergeometric tests with
Benjamini-Hochberg correction for multiple comparisons.
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critical role in leukemia stem cell (LSC) self-renewal49. In HTLV-1
infection, SPI1 activationmaypromote the expansion of leukemia stem
cells, enhancing their self-renewal capacity and accelerating leukemia
progression. Second, the CCNA2 gene primarily regulates cell cycle
transitions. HTLV-1-encoded oncoproteins Tax andHBZ disruptCCNA2
expression, causing cell cycle dysregulation and increasing cell
immortalization potential50. In HAM/TSP patients, observed down-
regulation of CCNA2 may be due to IRF-1 suppression, which could
prevent transformation into ATLL. For the other pathway Acute mye-
loid leukemia (AML) enriched SPI1 and CCNA2 holding particular sig-
nificance. First, SPI1 is crucial for normal blood cell differentiation, and
its dysregulation in AML leads to uncontrolled cell growth and blocked
differentiation, promoting leukemia development46. In AML, CCNA2 is
abnormally overexpressed in certain subtypes, particularly in therapy-
related AML (t-AML)51. This overexpression, along with other cell cycle
regulation genes like CCNE2 and CDC2, is linked to poor prognosis and
is often associated with chromosomal deletions of 5 and 7, which
correlate with lower survival rates.

We also showed the case perturbed gene JUN (Supplementary
Fig. S27) and obtained the ChIP-seq BigWig files (SRX10976151) for the
JUN transcription factor. The ChIP-seq data for JUNwere also obtained
from publicly available datasets and visualized using IGV. Repre-
sentative snapshots of JUN binding sites across various genomic
regions are provided in the Supplementary Fig. S28. These visualiza-
tions highlight significant ChIP-seq peaks, offering direct evidence of
JUN’s binding to specific genomic loci. Additionally, the pathway Focal
adhesion in Supplementary Fig. S27c identified key genes such as JUN,
CCND3, and CTNNB1, all of which play essential roles in cell adhesion
and proliferation. Concretely, JUN encodes c-Jun, a component of the
AP-1 complex that regulates gene expression and proliferation. It is
closely linked to focal adhesion pathways, particularly through FAK
(Focal Adhesion Kinase), which mediates cell attachment to the
extracellular matrix (ECM) and influences migration and invasion52.
CCND3, a regulator of the G1/S phase transition, is connected to FAK
signaling, linking cell adhesion to cell cycle progression53. Additionally,
CTNNB1 (β-catenin) through the Wnt/β-catenin pathway promotes cell
adhesion by interacting with cadherins and modulating FAK activity.
This coordinated regulation of JUN,CCND3, andCTNNB1 suggests their
collaborative role in driving cancer development and progression
through cell adhesion and proliferation pathways54.

Discussion
To aid efficient analysis of the single-cell data and harness the
wealth of knowledge contained within single-cell atlas datasets, we
have introduced a state-of-the-art foundation model known as
CellFM. This model was pre-trained on our meticulously curated
datasets, encompassing about 100 million human cells. These
datasets empower CellFM to generate an expansive set of 800
million model parameters, marking an eightfold increase over the
parameters present in the current single-cell models trained on a
single species. To augment the training efficiency of CellFM, we
have adopted the ERetNet architecture as its core. This network
represents an advancement over the traditional RetNet framework,
offering enhanced parallel training capabilities and cost-effective
inference. These features collectively contribute to CellFM’s
exceptional performance. Moreover, CellFM incorporates a Low-
Rank Adaptive module designed to minimize parameter count
during fine-tuning, thereby optimizing the model for specific tasks
without compromising its generalizability. Through a series of
comprehensive experiments, CellFM has demonstrated its effec-
tiveness across a range of single-cell tasks including cell type
annotation, prediction of responses to perturbations, gene network
analysis, and gene function prediction.

To satisfy the model’s training on large-scale datasets, we have
chosen a variant of the RetNet architecture as CellFM’s foundation,

diverging from the Transformers used in other single-cell founda-
tion models. The RetNet architecture facilitates parallel, recurrent,
and chunkwise processing, which we have refined by integrating the
SGLU module, amplifying training efficiency. Additionally, we have
embedded the Low-Rank Adaptive (LoRA) strategy within CellFM,
optimizing its training on new datasets with similar characteristics.
The combination of this efficient training architecture and the
comprehensive datasets forms the basis for developing the current
largest CellFM model, equipped with 800 million parameters.
CellFM is developed using the MindSpore AI framework from Hua-
wei and is trained on four Huawei Altas800 servers, each equipped
with eight Ascend910 NPUs. Our rigorous experiments demon-
strated the model’s adaptability and potency in multiple single-cell
downstream tasks. In the spirit of research collaboration, we are
dedicated to sharing our progress by making the CellFM codes and
the pre-trained model publicly available. This initiative aims to
provide researchers with a unified framework that streamlines the
adoption of pre-trained models for their distinct research goals.
While large human datasets have also been used to train multi-
species models like UCE and GeneCompass, the number of human
cells in these models did not exceed 50 million. In contrast, our
model was trained on ~100 million human cells. Moreover, our
model’s parameter size is eight times larger than GeneCompass
and 1.23 times larger than UCE. As demonstrated in Figs. 2–4, our
model consistently outperformed GeneCompass and UCE in tasks
such as cell type annotation, gene function prediction, and cell
perturbation.

Despite the advances in CellFM, several limitations remain to be
explored. Firstly, the attentionmap in CellFM was limited in capturing
gene relationships related to static or global biological knowledge.
In the future, we will explore new explainability techniques to over-
come this challenge. Furthermore, the current model is limited by
the absence of multi-species data, which restricts its potential for
broader biological contexts and cross-species comparisons. Finally,
the model’s construction did not leverage existing biological prior
knowledge, which could affect its depth and accuracy in interpreting
biological phenomena.

Methods
Data collection
All training data utilized in this study were sourced from reputable
public databases. Specifically, from April 2021 to August 2023, we
identified datasets leveraging keywords like “single-cell RNA
sequencing,” “single-cell transcriptome,” and “single-cell RNA.”
These keywords were used to search through databases such as
NCBI GEO23, ENA24, GSA25,26, ImmPort27, and others. In our selection
process, we carefully curated the datasets, retaining only those
human single-cell datasets that were relevant to our study. These
datasets were encountered in multiple formats, including FASTQ
data, expression matrices, and Seurat/Scanpy objects. Our initial
step involved transforming the raw FASTQ data into expression
matrices using primary analysis software supplied by the manu-
facturers. Following this, all obtained and transformed expression
matrices underwent pre-processing through a standardized work-
flow provided by the SynEcoSys® single-cell database from Single-
ron Biotechnologies28. This workflow included several critical steps:
(1) Quality control involved filtering cells based on a minimum gene
count threshold of 200 genes per cell; (2) Gene name standardiza-
tion was conducted by the HUGO Gene Nomenclature Committee
(HGNC) guidelines, ensuring that gene aliases in each dataset were
converted to their respective HGNC-approved gene symbols. This
step guaranteed the uniqueness and consistency of gene names
across all datasets. (3) Finally, the expression matrices for each
sample were converted into a unified sparse matrix format, pre-
paring them for subsequent model training.
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CellFM architecture
The CellFM model comprises three core components, including
the embedding module, the ERetNet module, and the LoRA
module (Fig. 1). The embedding module in CellFM maps one-
dimensional scalar values of gene expression to high-dimensional
embedding features for model training, enabling the representa-
tion of gene expressions in a high-dimensional space. CellFM then
applies the ERetNet module to learn the relationships among
genes based on the gene expression information. In parallel,
CellFM uses the LoRA module to help train CellFM more effi-
ciently by reducing the number of parameters when adjusting
model weights with new data.

The embedding module
To efficiently train CellFM, we have set an upper limit on the
number of genes it inputs, defined by the threshold lmax = 2048.
For each cell, if the number of expressed genes exceeds lmax, we
randomly select lmax genes with high expression values. Con-
versely, if a cell has fewer expressed genes than lmax, we pad the
gene IDs and set the padded values as zero because the model
architecture has a fixed length lmax for parallel computing. These
padded values won’t participate in the calculations during
CellFM’s training and thus don’t influence our models. We then
apply a Multilayer Perceptron (MLP) to map the scalar expression
values of genes to embedding vectors necessary for the ERetNet
module as follows:

X 1 = LeakyReLU X0W0

� �

X2 =X 1 �W 1 +α � X 1

X3 = Sof tmaxðX2ÞW 2

ð1Þ

where W0 2 R1 ×b, W 1 2 Rb×b, and W 2 2 Rb×d are learnable para-
metermatrices. The coefficientα is a learnable residual coefficient. The
hyperparameters b and d are set to b = 256 and d = 1536, respectively.
The termX0 2 Rlmax × 1 represents the initial input cell pre-processedby
the aforementioned workflow.

As performed in previous LLMs, we randomly mask the
expressions of 20% of the genes (denoted as M) and then recover
them based on the non-masked genes. During gene masking, the
20% of genes masked during the pre-training task were exclu-
sively selected from non-padded genes, ensuring that CellFM
focused on reconstructing meaningful gene expression patterns
using the remaining relevant gene information. This design allows
the model to learn effective compression and meaningful repre-
sentations without interference from padding values. Specifically,
for the M masked gene expressions, we replace the gene
expressions of the cell with a learnable weight vector XM 2 R1 ×d

initialized to zero. Consequently, the feature Xtmp can be obtained
as follows:

Xtmp =M
!� X3 + ð1� M

!Þ � XM ð2Þ

where ⊙ is the element-wise product, and M
!2 f0, 1glmax is the mask

vector indicating the position of masked genes with value 0.
To learn the specific characteristic of each gene, we initialize a

learnable embedding matrix EG 2 R24079×d . The term 24079 repre-
sents the number of genes ID and the d = 1536means the dimension of
vector embeddings initialized based on each unique gene ID. We then
integrate the gene expression and gene ID embeddings as follows:

Xemb = ½EG
g1, :::, E

G
glmax

�+Xtmp ð3Þ

Furthermore, we incorporate an additional learnable weight
Xcls∈ R1×d, which is appended to the gene expression embeddings. This
weight facilitates the learning of cell-level features by aggregating gene

information in the following manner:

Xexpr =Xcls k Xemb ð4Þ

where the ∥ symbol denotes the concatenation of two vectors.

The ERetNet module
CellFM learns gene embeddings and relationships from gene expres-
sion through the ERetNet module, a variant of the RetNet55. RetNet is
an efficient, high-performance variant of the Transformer architecture.
To better adapt large-scale single-cell datasets, we have modified the
RetNet module in two ways: First, we’ve replaced the traditional
feedforward network in RetNet with a gated bilinear network, which
has led to improved model performance and a smoother training
process. Second, we’ve refined the model’s training stability and per-
formance by substituting the pre-layer LayerNorm in RetNet with the
DeepNorm layer normalization technique56. Collectively, these mod-
ifications have resulted in the ERetNetmodule, which includes a Gated
Multi-head Attention (MHA), a Gated Linear Unit (SGLU), and layer
normalization (LN), all contributing to amore stable and effective gene
expression analysis model.

Gated multi-head attention (MHA). The Gated Multi-head Attention
(MHA) block is used to learn dependencies between genes, which is a
variant of the Retention mechanism in the RetNet. To address the
computational inefficiency of the exponential attention operations

(Oðl2maxdÞ) implemented in RetNet, we adopt the method proposed by
Shen et al.57. Byfirst computing the keys (K) and values (V), followedby

thequeries (Q), this approach achieves a linear complexity ofO lmaxd
2

h

� �
,

significantly reducing overhead. Furthermore, we scaled Q, K, and V
following the study57 to ensure the half-precision training as follows:

Q= ReLU ðXWQÞffiffiffi
d

p , K = ReLU ðXWK Þffiffiffi
d

p , V = XWVffiffiffiffiffiffi
lcell

p

AttentionðX Þ=QðKT ðM!� V ÞÞ
ð5Þ

where lcell = lmax + 1 denotes the number of expressed genes within
each cell, M

!
denotes the mask vector.

To enhance the CellFM’s representational power, we use
h = d/dhead attention heads in each ERetNet layer, where dhead = 32 is
the head dimension. Each head consists of three parameter matrices
WQ, WK, WV 2 Rdhead ×dhead . In addition, we add a swish gate58 to
increase thenon-linearity of ERetNet layers. Formally, given inputXexpr,
we define the MHA layer as follows:

headi =AttentioniðXexpr Þ
Y =GroupNormh Concatðheadi, :::,headhÞ

� �

MHAðXexpr Þ= ðSwishðXexprWGÞ � Y ÞWO

ð6Þ

where WG, WO 2 Rd ×d are learnable parameters, and GroupNorm
normalizes59 theoutput of eachhead, following SubLNproposed in the
study60.

Simple Gated Linear Unit (SGLU). To improve model performance
and a smoother training process, we’ve replaced the traditional feed-
forward network in RetNet with a gated bilinear network. The gated
unit GLU introduces a multiplicative gating mechanism that explicitly
indicates the model’s memory of each feature dimension, thereby
smoothing the training process and facilitating better integration
between channels. Considering that the gating mechanism inherently
introduces nonlinear relationships, to further accelerate the model’s
computation, this work, referring to literature61, adopts the SGLU,
which is based on the GLU formula62 but omits the Swish activation
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function:

SGLUðX Þ= ðXWu � XWvÞWo ð7Þ

where ⊙ is the element-wise product.

Layer normalization (LN). The Transformer architecture in large
single-cell models typically uses post-norm normalization after resi-
dual connections to enhancemodel depth and convergence. However,
this can cause a gradient explosion as the model size grows. To
counteract this, a pre-norm strategy is applied in RetNet for a stabi-
lized training process, albeitwith a potential performance trade-off. To
address this gap, CellFM employs the new post-norm normalization
method DeepNorm56. DeepNorm reduces the contribution ratio of
each network block to the output, thereby reducing the amount of
gradient that needs to be updated and ensuring the stability of train-
ing.

Y ðlÞ = LNðMHAðX ðlÞÞ+ λ � X ðlÞÞ
X ðl + 1Þ = LNðSGLUðY ðlÞÞ+ λ � Y ðlÞÞ

ð8Þ

where LN( ⋅ ) is LayerNorm and λ is a hyperparameter.

Low-rank adaptation (LoRA) module
Large models typically comprise hundreds of millions of parameters,
resulting in considerable time consumption for full model training. To
alleviate the burden of training on various datasets, we employ the
Low-Rank Adaptation (LoRA) algorithm63. LoRA operates under the
assumption that updates to pre-trained weights during fine-tuning can
be decomposed by low rank. Hence, for a pre-trained weight matrix
W0 ∈ Rn×k, we utilize low-rank decomposition to constrain the weight
increment ∇ W:

W0 +ΔW =W0 +BA ð9Þ

where B ∈ Rd×r, A ∈ Rr×k, and the rank r<<minðd, kÞ.
During the forward computation, both W0 and matrices A and B

are used in calculations with the input X; however, during the back-
ward propagation, the W0 parameter is frozen and does not undergo
gradient updates, while only A and B are updated. It can be observed
that in regular training, the training parameter count for W0 is n × k,
whereas, with LoRA-based training, the training parameter count for
W0 is the sumof theparameters ofA andB, which is (n+ k) × r. Since the
dimension r is significantly smaller thann and k, the number of training
parameters for the weights is greatly reduced, leading to a substantial
decrease in computational overhead.

In the ERetNet architecture, theMHAhasfiveweightmatrices:WQ,
WK, WV, WG, and WO, and the SGLU gating unit has three weight
matrices: Wu, Wv, and Wo. We consider the dimensions of these 8
matrices to be d × d. In this experiment, we limit the application of
LoRA to only the ERetNet encoder part and freeze all model para-
meters for updates except for the weights of the LayerNorm layer.

Loss functions
Mean squared error (MSE). In CellFM, we focus on minimizing the
Mean Squared Error (MSE) as the primary metric because it effectively
measures the discrepancy between the predicted and actual gene
vector embeddings for masked genes. MSE is particularly suitable in
this context as it penalizes larger errors more heavily, making it crucial
for accurately recovering gene representations. Additionally, MSE has
been widely adopted in similar tasks involving gene expression pre-
diction and representation learning. For example, scFoundation18 and
GeneCompass19 employMSE to optimize gene expression prediction in
high-dimensional spaces, demonstrating its effectiveness in promoting
precise modeling. Specifically, we employ a fully connected MLP

followedby the ERetNetmodule to estimate the expression value forM
genes. The optimization of this objective involves utilizing theMSE loss
at themasked positions, denoted asMmask. TheMSEworks as follows:

ŷi =MLPðxðLÞ
i Þ

LMSE =
1

jMmaskj
X

8i,Mðmask, iÞ = 1

~yi � yi
� �2 ð10Þ

∣Mmask∣ denotes the count of ones in the mask gene vector Mmask for
each cell.X ðLÞ

i signifies the features derived from the ERetNet for gene i
at the L layer.

To further enhance CellFM’s learning capabilities and channel
aggregation, the feature corresponding to token cls is also leveraged,
represented as X ðLÞ

cls 2 R1 ×d . This feature passes through an additional
network designed to predict expression values. Specifically, a learn-
able parameter matrix W cls 2 Rd ×d and an activation function are
employed. After mapping X ðLÞ

cls , the result is multiplied with the
embeddings of the genes to be predicted in the vocabulary EG to
compute inner products, yielding another set of predicted values.
These are then compared with the actual values to calculate the mean
squared error loss.

x = σðxðLÞ
clsWclsÞ

�yi = x@EG
i

Lcls =
1

jMmask j
X

8i,Mðmask, iÞ = 1

ð�yi � yiÞ2
ð11Þ

The@ symbol represents matrix multiplication. σ is an activation
function Sigmoid. EG

i denotes the embedding of gene i in the voca-
bulary EG. Finally, the total loss functions of CellFM can be obtained as
follows:

Ltotal = LMSE + Lcls ð12Þ
Baseline single-cell foundation models
We have incorporated several recent single-cell foundation models
into our benchmarking, including scFoundation, GeneCompass, UCE,
scELMo, scBERT, scGPT, and Geneformer. These models represent
different approaches to single-cell analysis, and we have categorized
them based on their methodological focus. Specifically, models
including CellFM, scFoundation, scELMo, andGeneCompass fall under
the value projection category, while UCE, scGPT, and scBERTbelong to
the value categorization category, and Geneformer is placed in the
ordering category.

Implementation details
CellFM consists of 40 stacked ERetNet blocks, with each block having 48
attention heads. During pre-training, we used ~100 million cells for
training CellFM. The model was optimized using the Adam optimizer
with a starting learning rate of 1e-7 and trained for a total of 2 epochs. The
total batch size was 128, distributed equally across 4 Huawei
Altas800servers, eachequippedwith8Ascend910NPUs.TheMindSpore
AI development frameworkpowered the automatic data parallel training.

The decision to train the CellFM model for two epochs was
informed by standard practices in large-scale model training9, where
rapid convergence is typically observed within the initial epochs. To
validate this convergence of CellFM, we conducted the experiment
using the 80-million-parameter version of CellFM on all training
datasets. The results confirmed the same pattern: the loss dropped
sharply-from 8 to below 1-during the first epoch, with only minimal
changes in the second epoch (in Supplementary Fig. S29). This beha-
vior reflects the typical convergence dynamics of large-scale models
and supports our choice to limit training to two epochs to balance
efficiency and performance.
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Pre-processing
The gene symbols across all raw count gene expression matrices were
standardized using the reference mapping provided by the HUGO Gene
Nomenclature Committee. This process included both human protein-
coding genes and common mitochondrial genes, resulting in a compre-
hensive gene setG consisting of 24,078 genes. Ultimately, normalization
and a log1p transformation were employed across all gene expression
matrices to alleviate skewness in the data. For the cell type annotation
task, we excluded cell types with fewer than 10 cells in the training data,
aswell as thosepresent in thequerydatabut absent in the referencedata.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in this study are publicly accessible through the cited
publications, with detailed links provided in Supplementary Table S4.
Due to the large cell population and computational time and resource
limitations, thehumanbrainCellAtlas dataset, originally comprisingover
3 million cells, was downsampled to 126,339 cells using a sampling rate
of 3.75%, with cells randomly selected by tissue type. Similarly, for the
Tabula Sapiens dataset, both versions (V1 andV2)were downsampledby
tissue type at a rate of 25%, resulting in 111,013 and 172,999 cells,
respectively, to ensure computational efficiency while maintaining bio-
logical representativeness. Sourcedata areprovidedwith this paper. The
data used in this study have been uploaded to Zenodo and are freely
available at: https://doi.org/10.5281/zenodo.1513866564.

Code availability
All codes used in this study can be available at: https://github.com/
biomed-AI/CellFM. The codes used in this study have beenuploaded to
Zenodo and are freely available at: https://doi.org/10.5281/zenodo.
1515590065.
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