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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Curriculum is more influential than haptic feedback 
when learning object manipulation
Pegah Ojaghi1†, Romina Mir2†, Ali Marjaninejad2,3, Andrew Erwin2,4,5,  
Michael Wehner6, Francisco J. Valero- Cuevas2,3,4,7,8*

Dexterous manipulation remains an aspirational goal for autonomous robotic systems, particularly when learning 
to lift and rotate objects against gravity with intermittent finger contacts. We use model- free reinforcement learn-
ing to compare the effect of curriculum (i.e., combinations of lift and rotation tasks) and haptic information (i.e., 
no- tactile versus 3D- force) on learning with a simulated three- finger robotic hand. In addition, a novel curriculum- 
based learning rate scheduler accelerates convergence. We demonstrate that the choice of curriculum biases the 
progression of learning for dexterous manipulation across objects with different weights, sizes, and shapes—
underscoring the robustness of our learning approach. Unexpectedly, learning is achieved even in the absence of 
haptic information. This challenges conventional thinking about task “complexity” and the necessity of haptic in-
formation for dexterous manipulation for this task. This work invites the analogy of curriculum learning as a mal-
leable developmental process from a pluripotent state driven by the nature of the learning experience.

INTRODUCTION
Dexterous manipulation is a triumph of biology (1–8). However, 
the autonomous learning of such behavior continues to remain 
out of reach for robots (4, 9–12). Robots have excelled at grasp-
ing, reaching for and statically coupling an object to the hand by 
applying forces with the fingertips, fingers, and palm (4, 6, 13, 14), 
for decades (15–23). But grasp is not dexterous manipulation 
(4). Dexterous in- hand manipulation, dynamically holding and 
reorienting an object with the fingertips (4, 18, 24, 25), is criti-
cal for interaction with, and use of, objects in unstructured hu-
man environments.

To achieve this kind of manipulation with multifingered robotic 
hands, the robotics community has developed sophisticated control 
theoretical approaches (4,  7,  18,  26–32); henceforth, we use the 
shorthand manipulation to mean dexterous in- hand manipulation. 
These control theoretical approaches, however, tend to require accu-
rate models and state estimation, have narrow stability margins, and 
have difficulty compensating for friction, interpreting intermittent/
deformable contact, and coordinating between multiple fingers. As an 
alternative approach, biorobotic, neuromechanics, and artificial intel-
ligence communities have introduced a variety of bio- inspired and 
data- driven machine learning approaches in simulation and hardware 
(4, 11, 14, 33, 34).

One particularly promising approach is the subfield of reinforce-
ment learning (RL), which has provided several successful examples 

(12, 23, 35–39). RL empowers robots to iteratively enhance their ma-
nipulation skills through trial and error (without a need for an accu-
rate model of the task or the environment), resulting in gradual 
improvements within complex environments. However, manipulation 
RL studies to date are usually highly computationally intensive—and 
have relied on vision—which limits their applicability (27, 34, 40–49). 
Last, most studies have been limited to the upward- facing hand 
configuration, relying on the palm as a resting platform for the ob-
ject being manipulated which makes it an inherently more stable 
task to handle than a down- facing hand configuration (9). Adding the 
downward- facing hand configuration broadens the scope of solutions, 
delivering valuable insight to the robot manipulation community 
(9, 12, 50). However, it introduces additional challenges as this orien-
tation requires the hand to counteract gravity at all times (51), and 
errors can lead to instabilities and failure by dropping the object. 
Here, we use an RL approach based on the proximal policy optimiza-
tion (PPO) algorithm (52) to autonomously learn manipulation with 
a downward- facing hand without direct vision. We find that the choice 
of curriculum biases learning manipulation toward one or another 
combination of skills (i.e., lifting the ball and/or rotating it) more pro-
foundly than the availability of tactile information.

Unexpectedly, the absence of tactile information did not necessar-
ily prevent or substantially degrade learning relative to the influence 
of curriculum. These results reveal fundamental and previously un-
derappreciated aspects of curricula as a powerful tool for autonomous 
learning of multiobjective tasks. For example, curricula commencing 
with both lift and rotation exhibit initial superior performance com-
pared to those building up from simpler blocks, such as focusing 
solely on lift or rotation. Focusing on a single skill thereafter, however, 
can be additionally beneficial. Beyond assessing the impact of curri-
cula on autonomous manipulation, our study yielded the significant 
revelation that, contrary to long- held notions, the absence of tactile 
information (and direct vision) does not inherently impede or de-
grade the learning process. There seems to be a functional interaction 
with a curriculum where available sensing capabilities bias the learn-
ing process toward combinations of dexterous manipulation skills 
that can leverage the available tactile information.
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RESULTS
The goal of this project was to use curriculum- based RL with a 
simulated three- finger robotic hand to learn in- hand manipula-
tion of an object against gravity in a data- efficient way—even 
while not using visual information. We demonstrate how the 
choice of curriculum is more influential than tactile information 
when learning to lift and rotate a ball (weighing 50 g with 35- mm 
radius) with a three- finger robotic hand in simulation (Fig. 1). 
To do so, we systematically explored two tactile conditions: 
no- tactile (no force perception at all at the fingertip) versus 
three- dimensional (3D)–force (a 3D- force vector in the direction 
of force at the fingertip) during five distinct curricula (details 
in Methods).

We defined each curriculum as implementing a learning policy 
that rewards various combinations and sequences of lift (L) and ro-
tation (R) of a ball, which can switch at the halfway point (Methods). 

For example, curriculum 1 (i.e., C1) only rewards lift (L) in the first 
half of the trial, and both lift and rotation (L + R) in the second 
half are described as [L|L + R]. We find that the order of reward 
(curriculum) greatly affects the progression of learning and the final 
performance, 3D- force was not consistently better than no- tactile 
information, and a similar trend was observed across all configura-
tions (see movie S1).

Curriculum profoundly affects the progression of learning 
and final performance
Each combination of curriculum and tactile information (Methods) 
leads to a distinct evolution of learning and final performance. This 
effect of curriculum affects both the progression of learning (path) 
and final performance (endpoint) and can be visualized as travers-
ing a developmental process (as “Waddington Landscapes” in biol-
ogy; Fig. 2; see Discussion).

Compound reward: R + L

yθ

Degrees of freedom

Translation: x, z

Tactile area
hz

dz

xy

q1

bz
yθz mg

Reward terms
Simulation environment

Lift penalty: L = −c  (|z - z |)L db

x

z Hand height

Ball height

q2

Rotation reward: R = c θyR

Rotation: yθ

t1f

t2f nf

h,fNo-tactile: s    = 0

Tactile information

3D-force: s = [f  , f  , f ] h,f nt1 t2

Desired height

Object options

50 g, 35-mm radius

50 g, 30-mm radius

5 g, 35-mm radius

5 g, 30-mm radius

EpisodeIndependent trial

Run simulation
for one 10-s episode 

Learn for 2000 episodes

PPO seeding

Update 
PPO policy

Curriculum reward

Tactile information

0-1K 1K-2KEpisodes

Learning

s h,f

[R    L       L]
Strategy

Critic

TD error

Reward

Curriculum-based 
reward function

Actor

sb
State, ball

s h
State, hand

a
Action

R + L

Tactile
information

Hand 
kinematics

Initial state Manipulation

sb

s h

Initialize state vector:

A

B

Fig. 1. Overview of simulation environment and learning. A high- level overview of the simulation environment and learning approach to autonomous manipulation. 
See Methods for further details. (A) Simulation environment. A simulated three- finger robotic hand attempted to lift and rotate (i.e., dexterously manipulate) a ball with a 
weight of 50 g and 35- mm radius. the 3d movement of the ball was lightly constrained to the X- Z plane. changes in the ball state affect the reward, which is a function of 
rotation, lift, and/or a combination of the two. We tested this approach with two different tactile information conditions (no- tactile and 3d- force) available at the fingertips 
and four balls of different weights and sizes. (B) learning algorithm. independent trial (left): For each of the five curricula, autonomous learning was evaluated over 60 
independent trials (one trial shown). each trial in a curriculum consisted of two learning phases lasting 1000 episodes for a total of 2000 episodes. the reward function 
changed at the end of the first learning phase (with the exception of curriculum 3; see Fig. 6). episode (right): each episode lasted 10 s and began de novo with the ball on 
the ground with the hand and fingertips suspended above it. the learning process was driven by PPO, utilizing an Actor- critic architecture and temporal difference (td) 
learning to dynamically update the agent’s actions (i.e., moving the fingers and hand) to maximize the curriculum’s reward.
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Curricula, as expected, diverge in their ability to lift and rotate 
the ball. They had the profound effect of biasing toward one or an-
other combination of skills (L or R) and also adapting to the avail-
able sensory input, much like experience- dependent developmental 
paths from an initial pluripotent state (Fig. 2C). As we describe in 
detail in Discussion, we explicitly explored different initial rewards 
with similar final rewards (C1 [L|L + R] versus C2 [R|L + R]) and 
vice versa (C4 [L  +  R|R] versus C5 [L  +  R|L]). In all cases, the 
system was able to respond to the change in reward (albeit with 
variable success). Note the evolution of skills for each curriculum 
tended to saturate quickly within the first 250 episodes of the first 
and second phases of learning. They tended to asymptote between 
the 250 and 1000 and between the 1250 and 2000 episodes, respec-
tively. Nevertheless, the final endpoints for each curriculum differed 
substantially, showing that curricula are more than simply a means 
to learn multiobjective tasks, yet it can actually produce different 
learning paths and endpoints—which can be exploited by the user 
to achieve different capabilities with the same naïve system (Fig. 2).

Counterintuitively, starting with a multiobjective reward can 
be as effective, if not more effective, than starting with simpler 
rewards. For example, rewarding both lift and rotation during 
the first 1000 episodes (C3 [L + R|L + R], C4 [L + R|R], and C5 
[L  +  R|L]) improves rotating the ball at the end of learning 
(episode 2000) better than when only rewarding rotation (C2 
[R|L + R]) at the start.

Tactile information is not necessary but can affect learning
Most unexpectedly, the absence of tactile information did not 
preclude learning. Moreover, learning with no- tactile informa-
tion was comparable to the 3D- force information (Fig. 2). The 
presence or absence of 3D- force information did, however, change 
the learning paths and endpoints of each curriculum (Figs. 2 
and 3)—although the effect was not uniform. For example, 3D- 
force information did produce more lifting than no- tactile in 
C1 [L|L + R] at the end of learning. However, this was reversed 
in C3 [L + R|L + R]; and tactile information did not affect C4 
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Fig. 2. The evolution of learning highlights the dynamic functional interaction between curriculum and tactile information. Manipulation performance during the 
last 10 s of each episode noted: the percent of the time the ball is within the desired height range versus number of complete rotations. each point is the average of 60 
independent trials. Arrows point in the direction of increasing episodes. negative rotations were set to zero. note that the choice of curriculum had a profound effect on 
learning for both tactile conditions [(A) no- tactile and (B) 3d- force]. Unexpectedly, learning happened even in the absence of tactile information, and manipulation per-
formance was not always better with 3d- force information. (C) An analogy of learning as a developmental trajectory from a pluripotent state based on experience (cur-
riculum). this effect of curriculum [and tactile information, cf. (A) versus (B)] affects both learning (path) and final performance (endpoint) and can be visualized as 
traversing a “Waddington landscape” [adapted from (58)].
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[L +  R|R] or C5 [L +  R|L] much (Fig. 2). This nuanced effect of 
tactile information at the end of learning is also seen in Fig. 3, 
and, on average, during learning in Fig. 4. This interaction 
was also seen while learning with different objects (see details 
in the “Generalizability” section in the Supplementary Materials 
and Fig. 5).

Further nuance of the effect of tactile information can be seen in 
the different paths of learning and in the response to switching of 
rewards between the first and second learning phases (i.e., after 
episode 1000). Note that C3 [L + R|L + R] rewards both skills dur-
ing the entirety of both phases but tends to be most effective at lift-
ing in the no- tactile information compared to 3D- force condition 
(Fig. 2). Nevertheless, when switching the reward to only lift C5 
[L + R|L] or only rotation C4 [L + R|R] at the end of the first learn-
ing phase, the 3D- force case makes up for lost ground and has end-
points similar to those for the no- tactile information. This effect 
seems to be reversed for C1 [L|L + R] and C2 [R|L + R] where only 
lift or rotation was rewarded at first. In these cases, the 3D- force 
information produced greater lift and rotation during both learn-
ing phases.

DISCUSSION
What did we learn about learning to manipulate?
Using a simulated three- finger robotic hand, we provide proof 
of principle that it is possible to learn the hard problem of 
dynamic dexterous manipulation
Putting our work in context is critical and best done by pointing to 
its place in the updated taxonomy of hand function put forth by 
MacKenzie, Iberall, Brand, Cutkosky, Dollar, and others (2, 18, 53–
57). In particular, we have addressed the problem of dynamic 
manipulation with three fingers, while the ball is at risk of being 
dropped at any moment (see the “Comparison to state of the art” 
section). This definition emphasizes that “grasp” and “pick- and- 
place manipulation” are conceptually and mechanically distinct 
from “dynamic manipulation” as addressed here, although they are 
at times used interchangeably in the literature (3). Such dynamic 
manipulation is an enviable ability that is also difficult for biology to 
achieve as it develops in humans late in childhood, degrades in 
healthy aging, and is quickly lost in even mild/initial forms of 
neurological conditions such as peripheral neuropathies, stroke, 
and Parkinson’s disease (3, 56). In our work, the fingertips induce 

Fig. 3. Performance across all curricula and both tactile information conditions. the joint distribution illustrates the performance during the final 10- s episode of 
each of the 60 trials [showcasing the mean ball height (millimeters) versus the number of completed rotations]. the color- coded cumulative reward for the last episode 
of each run (refer to eq. 1) corresponds to different curricula. note that the final manipulation performance is represented by those points inside the green box defining 
the desired ball height (25 ± 4 mm).
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dynamic translation and rotation of the ball while making and break-
ing contact. As such, the hand function we achieved merits the de-
scription of dynamic dexterous manipulation.
Curriculum learning can be seen as a developmental process 
from a pluripotent state
We use the analogy of the Waddington Landscape (Fig. 2C) for cur-
riculum learning of manipulation (Fig. 6) because of its similarity to 
epigenetic transformation from a pluripotent state in biological de-
velopment (57–59). Curriculum learning produces a developmental 
trajectory from a naïve (i.e., pluripotent) state based on resources 
(tactile information) and experience (curriculum) (Fig. 2, A and B). 
Each curriculum affects both the progression of the learning (path) 
and its final performance (endpoint) and can thus be thought of as 
traversing a Waddington Landscape.

The evolution of skills for each curriculum was (unlike cell dif-
ferentiation) not strictly irreversible, yet it remained adaptable. Spe-
cifically, the change of reward after the first learning phase did not 
preclude the system from emphasizing the improvement of the new 
skill. This is visually represented by 90° shifts in the paths (see C1 
[L|L + R] and C2 [R|L + R] in Fig. 2). In some cases, the response to 
a switch in reward even reversed a learned skill for the first 250 epi-
sodes in the second phase of learning, and only then increased the 

new skill (see C4 [L + R|R] and C5 [L + R|L] in Fig. 2). In one case, 
C3 [L + R|L + R], there was no change in reward after the end of the 
first learning phase, and the system was saturated already. In others, 
the system did respond like an “irreversible” system that learned 
little of the new skill, of at all, when the reward function was switched 
(e.g., C2 [R|L + R] in the 3D- tactile case in Fig. 2). See the next dis-
cussion section.

The role of sensory information
Manipulation can be achieved without tactile 
information or vision
Tactile information has long been thought as necessary for human—
and by extension robotic—manipulation (4, 60). This idea was rein-
forced by the work of Johansson and Westling (61, 62) demonstrating 
that numbing the fingerpads with anesthetic temporarily impairs 
fine manipulation. However, the ability of individuals to still ma-
nipulate objects effectively despite impaired sensation (such as 
when wearing gloves in cold weather or with soapy hands) chal-
lenges the longstanding belief that tactile input is indispensable 
(61, 63–65). Our results in Fig. 2 provide a counter- example to this 
longstanding notion. We found that our system was able to learn 
even in the absence of tactile information (the no- tactile information 

Fig. 4. Cumulative reward across all curricula and tactile information conditions. Boxplots, with median, across tactile conditions for 60 runs, every 250 episodes. 
note that learning tends to saturate early.



Ojaghi et al., Sci. Adv. 11, eadp8407 (2025)     2 April 2025

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

6 of 14

Lift Rotation
Object 1 [50g, 35 mm]

Object 4 [5g, 30 mm]

Object 2 [50g, 30 mm]

Object 3 [5g, 35 mm]

Fig. 5. Violin plots show the distribution of lift and rotation at the end of learning (i.e., the last 10 s of the 2000th episode) for all 60 trials. Final performance for 
lift (left) and rotation (right) for both tactile conditions for the ball shown in Fig. 2 and three others of different weights and radii shown. the top row corresponds to the 
reference ball described in the main results. the other balls are described in the Supplementary Materials. lift is described as a distance from the desired height (the green 
box shows the distance from the desired height range ± 4 mm) and rotation as the number of completed rotations for both tactile conditions, no- tactile and 3d- force.
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in Figs. 2A and 3). Having 3D- force not always produced better per-
formance [cf. C3 [L + R|L + R] in Fig. 2 (A and B)].

How is it possible to learn to manipulate without vision or 
tactile information? The answer, we believe, comes from the nature 
of reinforcement itself. As described in Fig. 1B, PPO—as an RL 
algorithm—conditions its actions (next- step finger joint angles, an-
gular velocities, palm position, and velocity) based on the system 
state, ultimately optimizing for increased reward. In the no- tactile 
case, the hand’s state comprises finger joint angles, angular veloci-
ties, palm position, and palm velocity—which seem to suffice to 
learn the task. Therefore, lift and rotation of the ball was a product 
of guided hand kinematics that properly affect ball dynamics to 
increase the reward in the no- tactile case, such as in our previous 
work to learn locomotor movements without the need to sense the 
ground (38).

As such, a main contribution of our work is to provide an existence 
proof that an agent using RL is able to learn a sophisticated manipula-
tion behavior even in the absence of tactile information. Note that 
direct vision was not necessary either, as in other prior work (38). Our 
important result about dynamic manipulation provides impetus to 
revise our thinking about, and use of, tactile and visual information to 
allow freer thinking for engineers (and bio- roboticists) creating the 
next generation of dexterous hands and robots.
The presence or absence of tactile information did, however, 
alter the progression of learning
Information presented in Fig. 2 (A and B) (and fig. S1) indicates that 
while the sensory conditions did influence the learning process across 
curricula, their overall learning trajectories and endpoint perfor-
mance were similar. The effect of tactile information was not system-
atic. The 3D- force cases were not consistently or necessarily better 
than the no- tactile cases or vice versa. Thus, curriculum is a dominant 
factor compared to tactile information.

From the computational perspective, one could have expected 
that when learning with a fixed number of episodes, 3D- force sensor 
would perform systematically worse because of the computational 
demands associated with extending the length of the hand state vec-
tor sh by nine elements (three forces per finger) for the same PPO 

algorithm architecture which now has to tune more weights (Fig. 1). 
However, 3D- force sensor cases at times outperformed the no- 
tactile cases [e.g., C1 [L|L + R] in Fig. 1 (A and B)], which strongly 
suggests that our comparisons across curricula and tactile condi-
tions are not the result of an imbalance in computational demands 
for a fixed number of learning episodes (1000 per learning phase for 
a total of 2000). This is additionally supported by the fact that 
3D- force cases also saturated their learning by the 250th episode 
(like the no- tactile cases).

Also, it is important to note that this study does not under-
mine the effectiveness of tactile information in many everyday 
tasks. It merely provides a proof of principle that it is possible to 
learn a specific task (i.e., the manipulation task of interest in this 
paper) without using tactile information; and with performance 
comparable to when tactile information is available. It is clear 
that many tasks exist for which sensory signals would either be 
crucial to perform, or would greatly enhance, either the learning 
speed for the task, the final performance, error correction, and/
or their robustness and repeatability. These are beyond the scope 
of our work.

What did we learn about learning?
Our system exhibits some important features of 
lifelong learning
As defined in (11), our system shows transfer and adaptation 
because it reuses knowledge to improve performance and rapidly 
adapts to previously unseen skills as in C1 [L|L + R], C2 [R|L + R], 
C4 [L + R|R], and C5 [L + R|L] (in Figs. 2 to 4). Similarly, our 
system did not suffer from catastrophic forgetting as it was able to 
retain varying amounts of previously learned knowledge on a case- 
by- case basis (Fig. 2 and fig. S1). For example, C4 [L + R|R] and C5 
[L + R|L] did not entirely forget to lift or rotate when they were no 
longer rewarded, respectively.
Curriculum learning does not necessarily have to advance 
gradually from single- objective to multiobjective rewards
In many applications such as locomotion, investigators have found 
that curriculum learning is indispensable to advance gradually 

Fig. 6. Curriculum definitions with combinations of two different subtasks of lift and rotation. We used five curricula that rewarded different combinations of lifting 
and rotation during each half of the independent trials. these changes in the coefficients of the reward function define a progression of goals (i.e., curriculum learning) 
over the two halves of each run.
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from single- objective (i.e., “simpler”) to multiobjective (i.e., “more 
complex”) rewards (66). This has led to curriculum learning becom-
ing the standard approach in the field. From the traditional defini-
tions of Vanilla or Progressive curriculum learning (67,  68), one 
might assume that first learning to lift the ball (a form of grasp) is 
“easier” than rotating it, which involves a dynamic behavior (4, 18) 
and a curriculum strategy in which rotation is learned only after lift 
is going to be a significantly more successful one. However, reward-
ing lift and rotation from the start does not hinder learning, as dem-
onstrated by C3 [L + R|L + R]. It allowed transfer and adaptation for 
C4 [L + R|R] and C5 [L + R|L] to subsequently refine the single skill 
rewarded during the second phase of learning—albeit at the expense 
of some reduction of the nonrewarded skill. However, it is note-
worthy that curricula that rewarded only one skill from the start 
(C1 [L|L + R] and C2 [R|L + R]) were not able to learn the second 
skill as efficiently during the second learning phase (rotation and 
lift, respectively).

Another aspect of lifelong learning involves the saturation of ca-
pacity causing learning to slow down (69, 70). Capacity saturation 
arises due to the fixed representational capacity of parametric mod-
els, including the PPO algorithm (70). We see this in our implementa-
tion of PPO—which increasingly fails to absorb additional knowledge 
from successive episodes. This is most evident in C3 [L + R|L + R] for 
the entire second phase of learning, as shown in Fig. 2. A learning 
model with more free parameters would theoretically be able to ab-
sorb additional knowledge from successive episodes.
The curriculum- based learning rate scheduler enhances the 
efficiency of learning which accelerates convergence to 
higher reward
We sought to align the implementation of learning rates in PPO 
with the nature of curriculum learning. To do this, we defined 
our curriculum- based learning rate scheduler to adjust the lin-
early decaying learning rate when the reward changed (Fig. 7). 

We find this improved learning and allowed a more fair compari-
son across curricula as it reduced heuristic tuning efforts. This 
curriculum- based learning rate scheduler offers an effective ap-
proach tailored to curriculum learning for autonomous systems 
by modifying the learning rate only when changing task com-
plexities and rewards. Empowering curriculum learning to adapt 
learning rates in a way compatible with changing rewards enables 
autonomous systems to learn complex and dynamic environ-
ments more systematically, autonomously, and effectively. Thus, 
integrating curriculum- based learning and reward scheduling 
into a “curriculum- based learning rate scheduler” for autono-
mous systems is vital to enhance their learning capabilities and 
performance in manipulation tasks.
Last, we demonstrate our results generalize to objects of 
different weights, shapes, textures, and sizes
As shown in figs. S1 to S7, our results were consistent across four 
balls we studied (i.e., of two weights, 50 and 5 g, and two sizes, 35 
and 30 mm in radius; Fig. 1A). There were minor differences across 
the endpoint performance for each object (note that the difference 
is the scales of the axis). But the learning paths for each curriculum 
and the effect of switching the reward remained consistent (fig. S1). 
This can also be seen in the detailed depiction of the distribution of 
rewards as learning progressed (Fig. 4). We further extended our 
results to manipulate objects with different textures and shapes. 
That is, we tested a softer ball (compared to the more rigid surface 
texture of the reference ball) and a cube. Details of these additional 
analyses can be found in the Supplementary Materials (table S5 and 
figs. S8 to S11).

The results for the cube are especially intriguing, as they reveal 
more distinct differences between training with and without tactile 
information. That is best seen in lower cumulative rewards across 
the entire training period for the no- tactile information than 3D- 
force for the cube (fig. S9) compared to the balls of similar weight 

Fig. 7. Effect of PPO curriculum- based learning rate scheduler by comparison of mean height. data presented for mean height in c5 [l + R|l] throughout the whole 
learning period. the desired height for all cases is 25 mm. Solid lines represent the mean across all 60 trials for the specified learning rate methods. Shaded areas represent 
±1 Sd. the red solid line follows the PPO implementation per eq. 2.
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(Fig. 4 and fig. S3). Moreover, these same plots show greater disper-
sion in cumulative reward for the cube for both tactile conditions. 
This finding suggests that tactile information may become increas-
ingly significant for both the level and consistency of performance 
as the complexity of the manipulated shape grows. Together, our 
work specific to dexterous manipulation with a three- finger robotic 
hand shows that our findings about curriculum learning and tactile 
conditions are robust to objects of different object sizes, weights, 
shapes, and textures.

Comparison to the state of the art
It is critical to note that, as we have stated in the past (4), grasp 
or pick- and- place tasks are not dexterous manipulation in the 
rigorous sense of grasp taxonomies. Even reorienting a cube 
resting on an upward- facing palm (9, 16, 50, 71–74) is not pre-
hensile manipulation. Moreover, prior work has relied heavily on 
extensive visual input for object reorientation on an upright 
palm (12, 75), with few exceptions such as Sievers et  al.’s (76) 
demonstration of learning while slowly adding gravitational 
force. Notably, Chen et al. (12) recently demonstrated success in 
reorienting an irregular object with a downward- facing hand, 
although this approach remains dependent on vision. In addi-
tion, these approaches find it challenging to reorient unmarked 
symmetric objects.

Thus, we demonstrate a dynamic manipulation task against full 
gravity from the start, using curriculum learning where direct vision 
is not needed. We only required information about the height of the 
ball and its orientation, which can in practice be obtained by sensors 
other than vision that are sensitive to occlusions by the object and 
fingers. We used a novel curriculum- based learning rate scheduler 
for PPO, which significantly enhances the success performance 
across all scenarios. We now discuss how our approach to manipula-
tion compares and contrasts with other studies in robotics and 
RL. The state of the art of autonomous learning for in- hand manipu-
lation is limited. Although important advances have been made 
using computationally intensive approaches in simulation and hard-
ware (12, 27, 34, 41–43), these tend to be impractical for autono-
mous learning at the edge.

Augmenting RL for manipulation with imitation learning has 
shown some successes (12, 35–37), but collecting task- specific ex-
pert demonstrations from humans is often limited to specific objects 
or tasks, might not always be practical, requires specialized equip-
ment, and can be time- consuming.

In contrast, we used a model- free data- driven approach because 
precise prior knowledge of the system, objects, and the environment 
is not always available, especially in unstructured environments. Al-
though some other studies also use model- free RL methods for ro-
tating objects with simulated fingers or a robotic hand (9, 77–79), 
we have overcome some of their drawbacks. In (9, 78), the orienta-
tion of an object was controlled while resting on an upward- facing 
palm. Thus, it did not have to be held against gravity as it was not at 
risk of being dropped at any time.

Some of these limitations were addressed by Chen et al. (79) in 
simulation by manipulating the object with the palm facing down-
ward like we did, but gravity was introduced slowly as part of the 
curriculum. Moreover, to successfully manipulate the object, the 
authors found it important to “initialize the object in a stable con-
figuration”—which we did not need. Similarly, Caggiano et al. (25) 
have shown that incorporating a variety of complex object shapes in 

training can support limited generalization even when no visual or 
tactile information is available.

The way our work went beyond the state of the art, therefore, is 
by demonstrating a method with the ability to autonomously learn 
to manipulate an object against gravity while revealing the role of 
curriculum learning and tactile information in in- hand manipula-
tion. Curriculum learning strategies have been successfully ap-
plied across various areas of machine learning, including recent 
implementations in robotics and manipulation tasks (80–82). Our 
findings now show that curriculum learning not only facilitates per-
formance but a curriculum can itself influence the trajectory of the 
learning process.

In addition, the impact of learning rate scheduling on stochastic 
optimizer performance has been extensively investigated in recent 
research (83, 84). In our study, we specifically explore the effects of a 
constant and linear piecewise learning rate for PPO on the success 
of our architecture. After careful consideration, we have decided to 
proceed with the piecewise learning rate. This adaptive approach ad-
justs rates dynamically throughout training, speeding up the process 
with higher initial rates and ensuring stable convergence with lower 
rates later on.

Last, our work underlines the importance of curricula in manip-
ulation and shows how the right choice of a curriculum can enhance 
performance and robustness across multiple tasks by exhibiting 
some important features of lifelong learning. In this study, we em-
phasize that dexterous manipulation is not a monolithic task but 
rather a collection of interrelated challenges that can benefit from 
diverse learning strategies and sensory inputs. Our findings suggest 
that the complexity of manipulation tasks requires tailored ap-
proaches, highlighting the necessity for adaptive learning paradigms 
that can benefit from a variety of learning curricula and types of 
tactile information.

Limitations, opportunities, and future directions
While our work pushes the field of autonomous manipulation for-
ward, it naturally has some limitations. First, our work is done in 
simulation for a three- finger robotic hand. However, as with many 
other studies looking to bridge the sim2real divide (38, 85), we used 
realistic physical constraints within a state- of- the- art physics engine 
(MuJoCo) that handles dynamic contacts and affects well. This is a 
foundation that will enable future hardware implementations. As to 
the geometry of our hand, it is common for useful robotic hands to 
have three fingers (27, 77), but hands with more fingers—and other 
manipulation tasks—remain to be explored. Curriculum learning 
has multiple varieties (68) that can adapt as learning progresses such 
as self- paced curriculum learning. In our case, our learning phases 
were of fixed duration, although the system tended to plateau. Thus, 
it could benefit from future implementations that adapt reward 
changes to minimize training time. Last, our manipulation tasks serve 
as a foundation for—but do not yet address—traditional use cases 
for activities of everyday life.

Our choices regarding PPO, curriculum design, hand and ob-
ject structure, reward function, and other parameters were spe-
cifically tailored to address the scientific questions of interest 
within the scope of this paper and to establish a proof of concept. 
It is important to emphasize that our selections were not intended 
as universally applicable solutions. That is to say, to address a dif-
ferent need, a similar pipeline to this paper can be used, but differ-
ent tasks, environments, or robotic structures might need to be 
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used. Also, different learning blocks (different than the RL tech-
nique or the adaptive curriculum- based learning rate scheduler 
function used in this paper) can be used that might serve best for 
another specific task or purpose. An extension of this work has 
begun to reveal that, when clustering the performance of trails 
within a given curriculum, we can detect the emergence of distinct 
“learning trends” (86). Thus, this work motivates and justifies sev-
eral future directions for research to understand how curricula 
can interact within and across sensory conditions, objects, and 
learning trends to enhance robustness, generalization, and trans-
fer learning.

METHODS
In this section, we first describe the simulation environment and the 
task used in this study. Then, we elaborate on the learning policy 
that enabled autonomous manipulation.

Simulation environment
The manipulation and machine learning communities have used the 
advanced physics simulation environment MuJoCo (87) for tasks 
involving autonomous manipulation. MuJoCo allowed us to imple-
ment RL algorithms on a robotic hand in a realistic environment 
that includes contact dynamics (including penetration) and gravita-
tional acceleration (87, 88).

To demonstrate the adaptability and robustness of our proposed 
methodologies, we assessed the performance using four different 
objects. Our evaluations encompassed systematic exploration, con-
sidering two different weight combinations (50 and 5 g), as well as 
varying ball radii (35 and 30 mm). The work presented herein fo-
cuses on a ball of 50 g with a radius of 35 mm with the other 
configurations presented in the “Generalizability” section in the 
Supplementary Materials.
Robotic hand design
We simulated a bio- inspired, three- fingered robotic hand with a 
palm and three identical servo- driven fingers: two adjacent fingers, 
analogous to the “index” and “middle” fingers, and one opposing 
them, analogous to the “thumb.” In contrast to our prior efforts (89), 
where we showcased the reach- to- manipulate capability with a 
downward- facing orientation using distinct curricula, we modified 
the hand design. Each finger consisted of two joints that could rotate 
about the y axis (q1 and q2 in Fig. 1A), similar to the flexion or exten-
sion seen in human fingers. The size of the palm and length of each 
“phalanx” was based on an average human hand (77, 90). An addi-
tional servo motor was included at the base of the hand, which pro-
vides translational motion in the vertical direction (zh).
Fingertip tactile sensors
This work incorporated tactile information and RL, sometimes 
referred to as touch- augmented RL, as we covered the internal 
side (i.e., the “pads” of the fingertips) of the distal phalanx of 
each finger with tactile sensors. Contact regions were config-
ured near the tips of each finger (tactile area; Fig. 1). Objects 
contacting the finger outside of these tactile areas (sites, in MuJoCo) 
are not perceived as tactile information by the learning algo-
rithm (78, 87).

We used MuJoCo’s built- in features to record the 3D- force sensor 
on the fingertips of all three fingers. The 3D- force sensor sites pro-
vide a 3D array of three orthogonal forces (one normal and two tan-
gential to the sensor site for each sensor) of scalar values representing 

the 3D- force vector. Moreover, we have considered an additional 
case: no- tactile. In the no- tactile case, the state vector for the tactile 
information sh,f is null (we do not consider the tactile information in 
learning). As shown in Fig. 1A, the possible contact tactile informa-
tion at each fingertip is indicated by sh , f =

[

ft,1, ft,2, fn
]

 and it de-
pends on tactile sensing available at fingertips. See table 2 for more 
details on the tactile information.
Task description
The robotic hand attempts to manipulate a 50 g, 35- mm radius ball, 
which starts each episode on the ground with the palm of the ro-
botic hand at a height of 200 mm above the ground. The ball height 
zb is defined in the center of the ball, and we specified a desired 
height for the ball zd to be 25 mm above zb. In other words, the de-
sired height zd is 60 mm above the ground. Through simulation 
constraints, the ball is limited to 2 translational degrees of freedom 
(DOFs; moving vertically z and horizontally x) and 1 rotational DOF 
(rotation about the θy direction; see Fig. 1). We included viscous 
damping in the translational and rotational DOFs of the ball to sta-
bilize the simulation and prevent numerical instabilities for the sim-
ulation of the rigid fingers.

We further limited the ball’s movement in the x direction by add-
ing stiffness to the ball. The details of the simulation parameters, 
including the robotic hand and the ball, are shown in table S3.
Observation and action space
The system’s state vector includes the hand state vector (sh), consist-
ing of 14 kinematic DOFs, along with the position and velocities of 
the hand’s palm (sp) (2 DOFs), and the position and velocity of the 
ball (sb) (6 DOFs). This 20D vector encapsulates joint angles (q1 to 
q6) and their derivatives, as well as the vertical height of the hand 
(zh) and its derivative, collectively describing the dynamic state of 
the system.

In addition, the ball state vector comprises vertical (z) and hori-
zontal (x) translation and its rotation about the y axis (θy). No other 
translations or rotations are permitted (see table S4). The height of 
the hand, zh, is actuated for the hand to reach for and manipulate the 
state of the ball (sb) by rotating (θy) and lifting (zb) it to a desired 
height (zd).

It is important to note that not all state variables are used in our 
RL policy (observation state). Specifically, the observation state 
omits details about the ball’s velocity and position, as explained in 
the following subsection. Furthermore, it is worth mentioning that 
the action space aligns with the observation state. When a 3D- force 
is introduced, the state of the system dynamically changes, aug-
menting the hand state with an additional nine data points.

Autonomous learning approach
To autonomously learn in- hand manipulation of a ball against grav-
ity through using tactile information, we used a model- free RL algo-
rithm to learn the policy. We used PPO as our main algorithm as it 
presented a balance between the ease of implementation, sample 
complexity, and ease of adjustment, trying to update at each step to 
minimize the cost function while assuring that the new policies are 
not too far from last policies (52, 91). PPO has also been adopted as 
one of the default methods of OpenAI owing to its excellent perfor-
mance (92, 93).
Reward function
The reward engineering concept (a subset of RL) focuses on finding 
the most appropriate reward to maximize successful learning via re-
ward shaping (94). Reward shaping involves carefully designing 
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reward functions that provide the agent with rewards for progress 
toward the goal.

In our work, we defined two goals, lift and rotation. Lift: Our 
desired height (center of the ball above the ground) is zd = 25 mm, 
shown in (Fig. 1). In our algorithm, the goal is reached when the 
agent supports the ball against gravity within a desired height range 
of [21, 29] mm, indicated with a green box in Fig. 3 (and figs. S2, S4, 
and S6). A range is used to accommodate height variation during 
rotation and manipulation tasks. For result metrics, we report the 
mean height of the ball and lift success as a percent time within an 
episode where the ball is in the desired height range. Rotation: 
For rotation, we calculated completed rotations as our performance 
measurement (as opposed to rotation reward or rotation in degrees). 
Since we care about manipulating the ball against gravity at the 
desired height range, we used a combination of primary (positive) 
reward and punishment (penalty proportional to the distance be-
tween the current height and the desired height as a negative re-
ward) at every time step.

In our reward function, the angular velocity of the ball θ̇y was the 
primary reward, and the absolute distance of the state from the refer-
ence state of having the ball at the fixed desired position (zd = 25 mm; 
Fig. 1) was the punishment. The reward function is described by

where cR = 0.51 and cL = 0.49.
We investigated learning strategies (here, curriculum) in which lift 

and rotation are both rewarded (L + R), strategies in which only lift is 
rewarded with rotation coefficient set to zero (cR) and strategies in 
which lift coefficient is set to zero (cL) and only rotation is rewarded 
(R). This is described in detail in the following section (see Fig. 6).

Curriculum learning
A learning trial consisted of 2000 episodes, where each episode last-
ed 10 s. This resulted in a total simulated time of 5 hours and 33 min 
per trial. Each learning trial was split into two equal halves where 
the reward function changed between the two halves of the trial 
(Algorithm 1). We considered five distinct curricula that differed in the 
behavior (rotation and lift) rewarded in two halves of the trial. This 
is illustrated by a circle with a curved arrow (rotation) and a vertical 
arrow (lift) throughout the paper and pictured in the second col-
umn of Fig. 6). As shown in the last column, by changing cR and cL 
variables in Eq. 1, we update the reward function in two equal halves 
of the learning trial in each curriculum. The final column of the ta-
ble gives the values of cR and cL used in Eq. 1, to update the reward 
function in the two halves of the learning trial in each curriculum.

Learning was evaluated over 60 trials for each of the five curri-
cula. Each of these 60 trials was independent by varying the seed 
parameters of the PPO algorithm for our RL policy. This was re-
peated for the two tactile conditions (no- tactile and 3D- force). 
For each tactile condition, the initial seed for the random number 
generator was held constant across different curricula. For example, 
the first trail run seed was exactly the same for all curricula and both 
tactile conditions. Overall, we used independent trials to evaluate 
the effectiveness of our approach to autonomous manipulation.
Adaptive curriculum- based learning rate scheduler
The impact of learning rate scheduling on the performance of sto-
chastic optimizers has garnered considerable attention in recent re-
search (83,  84). Traditional approaches, using a fixed and static 
learning rate throughout training, often struggle to attain optimal 
model performance. To address this limitation, diverse scheduling 
algorithms, such as polynomial decay, cosine decay, and warm- up, 
have been proposed, each tailored with distinctive forms (95). 

Rewardt = cRθ̇y,t − cL∣zh,t − zd∣ (1)

Algorithm 1. Simulation with PPO.
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Current methodologies often rely on predefined principles, assum-
ing specific scheduling rules based on empirical studies and domain 
knowledge. These approaches may not rigidly adhere to any existing 
rule to find the optimal learning rate scheduling for a particu-
lar problem.

In our exploration of PPO, we aim to transcend the constraints 
associated with a constant learning rate. Initially, we opted for a 
constant learning rate and a linear learning rate, commonly used 
approaches in RL algorithms (96). But implementing a constant 
learning rate in dynamic contexts, where sensitivity to the initial 
rate choice can result in unstable training or sub- optimal solutions, 
highlights the necessity for adaptive approaches. We proposed a 
new method to tackle challenges with fixed learning rates, especially 
in dynamic environments like our manipulation tasks. This is ad-
dressed by an adaptive curriculum- based learning rate scheduler, 
bringing multiple advantages. This adaptive strategy dynamically 
adjusts rates throughout training, expediting the learning process 
with higher initial rates and ensuring stable convergence through 
decrementing rates during later stages.
Curriculum- based learning rate scheduler strategy
Instead of using a fixed or decreasing learning rate, our method 
embraces a curriculum- adaptive learning strategy. The adaptive 
curriculum- based learning rate scheduler (piecewise linear learning 
rate) strategy is described as follows

The selection of optimal values for ϕ and η was determined em-
pirically and set to 1 and 0.98 respectively, ensuring adaptability 
across all five curricula. The curriculum- based learning rate sched-
uler (Lr) is established and adjusted through trial and error to em-
phasize the significance of curriculum learning. These coefficients 
are then integrated into the PPO linear scheduler according to the 
following equation. Our curriculum dynamically changes at 1000 
episodes (1,000,000 samples), compelling the learning rate to be 
piecewise linear to accommodate the variations in the dynamics of 
the reward and tasks. This adaptive strategy effectively responds to 
changes in the environment, contributing to the model’s success.

To validate the effectiveness of our approach, we explore the 
impact of constant, linear, and adaptive curriculum- based learning 
rate scheduler (Piecewise Linear Learning Rate) in C5 [L + R|L] in 
Fig. 7, comparing mean height more than 2000 learning episodes. 
The piecewise linear learning rate was far closer to this target 
height than either the linear or constant learning rate. Thus, the 
piecewise linear learning rate was used as the curriculum- based 
learning rate scheduler throughout this work. Our results in dif-
ferent curricula consistently support the superior performance of 
PPO with well- designed scheduling mechanisms, surpassing those 
using a constant and linear learning rate in both convergence rate 
and final performance metrics (95, 97, 98). One key advantage is 
the reduced sensitivity to the initial rate choice, minimizing the risk 
of divergence. The piecewise linear learning rate promotes efficient 
exploration in the early stages and exploitation for optimal perfor-
mance during convergence. Its curriculum- based adaptive nature 
contributes to faster convergence, effectively navigating both explor-
atory and exploitative learning phases. Moreover, the piecewise 

linear schedule imparts robustness against variations in task diffi-
culty or environmental changes, automatically adjusting to maintain 
training stability.

To evaluate the effectiveness of different learning scheduler meth-
ods in reducing convergence time, we conducted an analysis on the 
average number of episodes needed after switching the reward 
during the second phase of learning in C5 [L + R|L]. We compared 
three learning schedulers: constant learning rate, linear rate, and 
piecewise linear rate.

Our findings reveal that the average number of episodes for 
convergence in successful trials (defined as trials where the hand 
can maintain the ball within the target height range) after the 
reward switch varied significantly across the different schedulers. 
Specifically, when focusing only on the successful trials (not 
shown), we observed that it took 1000 episodes for convergence 
with a constant learning rate, 450 episodes with a linear rate, and 
only 250 episodes with a piecewise linear rate (see episodes 1250 
in Fig. 7).

Figure 7 illustrates the performance of each scheduler in reach-
ing the target height. The piecewise linear learning rate outperformed 
both the linear and constant rates by a substantial margin. In addi-
tion, it achieved a higher cumulative reward across all 60 trials, in-
dicating its superior effectiveness in learning and adaptation. These 
results highlight the significant advantages of using a piecewise 
linear learning rate scheduler in enhancing convergence speed and 
overall performance in C5 [L + R|L] simulations.

In summary, our adaptive curriculum- based learning rate sched-
uler strategy in the PPO implementation aims to enhance training 
stability, expedite convergence, and improve adaptability in dynamic 
environments. This aligns with our goal of efficiently training the 
agent for effective in- hand manipulation and contributes to the ex-
ploration of learning rate scheduling strategies on a curriculum- 
based approach. The complete code for learning is available at the 
following https://github.com/pojaghi/In- hand- manipulation.

Supplementary Materials
The PDF file includes:
Supplementary Methods
Supplementary Results
Figs. S1 to S11
tables S1 to S5
legend for movie S1

Other Supplementary Material for this manuscript includes the following:
Movie S1
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