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Abstract The Strathcona neighborhood in Vancouver is particularly vulnerable to environmental injustice
due to its close proximity to the Port of Vancouver, and a high proportion of Indigenous and low‐income
households. Furthermore, local sources of air pollutants (e.g., roadways) can contribute to small‐scale variations
within communities. The aim of this study was to assess hyperlocal air quality patterns (intra‐neighborhood
variability) and compare them to average Vancouver concentrations (inter‐neighborhood variability) to identify
possible disparities in air pollution exposure for the Strathcona community. Between April and August 2022, 11
low‐cost sensors (LCS) were deployed within the neighborhood to measure PM2.5, NO2, and O3 concentrations.
The collected 15‐min concentrations were down‐averaged to daily concentrations and compared to greater
Vancouver region concentrations to quantify the exposures faced by the community relative to the rest of the
region. Concentrations were also estimated at every 25 m grid within the neighborhood to quantify the
distribution of air pollution within the community. Using population information from census data, cumulative
hazard indices (CHIs) were computed for every dissemination block. We found that although PM2.5

concentrations in the neighborhood were lower than regional Vancouver averages, daily NO2 concentrations
and summer O3 concentrations were consistently higher. Additionally, although CHIs varied daily, we found
that CHIs were consistently higher in areas with high commercial activity. As such, estimating CHI for
dissemination blocks was useful in identifying hotspots and potential areas of concern within the neighborhood.
This information can collectively assist the community in their advocacy efforts.

Plain Language Summary Historically marginalized communities can experience environmental
injustice due to disproportionately high air pollution relative to other communities. The Strathcona
neighborhood in Vancouver is of particular concern due to its proximity to the Port of Vancouver, major roads
and railways, and a high proportion of Indigenous and low‐income households. Here, we assess hyperlocal air
quality patterns in Strathcona and compare them to average Vancouver concentrations to assess potential air
quality inequity. Between April and August 2022, 11 low‐cost sensors (LCS) measuring PM2.5, O3, and NO2
were deployed in community backyards. The daily average concentrations were compared to those in other
Vancouver neighborhoods. Concentrations were also estimated at every 25m grid within the neighborhood
using ordinary kriging, a relatively simple spatial interpolation technique. Using Census population data,
cumulative hazard indices (CHIs, which combine PM2.5, O3, and NO2 in a single metric) were computed for
every dissemination block. We found that daily NO2 concentrations and summer O3 concentrations consistently
higher than in other Vancouver neighborhoods. Although CHIs varied daily, CHIs were consistently higher
in areas with high commercial activity. The kriging model was more easily implemented than traditional land
use regression models, and may be useful to communities struggling to interpret LCS network data.

1. Introduction
It is well established that air pollution exposure has many associated health impacts, which can range from asthma
to premature mortality (Brauer et al., 2016; Brook et al., 2010; Di et al., 2017; Pope III, 2002). Even low levels of
air pollution can be detrimental to human health; according to a recent Health Effects Institute report, there is no
concentration below which the negative health impacts of PM2.5 (particles with diameter of 2.5 μm or smaller) are
not observed (Brauer et al., 2022).
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The cumulative effect of chronic exposure to multiple pollutants can exacerbate these health impacts, even at
levels below national benchmarks (Xia & Tong, 2006). Additionally, cumulative effects of different pollutants
can highlight different areas of concern than when assessments are conducted for individual pollutants separately
(Giang & Castellani, 2020; Su et al., 2009). Since people breathe a mixture of air pollutants, cumulative
assessment can be more representative of human exposure. In Canada, the AQHI (Air Quality Health Index) is
used for health assessment of air quality, which includes cumulative effects of PM2.5, nitrogen dioxide (NO2) and
ozone (O3) (Gutenberg, 2014).

Air pollution concentrations have small‐scale variations (Beelen et al., 2013; M. Wang et al., 2013) and can vary
greatly in space and time (Baldwin et al., 2015; Eeftens et al., 2012; Li et al., 2016; M.Wang et al., 2013). Socially
or economically marginalized communities, including low‐income, people of color and Indigenous communities,
are often disproportionately exposed to air pollution (Clark et al., 2014; Morello‐Frosch & Jesdale, 2006; Pinault
et al., 2016; Wiebe, 2016). In addition to environmental exposure, marginalized groups often also experience
social and political marginalization, which can be due to inequitable access to healthcare and input on policy
decisions, further increasing their vulnerability to the health impacts of air pollution (O’Neill et al., 2003). As
such, risks arising from air pollution exposure are not equitably distributed.

Canada, and British Columbia in particular, generally have good air quality, but there are areas that are dispro-
portionately impacted by higher concentrations and that have a greater number of potentially vulnerable pop-
ulations (Giang et al., 2022; Jerrett et al., 2001; Kershaw et al., 2013; Pinault et al., 2016). One such area in British
Columbia is the Downtown Eastside and Strathcona neighborhood in Vancouver, from both a geographic and
demographic perspective. Geographically, in addition to typical Vancouver sources of air pollution like residential
wood burning and construction, Strathcona and the Downtown Eastside are located next to the Port of Vancouver.
The Port of Vancouver is the largest port in Canada and in the top five in North America by tonnes of cargo
(Conway, 2012), and as such has significant associated ship, truck, and rail traffic. These port activities are
associatedwith emissions of particulatematter (PM2.5, particleswith diameter≤2.5 μm) and nitrogen oxides (NOx:
NO and NO2) (Gobbi et al., 2020). The neighborhood is also adjacent to major roadways and Downtown Van-
couver, which further exacerbates air pollution via light‐duty vehicle emissions of NOx. From a demographic
perspective, Strathcona and the Downtown Eastside have a high proportion of low‐income, unhoused, immigrant,
and Indigenous people (City of Vancouver, 2020a). The diversity and potential social vulnerability of many res-
idents in these neighborhoods, combined with the likely higher than regional air pollution resulting from various
local sources, means that the people of Strathcona and Downtown Eastside may be disproportionately exposed to
air pollution.

However, assessing the cumulative hazard of air pollution in Strathcona is not feasible with the current regulatory
monitoring network. TheCity ofVancouver has only one air qualitymonitoring station thatmeasures all pollutants,
making it difficult to identify areas of concern within the city or specific neighborhoods. The sparse distribution of
regulatory monitors is typically due to the high capital and maintenance costs involved (Castell et al., 2017; Maag
et al., 2018; Si et al., 2020). One potential solution for obtainingmore spatially representative data is the use of low‐
cost air quality sensors (LCS). LCS cost a fraction of regulatory stations (Castell et al., 2017) and can operate on
battery or solar power. This provides an opportunity for a denser sensor network, capable of capturing small‐scale
variations in pollutant levels (Bi et al., 2020; Minet et al., 2017; Piedrahita et al., 2014; Snyder et al., 2013).

In this study, we partnered with the Strathcona Residents Association (SRA) and deployed 11 multi‐pollutant
low‐cost sensors in the Strathcona and Downtown Eastside neighborhoods in Vancouver for a duration of
6 months in 2022, with the aim of capturing small‐scale spatial variability in pollutant concentrations. By
comparing the measured concentrations with the average concentrations in the broader Vancouver region, we
investigated the effectiveness of using LCS to identify disparities in air quality. Additionally, we calculated
cumulative hazard indices (CHIs) as a method to identify hotspots and areas of concern within the neighborhood
based on the principles of cumulative hazard assessment.

2. Methodology
2.1. Study Area

Strathcona is a neighborhood located within the City of Vancouver and is classified as one of the 22 planning
areas (City of Vancouver, 2020b), with a population of approximately 12,600, as of the 2016 census (City of
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Vancouver, 2020a). The neighborhood encompasses mixed land use types, including residential, commercial, and
industrial areas. Residential areas consist of privately owned homes, as well as collective dwellings that house
20% of the population, including senior residences and single room occupancy (SRO) hotels (City of Vancou-
ver, 2020a). Strathcona is surrounded by industrial facilities on its south and east sides (produce terminal,
recycling facility, small chemical processing plants), and a shipping yard on its north side (Centerm and Vanterm
container terminals of Port of Vancouver) (Strathcona Residents Association, 2021). The neighborhood's western
border adjoins Downtown Vancouver, another planning area of the City of Vancouver. The portion of Downtown
Vancouver adjacent to Strathcona is called the Downtown Eastside (DTES), which is home to Chinatown and
Gastown, the historic center of Vancouver (City of Vancouver, 2020b). Figure 1 shows the locations of major
roadways, rail lines and industrial sources within the study area (dashed black line).

In Strathcona, approximately 10% of the residents identify as Indigenous, which is the highest proportion of any
neighborhood in Vancouver (city average = 2.4%) (City of Vancouver, 2020a). More than half (52%) of the
population in Strathcona have a household income below the national poverty line, which is notably higher than
the citywide average of 20% (City of Vancouver, 2020a). Furthermore, according to a report by the City of
Vancouver, about 22% of the residents in Strathcona are unhoused or living in SROs, and are not represented in
these census demographics (City of Vancouver, 2020a). Strathcona and the DTES area together account for 52%
of the total unhoused individuals in the City of Vancouver (Mauboules, 2020).

2.2. Community Partner: Strathcona Residents Association

The Strathcona Residents Association (SRA) is a volunteer‐based nonprofit organization that represents resi-
dents and workers in the Strathcona neighborhood of Vancouver. In 2019, the Port of Vancouver initiated
construction activities to expand the Centerm and Vanterm container terminals, aiming to boost their cargo
handling capacity by 50% (GCT Global Container Terminals Inc, 2019). This expansion is projected to lead to an
increase in the volume of ships, trains, and trucks passing by or through Strathcona. In 2021, the SRA conducted
a survey among its residents to assess their perspectives on air quality in the neighborhood. The survey revealed
that out of 181 participants, 84% viewed the air quality as gradually declining. Furthermore, 79% of the
participants expressed being very concerned about exhaust emissions from heavy‐duty diesel trucks transporting
shipping containers through the neighborhood (Strathcona Residents Association, 2021). Survey participants
were also asked about their level of concern about the health effects arising from exposure to transportation

Figure 1. The Strathcona and Downtown Eastside neighborhoods of Vancouver that were studied in this work (black dashed
line; 3 km× 1 km). Green lines are the rail lines within the study area, and orange lines highlight the major roads (line sources
of air pollution). Red markers identify major point sources of air pollution (port, industries). Blue star markers are the
deployment locations of the air quality sensors (RAMPs).
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and vehicle‐related air pollution in the area. Headache, nose and throat
irritation, asthma, and lung cancer were ranked as “very concerning” by
approximately 40% of participants. In explaining their concerns, participants
described a range of observed and perceived health effects related to nose and
throat irritation, asthma, and chronic sinus infection. While there was no
direct measurement data of traffic‐related air pollution (TRAP) in Strathcona
at the time of the survey, a 2015–2017 study at the Clark Drive Near‐Road
Monitoring Station approximately 2 km from Strathcona highlighted that
this station had higher concentrations of TRAP, including NO2, nitric oxide
(NO), black carbon (BC), PM2.5, and ultrafine particles (UFP), compared to
other monitoring sites in the region. NO2 specifically was approximately 40%
higher at the Clark Drive Station, with clear correlations to diesel traffic
volumes. Furthermore, higher concentrations were more frequent at the
Clark Drive station and there were more exceedances of Metro Vancouver's
air quality objectives than at other regional monitoring sites (Metro
Vancouver, 2020).

Recognizing these concerns, the study team at the University of British Columbia (UBC) partnered with the SRA
to assess the community's concerns about their air quality. We proposed a comprehensive plan to collect air
quality data, sought approval from the UBC Research Ethics Board (UBC Ethics ID: H21‐02425) and secured
funding through the UBC Public Scholar Initiative. The Public Scholars Initiative supports doctoral students
whose research supports and contributes to public good.

2.3. Low‐Cost Sensors

The low‐cost pollutant monitoring system used for this work was the Remote Air Quality Monitoring Platform
(RAMP, SENSIT Technologies), which cost approximately CAD 4000 (less than 5% of the cost for a full suite of
regulatory grade monitors measuring the same pollutants; typical regulatory monitors cost >CAD 20,000 per
pollutant). The RAMP package combines a power supply (battery‐operated, solar powered or both), a SIM card
slot for online transmission of data via cellular network, a memory card for data storage, and gas and particle
sensors in a weatherproof enclosure. The RAMP includes a commercial nephelometer to measure PM2.5

(Plantower PMS5003), and electrochemical sensors for NO2 and O3 (Alphasense NO2‐B43F and Alphasense Ox‐
B431). It also records temperature (T) and relative humidity (RH). The RAMP records data with a 15‐s sampling
resolution.

Since LCS systems need routine calibration across the full range of expected meteorological conditions and
pollutant concentrations during deployment to achieve good performance (Cross et al., 2017; Masson
et al., 2015; Mead et al., 2013; Moltchanov et al., 2015; Pang et al., 2017), we collocated the RAMP sensors at
Metro Vancouver's Clark Drive Near‐Road regulatory monitoring station before and after the campaign for a
total of 62 days (collocation dates pre‐campaign: 24 February–31 March 2022; post‐campaign: 22 January–5
February 2023). Calibration models were built for each RAMP using previously published calibration tech-
niques (Malings et al., 2019, 2020) (a multiple linear regression model for PM2.5 and hybrid random‐forest‐
multiple‐linear regression model for NO2 and O3) on 75% of the combined pre‐ and post‐collocation data set
(remainder set aside for model testing) after down‐averaging the data to 15‐min resolution to reduce the effect of
noise (Malings et al., 2020). Separating the data into training and testing data sets was done by removing every
4th day from the collocation data set for testing. The performance of the calibration models was assessed on the
testing data set using two metrics: R2 (coefficient of determination, linear least squares regression of predicted vs.
observed concentrations; higher is better) and MAE (mean absolute error; lower is better). We also reported
relative error in the calibration models by calculating CvMAE (coefficient of variation of MAE; lower is better)
using Equation 1. The calibration models had varied performance across different pollutants, reported in Table 1.
Detailed performance metrics for individual RAMP units are provided in Table S1 of the Supporting
Information S1.

CvMAE =
1
n ∑n

i=1|Calibrated valuei − Observed valuei|

Average observed concentrations
(1)

Table 1
Mean and Standard Deviation (SD)* of the Performance Metrics After
Applying the Calibration Models to the Withheld Testing Data From the
Collocation Period

Pollutant

R2 MAE CvMAE

Mean SD Mean SD Mean SD

PM2.5 0.65 0.17 1.82 μg m− 3 0.80 μg m− 3 0.30 0.06

NO2 0.61 0.08 3.92 ppb 0.44 ppb 0.22 0.02

O3 0.84 0.06 3.03 ppb 0.53 ppb 0.25 0.04

Note. *SD=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (xi − x̄)2

n− 1

√

where n = 11 RAMPs, xi is the performance metric
for an individual RAMP, and x̄ is the average performance metric across all 11
RAMPs. Detailed RAMP‐by‐RAMP performance metrics are provided in
Supporting Information S1.

GeoHealth 10.1029/2023GH000935

JAIN ET AL. 4 of 16



2.4. Site Selection

The design of this study was rooted in our belief that community members are the most knowledgeable of their
spaces. As such, we conducted a walking tour of the neighborhood with representatives from the SRA to choose
sampling locations. During this tour, we identified potential emission sources (major roadways, rail lines, con-
struction), and receptor locations (cycling routes, parks, schools, senior housing facilities, Indigenous daycares,
and unhoused communities). Informed by the insights gained from the walking tour, the SRA compiled a list of
potential hosts for the study and contacted them. There were two key logistical requirements for inclusion in the
study, which were communicated to the residents and business owners. First, the chosen residences or businesses
needed to have an outdoor area with access to a power supply to ensure continuous operation of the RAMPs.
Second, residents were required to occupy their homes for at least 75% of the time, or businesses needed to be
operational for at least 75% of working days, in order to grant us access to the RAMPs for maintenance purposes.

Eleven prospective residential households in the neighborhood expressed interest in participating. In alignment
with COVID‐19 protocols, we conducted virtual tours with each host to obtain their consent and discuss the
logistics associated with deploying air quality sensors at their respective households. After careful consideration,
a total of seven hosts were selected for RAMP deployment based on their proximity to pollution sources or their
representation of vulnerable populations. The selected deployment locations were as follows: (a) near a rail line to
monitor rail emissions, (b) on Hastings Road, a major roadway in the neighborhood, to monitor truck and road
traffic‐related pollutants, (c) across from Strathcona Park to represent individuals engaging in outdoor physical
activities, (d) Union Street, a prominent biking route, (e) two RAMPs near an elementary school and a community
center and (f) near a cluster of low‐income households. All RAMPs were deployed at ground level, approximately
3 m above the ground to represent ground level exposure.

In addition to the residential deployments, four RAMPs were deployed at businesses in the study area, to provide
additional insights into the neighborhood air quality, particularly in areas influenced by commercial activities and
community‐focused establishments. These businesses themselves did not generate significant levels of indoor air
pollution (e.g., from cooking or wood burning) that could significantly influence outdoor concentrations. The
RAMP placements at commercial businesses were as follows: (a) second floor of a yoga studio in Chinatown,
located on Main Street, which experiences high commercial foot and vehicle traffic, (b) a community garden on
Hastings Street, (c) the rooftop located on the fourth floor of a community‐center hub on Main Street, and (d) the
rooftop located on the fourth floor of a veteran's housing society. Ideally, it would have been preferable to deploy
all of the RAMPs at ground level (i.e., approximately 3 m above ground). However, due to safety concerns related
to theft prevention and logistics of sensor installation, these organizations did not have access to suitable locations
on ground level. As a result, two RAMPs were deployed at an elevated area, approximately 10–15 m high.
Figure 1 shows the approximate location of the study RAMPs (blue stars).

2.5. Data Collection and Processing

RAMPs were deployed in the backyards of residents and businesses in Strathcona and Downtown Eastside be-
tween April and November of 2022 to collect PM2.5, NO2, and O3 concentrations. Regulatory data for comparison
was obtained for four Metro Vancouver neighborhood monitoring stations in Burnaby (stations Burnaby South
and Burnaby Kensington), North Vancouver (station: Mahon Park) and Richmond (station: Richmond South).
Population data for each dissemination block (DB; smallest geographic area for which population counts are
disseminated in Canada) was extracted from Canadian census data, visualized in Figure S1 of the Supporting
Information S1.

Metro Vancouver's (MV) ambient air quality objective (Metro Vancouver, 2023) for each pollutant was used as the
denominator for comparison, with PM2.5, NO2, and O3 benchmark values of 25 μg m

− 3, 60 ppb (daily maximum
1‐hr concentration) and 62 ppb (daily maximum 8‐hr concentration), respectively (Table 2). To facilitate analysis,
we down‐averaged the calibrated data to match the time resolutions and criteria of the benchmark concentrations.
For example, 15‐min calibrated NO2 concentrations were down‐averaged to 1‐hr concentrations, and then the
daily maximum 1‐hr concentrations were used as the estimated value for each calendar day.

Since there are measurement uncertainties associated with the RAMP sensors (Table 1), the comparison between
the average regional MV concentrations was conducted with a data set that incorporated these sensor un-
certainties. To accomplish this, we estimated absolute percent residuals for each decile concentration bin and
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subtracted them or added them to the corresponding calibrated concentrations to create upper and lower bounds,
respectively. This approach was employed because the error in RAMP measurements depend on the ambient
concentration, with greater uncertainties observed at lower concentrations (Malings et al., 2019; Zimmerman
et al., 2018). The error‐informed data set was generated through the following steps:

1. The RAMP collocation data during the calibration (after correction with the calibration models) was divided
into decile bins and absolute percent residuals were calculated for each bin (Equation 2).

% errorbin =
|Calibrated concentration − Ref erence concentration|

Ref erence concentration
∗ 100% (2)

2. The median absolute % error corresponding to the decile bin of the calibrated concentration was subtracted
(lower bound) or added (upper bound) for the deployment period to generate the error‐informed data sets
(Equations 3 and 4). Box plots of the relative % error are shown in Figure S2 of Supporting Information S1.

Lower bound = Calibrated concentration (1 − errorbin (%)) (3)

Upper bound = Calibrated concentration (1 + errorbin (%)) (4)

To assess the full extent of sensitivity to LCS measurement uncertainty, we also calculated lower and upper
bounds by using the 5th and 95th percentiles of the of the error fraction distributions from Figure S2 (Supporting
Information S1) in the corresponding bin. These results are provided in Supporting Information S1 (Figure S3).

2.6. Spatial Modeling

Air pollution studies have routinely used various interpolation techniques to estimate concentrations in unsam-
pled areas (Gressent et al., 2020; Munir et al., 2021). Interpolation involves applying mathematical processes to
the measured concentrations to estimate values across a continuous spatial field. One commonly used interpo-
lation technique is kriging (Buzzelli et al., 2003; Nguyen & Marshall, 2018; Xu et al., 2019), which takes into
account auto‐correlation in the data, unlike other techniques such as inverse distance weighting or spline.

Kriging operates on the principle that nearby points have a higher influence on an estimate than distant points
(Munir et al., 2021). It also takes clustering into account, whereby clusters of points are given less weight to
reduce bias in predictions. The kriging process involves two steps: (a) fitting a variogram, which is a visual
representation of the covariance between each pair of points in the sampled data, to determine the spatial
covariance; and (b) using the spatial covariance to derive weights for interpolating values (Equation 5).

Table 2
PM2.5 (Daily Average), NO2 (Daily 1‐hr Maximum) and O3 (Daily 8‐hr Maximum) MV Air Quality Objectives and Reported
Concentrations Across Four MV Stations

Station PM2.5 (μg m
− 3) NO2 (ppb) O3 (ppb)

Air Quality Objectives 25a 60b 62c

Burnaby South 5.1 (2.3–8.9) 16.1 (9.7–23.2) 28.4 (20.1–37.5)

Burnaby Kensington 4.6 (1.9–7.7) 16.0 (9.2–24.8) 26.4 (18.9–34.7)

Richmond South 4.4 (1.8–7.6) 16.3 (9.2–23.7) 29.4 (21.1–39.3)

Mahon Park 4.3 (1.9–7.3) 16.7 (7.8–28.3) 25.7 (17.5–35.3)

Average (MV Stations) 4.6 (2.0–6.5) 16.3 (9.0–25.0) 27.5 (19.4–36.7)

Average (RAMPs) 4.6 (2.2–6.4) 21.7 (14.9–28.7) 28.1 (17.4–39.2)

Note. The values reported are averages during the deployment period, and the numbers in brackets are 10th and 90th per-
centiles. aAchievement based on rolling average. bAchievement based on annual 98th percentile of the daily maximum 1‐hr
concentration, averaged over three consecutive years. cAchievement based on annual 4th highest daily maximum 8‐hr
concentration, averaged over three consecutive years.
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zy =∑
N

i=1
λizx (5)

In Equation 5, N is the number of measured values, zy is the predicted value z at point y, λ is the kriging weights
and zx is the observed concentration z at sampled point x.

However, kriging suffers from assumptions of both linearity (uniformity in all directions) and stationarity (sta-
tionary mean and variance across the study space) (Olea, 1999), and is less accurate than other more complex
methods that incorporate additional data, such as land use regression models (Adam‐Poupart et al., 2014; Mercer
et al., 2011). Nevertheless, ordinary kriging has been widely used in environmental justice research due to its ease
of implementation and lack of additional data requirements (Buzzelli et al., 2003; Gardner‐Frolick et al., 2022;
Jerrett et al., 2001; Nguyen &Marshall, 2018; Xu et al., 2019). For this project, we opted for ordinary kriging as a
simpler spatial method to prioritize solutions that communities could potentially independently construct and that
do not rely on complex data inputs. In this work, kriging models were applied to estimate daily concentrations of
PM2.5, NO2, and O3 at each 25 m grid distance and were then averaged to concentrations at each dissemination
block.

2.7. Estimating Cumulative Air Pollution Impacts

Composite measures of sustainability have previously been calculated by aggregating indicators (Kang
et al., 2002; Munda, 2005) using approaches such as multiplicative, additive, binary/threshold and mixed ag-
gregation (Zhou et al., 2006). These approaches have also been adopted to measure the unequal distribution of
environmental hazards caused by multiple pollutants (Giang & Castellani, 2020; Su et al., 2009). For this work,
we aggregated multiple air pollutants to calculate a cumulative hazard index (CHI); the CHI is then used to
identify hotspots within the study area. CHI was calculated using both the multiplicative and additive methods
(Equations 6 and 7).

CHIMultiplicative,j = ∏
3

i=1
rnormi,j (6)

CHIAdditive,j =∑
3

i=1
rnormi,j (7)

In Equations 6 and 7, rnormi,j is the normalized hazard index (HI) of the pollutant i at dissemination block j. rnormi,j is
calculated by first dividing the air pollutant concentration by the Metro Vancouver air quality objective
(benchmark value) to account for different measurement units (Munda, 2005), and then scaling the data by the
population so that all the pollutants are on the same scale (Su et al., 2009). The process is shown in Equation 8,
where ci,j is the pollutant i concentration at the dissemination block j, si is the benchmark value for the pollutant, p
is the population of dissemination block j and ri,j is the normalized pollutant i concentration.

rnormi,j =
ri,j

rpw− avg
where ri,j =

ci,j
si

and rpw− avg =
∑jri,j × pj

∑jpj
(8)

The multiplicative CHI was built with the assumption that there is an interaction between different pollutants
(Villa & McLeod, 2002). We also calculated the Additive CHI (Equation 7), as it assumes no interaction between
pollutants (Shrestha et al., 2016) and therefore can also indicate areas where individual pollutants are high.

The rnorm
(i,j) values were scaled to have a mean of 1, therefore, the mean Multiplicative CHI is expected to be 1

(1 × 1 × 1 for the three pollutants) and the mean Additive CHI is expected to be 3 (1 + 1 + 1 for the three
pollutants). Higher Multiplicative CHI values indicate a higher cumulative impact of pollutants in a particular
area, whereas higher Additive CHI values indicate areas where individual pollutants exhibit high concentrations
and contribute to a higher cumulative impact. This approach allows for the assessment of hyper‐local air quality
patterns (intra‐neighborhood variability) and can be used to identify hotspots. We have chosen not to population‐
weight the CHIs themselves, however, this could be an additional step that one might take to assess cumulative
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impacts. Given how the data have been processed, the interpretation of absolute CHI is less important than relative
changes in CHI. There is no benchmark CHI level, it is simply a tool to help communities identify potential
hotspots that can be used as part of ongoing advocacy with local regulatory agencies or as evidence to strategically
inform more advanced monitoring.

Additionally, while we have chosen a similar form of the CHI to previous publications (Giang & Castellani, 2020;
Su et al., 2009), the choice of CHI weighting schemes should ideally be developed through a combination of
expert input and stakeholder deliberation (Su et al., 2009). For example, the Canadian Air Quality Health Index
(AQHI) is weighted based on epidemiological evidence for excess mortality risk from Canadian cities, and not for
morbidity which may be more of a concern (Giang & Castellani, 2020; Stieb et al., 2008).

3. Results and Discussion
3.1. Data Summary

During the campaign, six of the eleven total RAMPs experienced some degree of malfunction, due to a com-
bination of power loss, sensor degradation, or failures in the data logging/transmission system. Unfortunately, we
were unable to address the malfunctioning sensors effectively, due to various reasons, including scheduling
conflicts with hosts. Two RAMPs underwent sensor degradation and reported data with quality issues (e.g.,
uncharacteristically high, zero, or no readings) and were removed. Furthermore, at the beginning of a renovation
period at the community garden, the charging cable for one of the RAMP sensors was cut. We decided against
redeploying the RAMP at this location to avoid the influence of construction on the overall data collection.
Consequently, only 53% of the originally planned data was collected. This data underwent QA/QC via visual
inspection to ensure there was no influence of short‐lived highly localized pollution events from smoking or
barbecuing; due to the careful siting decisions away from cooking areas and smoking areas we did not observe any
irregular pollution concentrations from residents' activities.

Since missing data wasn't sporadic (e.g., sensors malfunctioned and were never fixed), we applied criteria for data
completeness for inclusion in the analysis. Specifically, we considered only those days with at least eight
functioning RAMP sensors, which corresponds to a data completeness of 75% (a benchmark suggested in the low‐
cost sensor guidelines provided by the US Environmental Protection Agency (US EPA, Williams et al., 2014)).
As a result, our final data set meeting the completeness criteria consisted of 119 days of RAMP data, collected
between 27 April 2022 and 23 August 2022. All days between those dates had at least 8 RAMP monitors online.

During the period when all 11 RAMPs were operational, we conducted Monte Carlo simulations to assess the
sensitivity of the model to the presence or absence of each sensor. We predicted daily concentrations at every grid
by removing one sensor at a time and compared these predictions to the predictions when all RAMPs were used.
We reported the p‐value of the mean differences in the two data sets (difference in predicted concentrations when
test RAMP is excluded and when test RAMP is included), and repeated this process 11 times for 11 RAMPs.
Through these simulations, we identified three RAMPs as critical, as their absence resulted in statistically sig-
nificant differences (p < 0.05) in the predictions. While two of the critical sensors remained operational
throughout the campaign period, one sensor stopped working on June 10th. It is likely that having all critical
sensors operational would have led to more accurate predictions, which could potentially affect the CHI esti-
mates. We acknowledge this as a limitation of our work and emphasize the importance of identifying critical
sensors early on to ensure data completeness in future studies. Furthermore, it is worth noting that two sensors
were deployed at an elevated height, which may have impacted the measured pollutant concentrations. A study by
Wu et al. (2002) reported PM2.5 concentration decays of up to 73% at a height of 19 m. As such, concentrations at
the ground level are likely to be higher than those reported at 10–15 m. The effect of height and associated micro‐
climate was not considered in our analysis, and we recognize this as a limitation of our work.

All sensors across all days recorded data below the Metro Vancouver Air Quality Objectives (Table 2). The
average 24‐hr PM2.5 concentration was 4.6 μg m

− 3 [10th–90th percentile: 2.2–6.4 μg m− 3], with highest con-
centrations observed on June 30th when a fire broke out in the neighborhood (Kerr, 2022). The average daily 1‐hr
maximum NO2 across all sensors was 21.7 ppb [10th–90th percentile: 14.9–28.7 ppb], with diurnal peaks
observed around 7–8 a.m. only on weekdays (see Figure S4 of Supporting Information S1 for diurnal plots),
suggesting a contribution from morning rush hour traffic. The average daily 8‐hr maximum O3 concentration was
28.1 ppb [10th–90th percentile: 17.4–39.2 ppb], with diurnal peaks observed in the afternoon. This is expected, as
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tropospheric ozone is a secondary air pollutant that is formed photochemically in the atmosphere from the re-
actions of NOx and volatile organic compounds (VOCs) (Seinfeld & Pandis, 2016). By comparison, across four
neighborhood Metro Vancouver regulatory monitoring stations in the region, average PM2.5, NO2, and O3
concentrations were 4.6 μg m− 3, 16.3 ppb, and 27.5 ppb, respectively (Table 2).

3.2. Inter‐Neighborhood Variability

We conducted a comparison between the concentrations of each pollutant across all operational RAMPs within
the neighborhood and the average concentrations measured at four neighborhood regulatory monitoring stations
in the MV region (Table 2). The comparison was made on the same time‐scale as the air quality objectives.
Specifically, we compared PM2.5 concentrations on a daily basis, NO2 concentrations on the maximum 1‐hr
concentration over the day, and O3 concentrations on the maximum 8‐hr concentration over the day. To ac-
count for the measurement uncertainties associated with the RAMP sensors, we also compared the error‐informed
data sets (Section 2.5). We then calculated the number of RAMPs (and the corresponding fraction of RAMPs) that
exceeded the average MV regional concentrations for each pollutant individually, as well as for all pollutants
combined.

Figure 2 panels a–c, d–f, and g–i illustrate the fraction of RAMPs exceeding the average regional concentration in
Metro Vancouver for PM2.5, NO2, and O3, respectively. A pollutant was considered as “exceeding” the regional
average in our study domain if more than 50% of the RAMPs exceeded the average concentrations in the MV
region (ratio ≥0.5 in panels a–i). During the 119‐day study period, the concentrations of O3 and PM2.5 in the
neighborhood exceeded the average concentrations in the MV region on 58 (lower—upper bound: 28–92) and 62
(lower—upper bound: 36–87) days, respectively. On the other hand, NO2 concentrations in the neighborhood
exceeded the average concentrations on almost every day (113 days; lower—upper bound: 105–117), with daily
1‐hr maximum NO2 concentrations being on average over 5 ppb higher in Strathcona (Table 2). Using the lower
bound error‐informed RAMP NO2 concentrations still resulted in an average excess 3 ppb exposure. This

Figure 2. Calendar plots for the ratio of sensors exceeding average MV regional concentrations for lower bound, calibrated LCS and upper bound data sets for PM2.5
(plots A‐C), NO2 (plots D–F) and O3 (plots G–I). Ratio= 0 (blue) indicates that none of the RAMPs exceeded MV concentrations, whereas ratio= 1 (red) indicates that
all the operational RAMPs exceeded MV averages. The calendar plot in the bottom row (plots J–L) shows the ratio of sensors exceeding average MV regional
concentrations for the three pollutants together (additive form; combined results from the three plots above). Ratio = 0 (blue) indicates that no pollutant across all the
RAMPs exceeded MV concentrations, whereas ratio = 3 (red) indicates that all the pollutants across all the RAMPs exceeded MV concentrations.
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indicates that residents in the study area experienced higher NO2 concentrations compared to the regional
average. The higher NO2 concentrations are likely also the primary contributing factor in the higher O3 con-
centrations observed in the summer months; the majority of the days where≥50% of the RAMPO3measurements
exceeded the MV regional averages were on summer days when the sunlight needed for photochemical con-
version of NOx to O3 was most intense. For a detailed breakdown of the number of days each RAMP exceeded the
MV averages, please refer to Table S2 in Supporting Information S1. Additionally, at least two pollutants
simultaneously exceeded the average MV concentrations on 93 out of the total 119 days, reinforcing the hy-
pothesis that neighborhood residents disproportionately experience poorer air quality.

The persistently high levels of NO2 in the area, even after accounting for sensor uncertainties, raise concerns
about air quality. Vehicle traffic in the Lower Fraser Valley is the primary source of NOx, contributing
approximately 63% to the overall pollution levels (Doerksen et al., 2020). Among vehicular sources, heavy‐
duty diesel trucks are considered the most significant contributor to TRAP. This is supported by a study
conducted by Metro Vancouver at the Clark Drive Near‐Road monitoring station (approximately 3 km from
the nearest deployed RAMP, and where the RAMPs were calibrated), that found that the vehicle type,
particularly heavy‐duty diesel trucks, rather than total traffic volume, was the main predictor of the amount
and type of air contaminants associated with major roadways in the area (Doerksen et al., 2020). In 2017 at
the Clark Drive station, which can be used as a proxy for our study area, heavy‐duty diesel trucks comprised
18% of the total vehicle fleet, six times higher than the regional fleet percentage of 3% (Doerksen
et al., 2020). The planned expansions at Vanterm and Centerm, set to increase the port capacity by 50% (GCT
Global Container Terminals Inc, 2019), are expected to result in a further rise in shipping‐related traffic,
including trucks, within the study area. It is important to consider the potential consequences of these in-
creases on TRAP, as the elevated TRAP not only suggests the potential for increased NO2 concentrations but
also has implications on elevated O3 levels, especially during the summer months (reflected in Figure 2h;
June–August).

We also assessed inter‐neighborhood variability in cumulative pollution by calculating Multiplicative and Ad-
ditive CHIs for calibrated data from 10 of the RAMPs deployed in Strathcona and three MV stations (Table 3).
One RAMP and one MV station (Burnaby Kensington) were excluded from the analysis due to no residents in the
dissemination block where the monitor was sited (population = 0). Among the three MV stations, the Burnaby

Table 3
Multiplicative and Additive CHIs for RAMPs and Metro Vancouver Stations

ID Total days (n) Multiplicative CHI Additive CHI

RAMP 1001 100 1.71 (0.99–2.63) 3.68 (3.07–4.32)

RAMP 1002 119 2.08 (1.25–3.40) 3.83 (3.26–4.56)

RAMP 1004 119 1.38 (0.80–2.08) 3.33 (2.81–3.89)

RAMP 1005 96 3.38 (0.87–4.80) 4.31 (2.87–5.11)

RAMP 1008 119 1.45 (0.88–2.39) 3.37 (2.88–4.07)

RAMP 1009 119 1.51 (0.89–2.31) 3.47 (3.01–4.02)

RAMP 1011 108 1.20 (0.72–1.95) 3.18 (2.71–3.83)

RAMP 1012 96 1.26 (0.59–2.06) 3.44 (2.84–4.15)

RAMP 1039 44 1.32 (1.01–1.75) 3.31 (3.05–3.63)

RAMP 1040 28 1.01 (0.77–1.19) 3.02 (2.76–3.21)

Average (RAMPs) 1.63 (0.85–2.50) 3.49 (2.91–4.11)

Burnaby South 119 1.36 (0.68–2.11) 3.34 (2.71–4.05)

Richmond South 119 1.17 (0.63–1.78) 3.18 (2.72–3.66)

Mahon Park 119 1.11 (0.44–2.22) 3.04 (2.38–3.95)

Average (MV Stations) 1.22 (0.57–2.08) 3.19 (2.59–3.91)

Note. The values report the average during the deployment period, and the numbers in brackets are 10th and 90th percentiles.
Approximate locations of each RAMP ID are available on Zenodo (Jain et al., 2023).
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South station had higher CHIs, likely due to its proximity to a major roadway (Kingsway street). Among the 10
RAMPs in Strathcona, only two had lower average CHIs (either Multiplicative and Additive) than the average
across the MV stations (RAMP 1011 and RAMP 1040). It is worth highlighting that one of these two RAMPs
(RAMP 1040) recorded data for less than 25% of the study duration, and likely poorly represents the entire study
period. To better compare RAMP 1040 and theMV stations, we isolated the period when RAMP 1040 was online,
and separately calculated the average CHI across MV stations. We found that for these 28 days, the MV CHIs
were comparable to RAMP 1040 (average Multiplicative MV CHI = 1.01 [0.59, 1.56]). As such, this reinforces
the overall finding, that the Strathcona and Downtown Eastside neighborhood generally experiences elevated
pollution levels when compared to other neighborhoods in theMetro Vancouver region, and the cleanest locations
(RAMP 1040 and RAMP 1011) matched the MV station averages (i.e., there was nowhere sampled with cleaner
air than the MV station averages).

The results of these analyses support the community's concerns regarding poorer air quality and highlight the
potential of LCS monitoring as a useful tool for identifying disparities in air quality. These findings can also
support communities in their advocacy efforts for improved air quality by providing quantitative evidence of their
concerns. Targeted policies aimed at reducing emissions from traffic sources, particularly trucks, could help
mitigate overall air pollution levels in the neighborhood due to disproptionate impact of high NO2 concentrations
on our findings. One specific policy approach for which members of the SRA have been advocating is the phasing
out of pre‐2007 trucks, as part of the Vancouver Fraser Port Authority's Rolling Truck Age Program. This
initiative aims to address the higher emissions from older trucks, which generally do not have modern NOx

emission control technologies installed (Khalek et al., 2015).

Previous studies have consistently shown that Downtown Vancouver and surrounding neighborhoods have higher
annual average NO2 concentrations compared to the broader MV area (Giang & Castellani, 2020; Pinault
et al., 2016; Setton et al., 2008). R. Wang et al. (2013) reported an average concentration of 10.8 ppb in 2010,
estimated using land use regression for each dissemination area; the highest concentrations were in Downtown
Vancouver. Giang and Castellani (2020) used annual air quality data sets for 2012 and estimated concentrations
for each dissemination area in the City of Vancouver. They reported average concentrations in the study area for
NO2 and O3 to be approximately 27 and 30 ppb, higher than city averages by 70% and 40%, respectively (city
averages: NO2= 15.9 ppb; O3= 21.4 ppb). A study conducted by MV of 2017 air quality reported approximately
9 and 6 ppb higher concentrations of NO2 at the Clark Drive and Downtown monitoring stations, respectively,
when compared to compared to five other neighborhood MV stations (average = 13 ppb) (Doerksen et al., 2020).
Our study, conducted in 2022, shows a promising reduction in average NO2 and O3 concentrations in the MV
region compared to R. Wang et al. (2013), Giang and Castellani (2020), and Doerksen et al. (2020) (average
NO2 = 9.2 ppb and O3 = 18.8 ppb), however, the Strathcona and DTES areas still experience higher NO2
concentrations (average = 14.2 ppb across 11 RAMPs). Additionally, the reported averages of our work are for
summer only. Since NO2 concentrations are typically higher in winter due to lower atmospheric mixing height
and increased heating (Doerksen et al., 2020; Roberts–Semple et al., 2012), the average annual concentrations are
likely to be higher. Furthermore, Doerksen et al. (2020) reported an increase in annual NO2 concentrations from
2015 to 2017 across 7 out of 8 monitoring station in the region (Doerksen et al., 2020).

3.3. Intra‐Neighborhood Variability

We calculated Multiplicative and Additive CHIs for each dissemination block and each day of the study period to
assess the intra‐neighborhood variability within the neighborhood (Figure 3). Note that if a dissemination block
had no residents (population = 0) it is rendered as a blank space in Figure 3. Spatial maps generated using both
additive and multiplicative CHIs exhibited similar patterns, although the additive CHIs showed generally less
spatial variation (coefficient of variations: Additive CHI = 0.05; Multiplicative CHI = 0.16; more descriptive
statistics in Table S3 of the Supporting Information S1), which aligns with the findings from previous studies
(Giang & Castellani, 2020; Shrestha et al., 2016; Su et al., 2009). The reasoning for the spatial homogeneity of the
additive CHI is that the additive CHI is more influenced by a single high pollutant than the multiplicative CHI.
Essentially, the minimum additive CHI will tend toward the NO2 HI as a lower limit when other pollutant HIs are
low; in the case of multiplicative CHI, if other pollutant HIs are low, this will scale the NO2 hazard index as well,
since they are multiplied together. As such, we expect to see a wider range of CHIs in the multiplicative CHI
calculations.
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Based on the CHI analysis, two areas were consistently identified as hotspots
during the study period: the western and eastern periphery of the study area.
The western periphery of the study region includes Main Street and
Chinatown, and has a high residential and commercial density (population
distribution in each DB is shown in Figure S1 of the Supporting Informa-
tion S1), and a large population of unhoused individuals (Mauboules, 2020).
The eastern periphery of the study area includes Commercial Drive, which
has high foot traffic and road traffic due to high commercial density. The
prevailing wind in the region blows from the east (land breeze), followed by
winds from the west (sea breeze; see Figure S5 of the Supporting Informa-
tion S1). This influence of wind is highlighted in Figure 3, which illustrates
the Multiplicative CHI over a 1‐week period. Depending on the day and time
of day, different parts of the neighborhood are located in the downwind
direction of dense commercial zones and experienced elevated CHI values.
Aggregated CHIs over the whole deployment period for both Multiplicative
and Additive CHIs are shown in Figures S6 and S7 of the Supporting In-
formation S1. We also assessed these patterns using a 25 m grid in addition
to dissemination blocks, since the dissemination blocks are not uniform in
size (Figure S8 in Supporting Information S1); we observed similar patterns
using both the 25 m grid and dissemination blocks, with hotspots in the
western and eastern periphery depending on prevailing wind direction. To
identify potential local source hotspots, we also generated CHI maps on days
with the lowest recorded daily average wind speed (8 km hr− 1) when local
transport of emissions would be lowest (Figure S9 in Supporting Informa-
tion S1). The low wind speed mapping showed more local hotspots on the
western periphery and near the industrial sources and rail lines illustrated in
Figure 1.

The results of this analysis provide valuable insights into the occurrence of air
pollution hotspots within the neighborhood. This could support community
advocacy with regulatory agencies or provide preliminary evidence for more
sophisticated monitoring campaigns. Residents could also use these findings
to make informed decisions and minimize their exposure to pollutants. For
instance, they may choose to exercise in parks located in less polluted areas in
the middle of the neighborhood rather than those at the periphery, or choose
bike routes that avoid elevated pollution areas within the neighborhood.
Building on this work, one potential application is the development of a
community dashboard that incorporates simple geospatial models like krig-
ing, for communities to use should they choose to deploy a network of sen-
sors. This dashboard would allow residents to input their own pollution and
location data and visualize the hotspots and CHIs in their specific areas. Such
a tool would empower individuals to take proactive measures to protect their
health and make informed choices regarding their daily activities, and help
with the pervasive issue of interpreting the complex multi‐pollutant data re-
ported by low‐cost sensors. One caveat to this analysis is that there is sub-
stantial uncertainty in the identified eastern periphery hotspot due to only one
sensor being deployed in that area. As such, this particular hotspot may be

biased from nearby local traffic emissions. For communities planning to conduct a similar analysis, one potential
recommendation could be to build these geospatial kriging maps via iteration; zones that are initially identified as
potential hotspots after a few weeks of deployment could be confirmed through strategic sensor re‐deployment
across the hotspot.

A few studies have investigated the intra‐neighborhood variability of individual pollutants. Shakya et al. (2019)
assessed five separate neighborhoods in Philadelphia (USA) for PM2.5 using mobile sampling conducted for
2–4 hr each day. In a day, the study found variability within a neighborhood to be as high as 17 μg m− 3. Tunno

Figure 3. Multiplicative CHI for the first week of deployment (27 April–3
May 2022). The black arrow in the bottom left corner of each subplot is the
prevailing wind direction for the day. The LCS locations are overlaid as red
stars.
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et al. (2012) assessed intra‐neighborhood PM2.5 variability in Braddock (Pittsburgh, USA) using mobile moni-
toring and found that average measured concentrations varied between 42 and 55 μg m− 3 within the neighbor-
hood. In line with these findings, our study collected data from 11 different locations within the neighborhood and
found daily average PM2.5 concentrations to vary by as much as 7 μg m

− 3. Li et al. (2019) conducted mobile
sampling in Pittsburgh (USA) and reported that NO2 exhibited within‐neighborhood spatial variation, with
hotspots elevated by up to 20 ppb above the regional background concentrations (7 ppb). This supports the
findings of our study; we observed intra‐neighborhood variability as high as 36 ppb in daily maximum 1‐hr NO2
concentration over the deployment period. However, although intra‐neighborhood variability has previously been
studied for individual pollutants, we could not identify any studies that addressed hotspots for cumulative effects
of different pollutants. Furthermore, previous studies have often relied on mobile monitoring to assess intra‐
neighborhood variability, which may not be easily adopted by communities due to the associated costs and
technical expertise required to establish and maintain such mobile monitors.

4. Conclusion
This work reported the intra‐ and inter‐neighborhood variability in air pollution within the Strathcona and DTES
neighborhood in Vancouver. To achieve this, we deployed and collected pollution data using 11 LCS placed
within the neighborhood to capture various sources and receptors. The findings of this study support the hy-
pothesis that LCS can serve as valuable tools for air pollution monitoring and neighborhood‐level assessments for
communities, and highlighted that some neighborhoods in a city may experience disproportionately higher
pollutant concentrations.

The findings of this study provide evidence supporting the use of LCS by communities to gain a better un-
derstanding of their local air quality. We conducted a comparison of pollutant concentrations within the
neighborhood with the average regional levels, which provided valuable insights into the extent to which the
neighborhood concentrations deviated. Moreover, these findings support the community's concerns regarding
air quality and can potentially serve as a basis for advocating for improved traffic‐related policies. The study
also highlights the significance of LCS as a valuable tool that communities can use to identify areas of concern
within their neighborhoods and make informed decisions toward improving their overall exposure to pollutants.
The Centerm expansion was completed in Spring 2023 and the Vanterm expansion is ongoing. To confirm the
suspected influence of port‐related truck traffic on local air quality in Strathcona, we recommend that this
analysis be repeated to monitor trends over time. In January 2023, the Port of Vancouver launched the
Strathcona Area Air Quality Study, which includes 18 LCS monitoring locations deployed for 2 years (Van-
couver Fraser Port Authority, 2023). The method proposed here can be applied to this data set to meet this
recommendation.

There are several limitations to this work. First, as previously mentioned, two sensors were deployed at an
elevated height. As such, the study did not consider the impact of height and micro‐climate in identifying hot-
spots. Additionally, this study focuses on investigating intra‐neighborhood variability by using daily values,
aligning with the time‐resolution of the air quality objectives set by Metro Vancouver. However, exploring sub‐
daily concentrations could provide insights into different areas of concern. Lastly, we used kriging to create
spatial models and identify hotspots as a reduced‐complexity solution that may be adoptable by communities.
While kriging is a useful tool for estimating concentrations in unsampled areas, it is inherently less accurate than
more complex models. As such, for future work where accuracy is important, employing more sophisticated
models, such as land use models, may be preferable.
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