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Abstract: Anthocyanin content is important for both the external and internal fruit quality of cul-
tivated strawberries, but the mechanism of its accumulation in pinkish-skinned and white-fleshed
strawberries is puzzling. Here, we found that the factor determining variation in the flesh color was
not the FaMYB10 but the FaC4H in the cultivated strawberry Benihoppe and its white-fleshed mutant
Xiaobai. Compared with Benihoppe, there was no significant difference in the coding sequence and
expression level of FaMYB10 in Xiaobai’s flesh. Instead, the transcription of FaC4H was dramatically
inhibited. The combined analyses of transcriptomics and metabolomics showed that the differential
genes and metabolites were significantly enriched in the phenylpropanoid biosynthesis pathway.
Furthermore, the transient overexpression of FaC4H greatly restored anthocyanins’ accumulation in
Xiaobai’s flesh and did not produce additional pigment species, as in Benihoppe. The transcriptional
repression of FaC4H was not directly caused by promoter methylations, lncRNAs, or microRNAs. In
addition, the unexpressed FaF3′H, which resulted in the loss of cyanidin 3-O-glucoside in the flesh,
was not due to methylation in promoters. Our findings suggested that the repression of FaC4H was
responsible for the natural formation of pinkish-skinned and white-fleshed strawberries.

Keywords: anthocyanin; strawberry flesh; transcriptomic and metabolomics; FaC4H; promoter methylation

1. Introduction

Cultivated strawberry (Fragaria × ananassa, 2n = 8x = 56) is grown all over the world,
and its fruits are rich in nutrients and flavonoids; hence, they are deeply loved by consumers.
As one of the flavonoid metabolites, anthocyanin is crucial to the quality of strawberry
fruits. Usually, there are three different cultivated strawberry varieties: red-skinned and
red-fleshed, white-skinned and white-fleshed, and pinkish-skinned and white-fleshed.
However, the factors that cause changes in anthocyanins are puzzling, especially for the
latter variety.

The complete biosynthesis process of flavonoids has been well-studied in strawberries,
including the general phenylpropanoid pathway, and a specific flavonoid branch [1–3]. In
the general phenylpropanoid pathway, phenylalanine acts as a precursor, undergoing a
series of enzymatic reactions to finally generate p-coumaroyl-CoA. The genes involved in
this process include PAL, C4H, and 4CL [4]. In addition, the phenylpropanoid pathway is
also closely related to hydroxycinnamic acids, osthole, eugenol, cinnamaldehyde, lignin,
dihydrochalcones and ubiquinone biosynthesis [5–7]. In the specific flavonoid pathway,
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naringenin chalcone produces flavones, isoflavones, flavonols, anthocyanins, and flavan-3-
ols (precursors of proanthocyanidin polymers) using the enzymatic reaction of different
branches [8]. The main anthocyanins are pelargonidin (>80%) and cyanidin in the red
fruit of cultivated strawberry subspecies, which give the fruit its bright-red and dark-red
appearance, respectively [9,10].

Similar to other plants, the regulation of strawberry anthocyanins and proanthocyani-
dins (PAs) is also modulated by the ternary complex MYB-bHLH-WD40 (MBW), in which
the R2R3-MYB transcription factor (TF) plays a pivotal role [2,11]. The FaMYB9/FaMYB11-
FabHLH3-FaTTG1 complex positively regulates the PAs metabolism. The MBW, with
FaMYB10 as the core, may positively regulate the anthocyanins metabolism in straw-
berry fruit, while FaMYB1 represses both processes [2,11–15]. Moreover, the FaRAV1 TF
contributes to anthocyanin biosynthesis by upregulating anthocyanin-related genes, in-
cluding FaMYB10 [16]. Some reports also demonstrated that small RNAs such as miR829.1,
miR1873, miRNA858a, and miRNA156 can regulate flavonoid metabolism by targeting the
structural genes [17,18].

Generally, mutations in the coding region or promoter sequence of the structural
genes or flavonoid-related TFs are key to impairing pigment accumulation in horticultural
fruits [19–21]. Until now, the allelic variations in MYB10 are believed to be the main driving
force for the differential distribution of anthocyanins in wild and cultivated strawberry
fruits under natural conditions [22,23]. An identified SNP in the FveMYB10 coding sequence
leads to the formation of yellow fruits of wild strawberries through genome-scale DNA
variant analysis [24]. The white-specific variant FaMYB10-2, an ACTTATAC insertion in
FaMYB10, is responsible for the pigment deficiency in the skin and flesh of cultivated
strawberries [14,23]. Moreover, a FaEnSpm-2 (CACTA-like) transposon is always located
on the MYB10-2 promoter in the red-fleshed strawberries, which increases the expression
of MYB10-2 and anthocyanin-related genes [23]. Therefore, a large amount evidence for the
natural variation in strawberry fruit color converges on the loss of function or differential
expression of the MYB10 gene.

Xiaobai is a certified strawberry variety derived from the somatic variation of Beni-
hoppe virus-free seedlings under tissue culture conditions. It is very popular due to its
better flavor and economic benefits [25]. However, it is not clear how the red-fleshed
Benihoppe mutates into the white-fleshed Xiaobai. Since Benihoppe, Xiaobai, and most
of the octoploid strawberries are vegetatively propagated, it is very difficult to locate the
mutation site by QTL mapping. The incompleteness of the octoploid strawberry genome
data also makes it impossible to use whole-genome sequencing methods to find mutated
genes, as for the diploid strawberry [26]. In this study, we found that the change in flesh
color in octoploid strawberry cultivars Benihoppe (red-skinned and red-fleshed) and Xi-
aobai (pinkish-skinned and white-fleshed) was not ascribed to the dysfunction of FaMYB10,
but to the differential expression of FaC4H. We performed transcriptomic, metabolomics,
RT-qPCR, and HPLC assays for the flesh of Benihoppe, Xiaobai, 35S::FaMYB10 (restore
anthocyanin accumulation in Xiaobai), and 35SN (control). In addition, FaC4H was also
transiently overexpressed in Xiaobai fruit. Furthermore, the bisulfite sequencing was
used to explore the methylation levels of the FaC4H and FaF3′H promoters in the skin
and flesh of Benihoppe and Xiaobai. These results provided new details to further the
understanding of the mechanism of pigment accumulation in the pinkish-skinned and
white-fleshed strawberries.

2. Results
2.1. Variations in Anthocyanin-Related Genes in the Flesh of Benihoppe and Xiaobai Strawberries

As shown in Figure 1a, the flesh of Benihoppe accumulated pigments, while its bud
mutant cultivar Xiaobai (variety authorization number: CNA20141360.2) did not [25].
Further HPLC analysis uncovered that the main anthocyanins in Benihoppe’s flesh were
pelargonidin 3-O-glucoside (Pg3G) with 306 µg/g fresh weight (FW). This was not detected
in Xiaobai (Figure 1b). Moreover, the anthocyanins content in Benihoppe’s skin was also
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about four times higher than that in Xiaobai, in which Pg3G and cyanidin 3-O-glucoside
(Cy3G) were 487 µg/g FW and 44 µg/g FW, respectively (Figure 1b). Benihoppe’s fruits
were accompanied by a higher PAs content (Figure S1). The qPCR results showed that the
expression levels of most structural genes in the whole flavonoid biosynthesis pathway
were higher in the Benihoppe’s flesh than those in Xiaobai, especially for C4H, F3H, ANR,
F3GT, and TT19 (Figure 1c–e). Among these genes, C4H and TT19 changed by about 27-fold
and 17-fold, indicating that they may have the ability to affect anthocyanin biosynthesis in
Xiaobai’s flesh (Figure 1c–e). In addition, the expression levels of MYB9, MYB10, and EGL3
did not show significant differences. The MYB11 and LWD1-like were higher in Benihoppe,
while MYB1, MYB5, bHLH3, GL3, TTG1, and LWD1 were the opposite (Figure 1d), suggest-
ing that these MBW-related TFs may also influence anthocyanin accumulation in the flesh
of Xiaobai.
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coside (Cy3G) were detected by HPLC in Benihoppe, Xiaobai, 35SN and 35S::FaMYB10 (M10). (c–e) 
Relative expression levels of structural genes or related transcription factors in flavonoid metabo-
lism pathways. Chalcone synthase (CHS), chalcone isomerase (CHI), flavonol 3-hydroxylase (F3H), 
flavonol 3′-hydroxylase (F3′H), flavonoid 3′,5′-hydroxylase (F3′5′H), dihydroflavonol-4-reductase 
(DFR), anthocyanidin synthase (ANS), leucoanthocyanidin reductase (LAR), anthocyanidin reduc-
tase (ANR), UDP-glucose flavonoid-3-O-glycosyltransferase (F3GT), O-methyltransferase (OMT), 
TRANSPARENT TESTA (TT), H+-ATPase 10 (AHA10), Fra a allergen (Fra a), phenylalanine ammo-
nia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate:coenzyme A ligase (4CL). Significant 
differences between samples were determined using Student’s t-test (**, p < 0.01; *, p < 0.05); multiple 
comparisons were conducted using Turkey’s test, and significant differences (p < 0.05) were indi-
cated by different letters. Error bars show ± SEs. 
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To explore the mutated genes in Xiaobai, we first focused on the FaMYB10, which 
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Figure 1. Comparison of the anthocyanins and flavonoid-related genes in the flesh of Benihoppe (HY)
and Xioabai (XB) strawberries. (a) Ripe fruits of Benihoppe, Xioabai, and transient overexpression of
FaMYB10 in Xiaobai’s fruits (35S::FaMYB10). 35SN (empty vector) was used as a negative control.
Scale bars represent 10 mm. (b) Pelargonidin 3-O-glucoside (Pg3G) and cyanidin 3-O-glucoside
(Cy3G) were detected by HPLC in Benihoppe, Xiaobai, 35SN and 35S::FaMYB10 (M10). (c–e) Relative
expression levels of structural genes or related transcription factors in flavonoid metabolism path-
ways. Chalcone synthase (CHS), chalcone isomerase (CHI), flavonol 3-hydroxylase (F3H), flavonol
3′-hydroxylase (F3′H), flavonoid 3′,5′-hydroxylase (F3′5′H), dihydroflavonol-4-reductase (DFR), an-
thocyanidin synthase (ANS), leucoanthocyanidin reductase (LAR), anthocyanidin reductase (ANR),
UDP-glucose flavonoid-3-O-glycosyltransferase (F3GT), O-methyltransferase (OMT), TRANSPAR-
ENT TESTA (TT), H+-ATPase 10 (AHA10), Fra a allergen (Fra a), phenylalanine ammonia lyase (PAL),
cinnamate 4-hydroxylase (C4H), 4-coumarate:coenzyme A ligase (4CL). Significant differences be-
tween samples were determined using Student’s t-test (**, p < 0.01; *, p < 0.05); multiple comparisons
were conducted using Turkey’s test, and significant differences (p < 0.05) were indicated by different
letters. Error bars show ± SEs.
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2.2. Sequence Characteristics of the FaMYB10, FaC4H, and FaTT19 in Benihoppe and Xiaobai

To explore the mutated genes in Xiaobai, we first focused on the FaMYB10, which was
reported to play a dominant role in controlling the pigment accumulation in strawberry skin
and flesh [23]. As expected, the transient overexpression of FaMYB10 (cloned from Xiaobai)
substantially restored the pigment accumulation in Xiaobai’s flesh. The overexpression
of FaMYB10 also greatly increased the anthocyanins content in the skin (Figure 1a). The
qPCR analysis showed that the transcriptional level of C4H and F3′H were enhanced
to more than 50-fold higher and other structural genes, including the TT19, F3GT, and
F3H, were also increased to several-fold higher, which was consistent with the results
in Benihoppe (Figure S1). However, the coding sequences of FaMYB10 were identical in
Benihoppe and Xiaobai, as confirmed by both PCR cloning and RNA-seq (Figure S2). No
frameshift mutation was found in FaMYB10 (Figure S2), which was different from the white
octoploid strawberry Snow Princess and the yellow diploid strawberry Yellow Wonder
5AF7 [14,24]. Since the expression level and coding sequence of FaMYB10 did not vary in
the two cultivars, and the overexpression of FaMYB10 in Xiaobai also produced Cy3G that
did not exist in Benihoppe’s flesh, this may not be the direct factor causing the absence of
pigments in Xiaobai (Figures 1b and S2). The coding sequences of the FaC4H and FaTT19
did not produce frameshift mutations in Xiaobai, even though they contained SNP sites
(Figure S3).

2.3. Detection of Various Flavonoid Metabolites in Strawberry Flesh by Targeted Metabolomics

To further explore the differences in the flavonoid biosynthesis pathway, we used
targeted metabolomics to detect the flavonoid metabolites in the above-mentioned two
flesh samples that can accumulate anthocyanins (Benihoppe and 35S::FaMYB10) and the
two that cannot accumulate anthocyanins (Xiaobai and 35SN). A total of 28 flavonoid
metabolites were detected, including 20 anthocyanins (Table S1). Despite the apparent
absence of pigment accumulation in Xiaobai and 35SN, there was still a certain number
of flavonoid metabolites with different modifications (Table 1), indicating that they may
be colorless or unstable in the flesh. Comparing Benihoppe with Xiaobai, the fold change
values of 14 anthocyanin metabolites were greater than two. This was also consistent
in the results of 35S::FaMYB10 and 35SN (Table 1). It was noteworthy that pelargonidin
chloride and cyanidin chloride, the two initial anthocyanins in the biosynthesis pathway,
were dozens of times higher in ‘Benihoppe’ (Table 1). This means that the anthocyanins in
Xiaobai were repressed in the biosynthesis stage before modification, transport, and storage
to vacuoles.

Table 1. Flavonoid compounds in the flesh of Benihoppe (HY), Xiaobai (XB), 35S::FaMYB10, and
35SN by targeted metabolomics.

No. Compounds Q1 1

(Da)
RT 2

(min)
Relative Quantification 3 Fold Change

XB 35SN HY 35S::FaMYB10 HY/XB 35S::FaMYB10/35SN

1 Pelargonidin 3-O-glucoside 449.1 1.647 (3.1 ± 1.0) × 104 (3.0 ± 0.5) × 105 (6.2 ± 0.4) × 106 (9.9 ± 2.5) × 106 199.0166 33.5122
2 Pelargonidin chloride 287.0 3.773 (1.3 ± 0.4) × 104 (4.3 ± 0.4) × 104 (5.0 ± 0.8) × 105 (5.9 ± 0.6) × 105 38.6196 13.9370
3 Pelargonidin 3,5-di-O-glucoside 611.1 1.544 0 (4.0 ± 1.4) × 103 (2.8 ± 0.7) × 104 (8.2 ± 1.5) × 104 NA 4 20.3768
4 Cyanidin O-rutinoside 595.2 1.525 (1.8 ± 0.2) × 104 (5.3 ± 0.4) × 104 (1.4 ± 0.1) × 105 (6.6 ± 0.8) × 106 7.3731 123.0654
5 Cyanidin O-acetylhexoside 489.1 3.739 (5.9 ± 3.1) × 104 (9.3 ± 1.2) × 105 (2.9 ± 0.2) × 106 (4.4 ± 1.1) × 106 48.5049 4.7248
6 Cyanidin O-syringic acid 465.1 1.555 (1.2 ± 0.2) × 104 (3.5 ± 0.5) × 104 (4.4 ± 0.3) × 105 (4.0 ± 1.0) × 106 37.5528 115.2296
7 Cyanidin-3-O-galactoside chloride 465.1 1.560 (1.1 ± 0.2) × 104 (3.7 ± 0.6) × 104 (3.9 ± 0.2) × 105 (3.9 ± 1.0) × 106 34.0469 105.2074
8 Cyanidin 3-O-malonylhexoside 535.1 3.739 (2.4 ± 1.0) × 104 (3.8 ± 0.3) × 105 (1.0 ± 0.1) × 106 (2.0 ± 0.5) × 106 44.2875 5.1313
9 Cyanidin 3-O-glucoside 465.1 1.614 0 0 (4.7 ± 0.2) × 104 (5.8 ± 1.6) × 105 NA NA
10 Cyanidin 3-O-rutinoside chloride 611.1 1.561 0 0 (1.5 ± 0.2) × 104 (9.0 ± 1.5) × 104 NA NA
11 Cyanidin chloride 303.1 3.424 0 0 (2.4 ± 0.2) × 104 (6.8 ± 1.1) × 104 NA NA
12 Delphinidin O-malonylhexoside 551.1 3.661 0 (1.8 ± 0.2) × 104 (8.7 ± 0.8) × 104 (1.6 ± 0.3) × 106 NA 85.3311
13 Delphinidin 3-β-D-Glucoside 481.1 1.483 (2.7 ± 1.0) × 103 (3.5 ± 0.2) × 103 (8.8 ± 2.5) × 103 (2.8 ± 0.6) × 104 3.2300 7.8831
14 Peonidin chloride 317.1 3.812 0 (2.2 ± 0.4) × 104 (1.1 ± 0.4) × 105 (1.1 ± 0.3) × 105 NA 5.1384

Q1 1, molecular weight. RT 2, retention time. Relative quantification 3, calculated by the area of individual peak,
and the data are expressed in mean ± standard deviation. NA 4, not applicable.

2.4. Detection of Other Metabolites in Strawberry Flesh by Quasi-Targeted Metabonomics

The above-targeted metabolomics results revealed that anthocyanins in Xiaobai’s
flesh were inhibited in the flavonoid biosynthesis stage (Table 1). To search for the onset
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of inhibition, we used the quasi-targeted metabolomics method to further expand the
detection range of metabolites. A total of 468 metabolites were detected and divided
into 51 categories (Table S1). Compared with Benihoppe, 23 differential metabolites were
screened out in Xiaobai, including seven flavonoids, four phenylpropanoids and polyke-
tides, four amino acids and their derivatives, and eight other metabolites (Table S1). Among
them, L-phenylalanine, the initial substance of flavonoid biosynthesis, was two times higher
in Xiaobai than that in Benihoppe (Table S1). Combined with the unchanged expression
level of PAL (Figure 1c), it was suggested that repression occurs in Xiaobai’s flesh below the
PAL. In addition, the contents of osthole, cinnamaldehyde, caffeic acid, and dihydrochal-
cones were also significantly increased or decreased in the phenylpropanoid biosynthesis
pathway (Figure 2 and Table S1). Although the average content of p-coumaric acid in
Xiaobai was only half of that in Benihoppe, this difference was not significant due to the
larger deviation. In contrast, eight-fold increases were observed in 35S::FaMYB10 (Table S1).
Combining the results of targeted metabolomics, quasi-targeted metabolomics, and qPCR,
inhibited anthocyanin biosynthesis in Xiaobai was more likely to be located between PAL
and ANS steps, especially in the phenylpropanoid biosynthesis pathway.Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 18 
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Figure 2. Schematic of flavonoid biosynthesis pathway in Benihoppe (HY) and Xiaobai (XB) strawber-
ries. Four cells from the left to right represented transcripts in XB vs. XB, 35SN vs. XB, HY vs. XB, and
35S::FaMYB10 vs. XB, separately. The cell color indicated log2 FPKM ratio values from −2 (green) to
10 (red), and transcripts change trends were shown as a heatmap with abbreviated genes name on
the left. The highlighted metabolites represented that they were detected by targeted metabolomics
or quasi-targeted metabolomics, and the color showed the content changes in metabolites in HY vs.
XB, with light blue (down), pink (up), and light grey (unchanged).
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2.5. Whole Transcriptomic Sequencing of Red- and White-Fleshed Strawberries

To systematically identify the key genes that influence pigment accumulation in Xi-
aobai’s flesh, we also performed a whole transcriptome sequencing of Xiaobai, Benihoppe,
35SN, and 35S::FaMYB10. Finally, the sequencing of mRNAs, lncRNAs, and circRNAs
produced 183.36 GB of the raw data. Above 93% of the reads used Q values > 30. Small
RNAs sequencing generated raw data for 10.01 GB, and the Q30 values were all above
97%. In total, we obtained 109,331 mRNA transcripts (Table S2), 17,986 lncRNA transcripts
(Table S3), 1218 circRNAs (Table S4), 173 mature microRNA, and 185 microRNA precursors
(Table S5). To verify the reliability of the transcriptome data, we calculated the correlation
between the qPCR data of the above 19 genes and their transcription levels in the transcrip-
tome data. A strong correlation (R2 = 0.87) was found, indicating that the transcriptome
data were highly reliable (Figure S1).

2.6. Analysis of the Differentially Expressed mRNAs, lncRNAs, circRNAs, and microRNAs

Among the mRNA transcripts, 881 differentially expressed genes (DEGs) were found
in Benihoppe vs. Xiaobai, with 468 being up-regulated and 413 being down-regulated
(Figure 3a, Table S2). In the entire flavonoid biosynthesis pathway, the expression levels of
genes including C4H, CHS, CHI, F3H, DFR, ANS, F3GT, and TT19 all showed significant
changes (Figure 2), which was consistent with the above qPCR results. At the same
time, we also compared the DEGs in Benihoppe vs. Xiaobai and 35S::FaMYB10 vs. 35SN.
Their common DEGs with the same change trend were reduced to 267, in which C4H
showed the highest fold change in the biosynthesis pathway, indicating that the suppressed
C4H gene may lead to the loss of anthocyanins in Xiaobai’s flesh (Figure 2). Next, the
DEG functions in Benihoppe vs. Xiaobai were mainly focused on metabolic process,
biological_process, single-organism metabolic process, and oxidoreductase activity by Go
analysis (Figure 3b). Further KEGG analysis unraveled that the DEGs were highly enriched
in the phenylpropanoid biosynthesis, but not in other pathways (Figure 3c), suggesting
that the key step in repressing anthocyanin accumulation in Xiaobai’s flesh may occur in
phenylpropanoid biosynthesis, especially C4H.

In the lncRNA transcripts, 121 were up-regulated and 104 were down-regulated in the
comparison of Benihoppe vs. Xiaobai (Figure 3a, Table S3). Only 19 differentially expressed
lncRNAs showed the same change trend for Benihoppe vs. Xiaobai and 35S::FaMYB10
vs. 35SN, including TCONS_00026735 and TCONS_00141381. They were upregulated
by three-fold or 41-fold, respectively. They may target CHS, CHI, ANS, and F3H by co-
localization and co-expression prediction methods [27]. In circRNAs, five were up-regulated
and four were down-regulated in Benihoppe vs. Xiaobai (Figure 3a, Table S4), but the
log2Foldchange absolute values were all lower than two. In microRNAs, we found 80 novel
matures and 96 precursors besides those already reported. Among them, seven were up-
regulated and nine were down-regulated in Benihoppe vs. Xiaobai (Figure 3a, Table S5).
However, no microRNAs that could target C4H were found by the TargetFinder software
prediction, indicating that the low expression of C4H in Xiaobai’s flesh may not be caused
by post-transcriptional degradation.
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Figure 3. Analysis of the differential metabolites and genes in the flesh of Benihoppe (HY), Xi-
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2.7. Combined Analysis of Metabolomics and Transcriptomics

We further performed a combined analysis of the quasi-targeted metabolomics and
transcriptomics data, and the results showed that both differential metabolites and genes
in Benihoppe vs. Xiaobai were greatly enriched in the phenylpropanoid biosynthesis
(Figure 3d). The expression level of C4H was positively correlated with the osthole, caffeic
acid, and dihydrochalcones contents (Pearson correlation coefficient, r > 0.9), but negatively
correlated with L-phenylalanine and cinnamaldehyde (r < −0.9), which was also consistent
with their position in the pathway (Figure 2, Table S6). In addition, PAL and 4CL genes
were not found to be significantly correlated with differential metabolites in Benihoppe
and Xiaobai, which further reflected that the C4H gene was the key to the difference.
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2.8. Overexpression of FaC4H Restored Anthocyanin Accumulation in Xiaobai’s Flesh

To verify the above hypothesis, we transiently overexpressed FaC4H in Xiaobai’s fruit,
which was also cloned from Xiaobai. The results showed that anthocyanin accumulation
was restored in the flesh (Figure 4a), and the content of Pg3G reached 206 µg/g FW
(Figure 4b), which was slightly lower than Benihoppe (Figure 1b). The Cy3G was not
detected, as in Benihoppe (Figure 4b). Further qPCR analysis showed that the expression
levels of flavonoid-related genes, including PAL, CHS, DFR2, F3GT, TT19, and F3’H, did
not increase with the accumulation of anthocyanins, while CHI, F3H, and ANS slightly
decreased (Figure 4c). This result suggested that the repression of FaC4H may directly
affect anthocyanin biosynthesis in Xiaobai’s flesh.
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Figure 4. Overexpression of FaC4H dramatically restored anthocyanin accumulation in Xiaobai’s
flesh. (a) Transient overexpression of FaC4H in Xiaobai’s fruits. 35SN was used as a negative control.
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expression levels of structural genes in 35S::FaC4H and 35SN. Significant differences between samples
were determined using Student’s t-test (**, p < 0.01; *, p < 0.05). Error bars show ±SEs.

2.9. Methylation Detection of FaC4H and FaF3′H Promoters

The DEGs screened by transcriptome contained methyltransferase and chromatin
remodeling-related genes (Table S2). S-(5-Adenosy)-L-Homocysteine was also screened
in the metabolome (Table S1), which was the product of a methylation reaction [28]. We
performed amplification and methylation detection in the promoter sequence of FaC4H
in Benihoppe and Xiaobai. Sequence analysis showed that the FaC4H-promoters were
basically identical, and their CpG sites were mainly located in the region from −513 bp to
+345 bp with two CpG islands (Figure 5a), which were predicted online by MethPrimer.
Bisulfite sequencing results revealed that all of 39 CpG sites in this region were almost
unmethylated in the flesh of Benihoppe, Xiaobai, and 35S::FaMYB10 (Figure 5b). Moreover,
we also explored the blocked FaF3′H in the flesh, which could result in undetectable Cy3G
(Figure 1b). The promoter X1 sequence of FaF3′H shared 97% similarities with wild straw-
berry, while the promoter X2 sequence had a 490bp depletion from X1, accompanied by
the deletion of some hormones, MYB, and circadian-related cis-acting regulatory elements
(Figure S4). The methylation sequencing of the three regions with the most CpG sites on
the FaF3′H promoters showed that a total of 50 CpG sites were almost unmethylated in
Benihoppe’s skin and flesh (Figure S4), the same as those in Xiaobai and 35S::FaMYB10
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(Figure S5). These results suggested that the repression of FaC4H and FaF3′H may not be
caused by promoter sequence methylation.
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site was sequenced from 15 different clones.

3. Discussion

The biosynthesis, transport, and storage of anthocyanins in plants are jointly regulated
by structural genes and related TFs in the flavonoid metabolic pathway. The loss or
abnormality of their functions leads to the blocked accumulation of anthocyanins [19,21].
Xiaobai (pinkish-skinned and white-fleshed) is a bud-sport found in Benihoppe (red-
skinned and red-fleshed) strawberry. Its excellent flavor and economic value make it an
important candidate for cross-breeding [25]. However, the factor responsible for the white
flesh of Xiaobai has not been determined to date. Both Xiaobai and Benihoppe are octoploid
strawberries that are vegetatively propagated, and their genomic data are not complete and
accurate enough, so it is very difficult to identify the mutation sites using QTL mapping or
whole-genome sequencing [26]. Furthermore, the pigment accumulation in Xiaobai’s flesh
was also not restored by directly overexpressing FaANS, a structural gene for anthocyanin
biosynthesis [29].

In previous reports, the mutations of the MYB10 gene were considered to be the main
factor responsible for changes in anthocyanin accumulation in wild and cultivated straw-
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berry fruits under natural conditions [14,22–24]. In addition to MYB10, mutations in the
transport-related gene PAP (homolog of TT19) also lead to reduced anthocyanins in wild
strawberry petioles and cultivated strawberry fruits [20]. However, we found that there
was no difference in the coding sequences of MYB10, RAP, and C4H genes in Benihoppe
and Xiaobai by RNA-seq and PCR cloning sequencing. Meanwhile, the expression levels
of different MYB10 transcripts (maker-Fvb1-3-augustus-gene-144.30, maker-Fvb1-2-snap-
gene-157.15, and maker-Fvb1-1-snap-gene-139.18) also showed no significant difference
between Benihoppe and Xiaobai. Although the overexpression of FaMYB10 restored pig-
ment accumulation in Xiaobai’s flesh, it also produced additional Cy3G, which was not
present in Benihoppe’s flesh. In addition, we tried the overexpression of FaMYB9 and
FaMYB11 in Xiaobai, which also restored anthocyanins with additional Cy3G, while the
overexpression of FaEGL3 or FaTTG1 kept the white flesh (data not shown). These results
suggested that the FaMYB10 gene may not be directly responsible for the loss of antho-
cyanins in Xiaobai’s flesh. Herein, we demonstrated that the inhibition of the C4H gene was
the main factor responsible for the absence of anthocyanins in Xiaobai, which differed from
previous reports [14,23,30]. C4H not only affects the flavonoid biosynthesis but is also nec-
essary for the biosynthesis of osthole, hydroxycinnamic acids, dihydrochalcones, eugenol,
lignin, and ubiquinone [4–7]. The decline in these metabolites may be an important reason
for the poor stress-resistance of Xiaobai strawberry under field cultivation conditions. The
cause of the repression of FaC4H in Xiaobai remains a mystery.

There is evidence that the expression levels of genes are affected by transcriptional
and post-transcriptional regulation, including DNA methylation, transcription factors, and
microRNAs [31–34]. After excluding the repression of FaC4H by DNA methylation, we
found a relatively highly expressed DOF1.2 transcription factor among the screened differ-
ential genes (snap_masked-Fvb2-4-processed-gene-109.16 and augustus_masked-Fvb2-3-
processed-gene-128.9), and its expression levels in Xiaobai and 35SN were about two-fold
that in Benihoppe and 35S::FaMYB10 (Table S2). The correlation calculation showed that
the transcription level of DOF1.2 was negatively correlated with the anthocyanins content
(r = −0.78) and the expression of FaC4H (r = −0.85) in the flesh, indicating that DOF1.2
may inhibit the transcription of FaC4H. This negative correlation was also found in our
previously reported transcriptome data [35]. Sequence analysis showed that the promoters
of FaC4H contained 10 DOF binding sites (T/AAAAG). In Arabidopsis, AtDOF4;2 inhibits
flavonoid biosynthesis by down-regulating DFR, TT19, and LDOX genes under cold and
high light stress, but promotes the accumulation of hydroxycinnamic acids by inducing
the expression of PAL1-2, 4CL5, and C4H [36]. FcDOF4 and FcDOF16 increase the pro-
duction of flavonoids in kumquat fruit by positively regulating the C-glucosyltransferase
gene [37]. In addition, DOF TFs also play important roles in vascular cell differentiation
and lignin biosynthesis, fruit ripening, biotic and abiotic stress tolerance [38]. Interestingly,
the fruit-specific FaDOF2 (homolog of DOF1.2) was reported to promote eugenol synthesis
together with FaEOBII by regulating FaEGS2 expression [39,40]. After FaDOF2 or FaEOBII
genes are silenced in fruits, the content decreased, while anthocyanin content did not
change [39,40]. However, all transcripts were barely expressed in our transcriptome data
and the transcription level of FaEGS2 was also not significantly changed, while DOF1.2 was
down-regulated after the overexpression of FaMYB10 (Table S2). It was unclear whether
the difference between these two is caused by the strawberry varieties or the existence
of a new mechanism. In addition, the other differentially expressed transcription factors
such as WRKY71 (maker-Fvb6-4-augustus-gene-286.29) and MADS2 (augustus_masked-
Fvb4-3-processed-gene-105.1), their homologous genes or family members were confirmed
to be related to anthocyanin metabolism in other plant species [41–43]. Whether they are
involved in the regulation of FaC4H in strawberry flesh also requires further study.

Besides the transcription factors mentioned above, the differentially expressed ncR-
NAs were also analyzed to determine whether they regulate FaC4H expression using
bioinformatics methods. Unfortunately, we did not find any microRNAs or lncRNAs
that could target FaC4H. However, the differentially expressed microRNAs fve-miR397,
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fve-miR399b, and fve-miR408 in Benihoppe and Xiaobai were also significantly altered in
another red-fleshed cultivated strawberry Sachinoka and its white-flesh mutant [44], in
which the changing trend of fve-mir399b was the same, while fve-mir397 and fve-mir408
were the opposite (Table S5). The relationship between these microRNAs and anthocyanin
metabolism in strawberry flesh still needs to be explored. Furthermore, we believed that
the inhibition of FaC4H may not be the only factor responsible for the loss of pigment in
Xiaoba’s flesh. The oxidative phosphorylation pathway, which was downstream of phenyl-
propanoid biosynthesis, may also have an important effect on the absence of anthocyanin
accumulation in transcriptome analysis. In addition, there are many other pinkish-skinned
and white-fleshed phenotypes in cultivated strawberries. It was argued that the absence of
anthocyanins in their flesh is also caused by the inhibition of C4H expression.

Finally, the previous report showed that the main pigments in cultivated strawberries
were pelargonidin compounds, while other berry species mainly accumulated cyanidin-
based pigments [45]. F3′H was highly expressed during the whole fruit development stage
in wild strawberries, with a high cyanidin content (53%), while F3′H sharply decreased
during fruit ripening in cultivated strawberries, resulting in 88% of anthocyanins being
pelargonidin [45]. Interestingly, we further found that Cy3G only existed in the skin of
cultivated strawberries Benihoppe and Xiaobai, and the undetectable Cy3G in the flesh was
due to the blocked FaF3′H. Sequence analysis showed that the coding sequence of FaF3′H
was the same as that in wild strawberries. Although the promoter sequences of FaF3′H
showed some differences from wild strawberries, this did not seem to be the key to blocking
the expression, based on its downward trend during fruit ripening and the extremely low
FPKM values of different transcripts. The methylation sequencing also revealed that the
FaF3′H promoters were almost unmethylated in strawberry skin and flesh. Apart from that,
we did not find any microRNAs that can target FaF3′H in the transcriptome. Therefore,
we speculated that the inhibition of FaF3′H expression might be due to the binding of
transcriptional repressors to the promoter, while ABA, high-light, or MYB10 might be able
to prevent its binding and induce FaF3′H expression.

4. Materials and Methods
4.1. Plant Materials

The octoploid strawberry Benihoppe (HY) and its mutant cultivar Xiaobai (XB, Au-
thorization number of plant variety rights: CNA20141360.2) were grown in a greenhouse
(Sichuan Agricultural University, Chengdu, China). The environmental conditions were
controlled at a temperature of 22± 2 ◦C, with artificial lighting of 220 umol·m−2·s−1 (cycles
of 16 h light and 8 h darkness). Strawberry fruits were harvested and manually separated
into the skin (outer red layer including achene) and flesh (inner layer without pith) parts,
and then immediately quick-frozen with liquid nitrogen and stored at −80 ◦C before use.

4.2. Anthocyanins and PAs Detection

The main strawberry anthocyanins, pelargonidin 3-O-glucoside (Pg3G) and cyanidin
3-O-glucoside (Cy3G) were detected by the HPLC method, as we described previously [29].
Total PAs was determined using a 4-dimethylaminocinnamaldehyde assay through a full-
wavelength microplate reader, as described by Prior et al. [46].

4.3. RT-qPCR

Total RNAs were extracted by the CTAB method [47]. The qPCR products were
detected on a CFX96 real-time reaction system (Bio-Rad, Hercules, CA, USA) using the
SYBR-Green (TaKaRa, Dalian, China) reagents. 26S-18S interspacer RNA was applied as
a housekeeping gene and the relative quantitative data were analyzed using the 2−∆∆Ct

method [48]. Primers were designed in the conserved sequence regions of homoeologous
copies of each gene based on the octoploid strawberry genome and transcriptome data,
and are listed in Table S7 [26,29].
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4.4. Transient Overexpression Assays in Strawberry Fruits

The coding sequences of FaMYB10 and FaC4H were cloned by PCR from the Xiaobai
strawberry and inserted into the expression vector pCAMBIA-35SN. Transient overexpres-
sion in strawberry fruits was conducted by following the protocols as described [49]. At
least 10 fruits were selected for each replicate (three biological replicates in total).

4.5. Total RNA Sequencing and Analysis

Libraries of total RNA were constructed and sequenced by Novogene (Beijing, China).
For lncRNAs, mRNAs, and circRNAs, the NEBNext UltraTM RNA Library Prep Kit for
Illumina (NEB, Ipswich, MA, USA) was used to construct the library. For small RNAs, the
NEBNext Multiplex Small RNA Library Prep Set for Illumina (NEB, USA) was used to
construct the library. After quality control, all libraries were subjected to Illumina PE150
or SE50 sequencing. Three biological replicates were included for each sample. Raw
reads were filtered to exclude low-quality reads and adaptors. For mRNAs, lncRNAs, and
circRNAs, the clean reads were mapped and quantified using the hisat2-stringtie-bowgown
pipeline [50]. The adjusted p-value (padj) < 0.05 and the absolute value of log2 foldchange
> 1 were selected as the threshold for differentially expressed mRNAs. LncRNAs and
circRNAs were identified using cuffmerge, cuffcompare, find_circ, and CIRI software,
respectively, and padj < 0.05 was selected as the threshold for differentially expressed genes.
The target genes of lncRNAs were predicted by the position relationship (co-location,
the threshold was set to 100kb upstream and downstream of lncRNA) and expression
correlation (co-expression) between lncRNAs and mRNAs [27]. For an analysis of small
RNAs, reads with a length shorter than 16 nt were discarded. All reads were mapped onto
the strawberry genome using bowtie [51]. The expression level of miRNAs was obtained
through RPKM normalization, and padj < 0.05 was selected as the threshold for DEG
detection. Mature miRNAs obtained from NGS were mapped to the sequences of miRbase
v21.0 to identify known and novel miRNA in strawberries.

4.6. Metabolomics Detection

Libraries of metabolomics were constructed and detected by Novogene (Beijing, China)
using an ExionLC™ AD system (SCIEX) coupled with a QTRAP®6500+ mass spectrometer
(SCIEX), and the detection of experimental samples using multiple reaction monitoring was
based on Novogene in-house database. In brief, 100-mg tissues were individually grounded
and resuspended in 500-µL 80% methanol (volume ratio of methanol/water/formic acid
was 4:1:0.001) and centrifuged at 15,000× g, 4 ◦C for 20 min. The supernatant was filtered
through a 0.22-µm membrane and then diluted to a final concentration containing 53%
methanol by LC-MS grade water before being injected into the HPLC-MS system. For the
targeted metabolomics strategy, samples were injected into an ACQUITY UPLC HSS T3
column (100 mm × 2.1 mm) using a 7.5-min linear gradient at a flow rate of 0.2 mL·min−1.
The eluents were eluent A (0.1% formic acid-water) and eluent B (acetonitrile). The differen-
tially accumulated flavonoids were screened in the same way as those with the fold change
>2 and Q values < 0.05. For the quasi-targeted metabolomics method (Novogene, China),
the extract was separately analyzed by the positive (BEH C8 column, 100 mm × 2.1 mm,
1.9 µm) and negative ion model (HSS T3 column, 100 mm× 2.1 mm). Samples were injected
into the column at a flow rate of 0.35 mL·min−1. The eluent A (0.1% formic acid–water)
and eluent B (0.1% formic acid–acetonitrile) were used for positive ion model and the
solvent gradient was set as follows: 5% B, 1 min; 5–100% B, 24.0 min; 100% B, 28.0 min;
100–5% B, 28.1 min; 5% B, 30 min. The eluent A (6.5mM ammonium bicarbonate–water)
and eluent B (6.5mM ammonium bicarbonate-95% methanol–water) were used for negative
ion model and solvent gradient was set as follows: 2% B, 1 min; 2–100% B, 18.0 min; 100%
B, 22.0 min; 100–5% B, 22.1 min; 5% B, 25 min. The metabolites were annotated using the
KEGG database (http://www.genome.jp/kegg/ (accessed on 10 July 2020)) and lipidmaps
database (http://www.lipidmaps.org/ (accessed on 10 July 2020)). The screening thresh-
old for different chemical accumulation in quasi-targeted metabolomics was set as the

http://www.genome.jp/kegg/
http://www.lipidmaps.org/
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variable importance in the project (VIP) > 1.0, fold change (FC) > 1.5 or < 0.667, and the
p-value < 0.05.

4.7. DNA Extraction and Bisulfite Sequencing Assays

Strawberry fruit DNA was extracted using a modified method based on Porebski et al.’s
protocol [52]. Before adding the extraction buffer, the sugar-depletion buffer (1 M NaCl,
0.1 M Tris-HCl pH 8.0, 50 mM EDTA, 0.4 M glucose, 1% mercaptoethanol) was used first,
at 65 ◦C for 10 min. Then, the mixture was centrifuged at 3000× g for 3 min at room
temperature, and the operation was repeated once. The pellet was kept for the following
steps, which were similar to Porebski et al. [52]. Promoters of FaC4H and FaF3′H were
amplified from the fruit DNA in Benihoppe and Xiaobai and then ligated to a T-vector for
sequencing. Fruit DNA was further processed with EpiArt® DNA Methylation Bisulfite
Kit (Vazyme, Nanjing, China), and primers were designed using the MethPrimer online
website (http://www.urogene.org/methprimer/ (accessed on 13 September 2021)). Target
sequences were amplified using a special 2× EpiArtTM HS Taq Master Mix (Vazyme,
Nanjing, China), and products were ligated to the T-vector for sequencing.

4.8. Statistical Analysis

If not specified, all data were analyzed using the IBM SPSS Statistics 23 software, and
the statistically significant differences between samples were determined using Student’s
t-test (p < 0.05). Multiple comparisons were conducted using Turkey’s test and significant
differences (p < 0.05) were indicated by different letters.

5. Conclusions

In this study, the pinkish-skinned and white-fleshed Xiaobai strawberry was explored
to determine the molecular mechanism leading to the anthocyanin deficiency in the flesh.
The transcriptional repression of the FaC4H in the phenylpropanoid biosynthesis pathway
was responsible for the pigment loss in Xiaobai’s flesh, rather than the commonly speculated
FaMYB10. The decrease in FaC4H was not directly caused by promoter methylation,
lncRNAs, or microRNAs targeting, while candidate transcription factors may have a greater
effect. Our findings provided a new theoretical basis for regulating the color formation of
cultivated strawberry fruits.
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