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A B S T R A C T

Epidemiological time series forecasting plays an important role in health public systems, due to its ability to
allow managers to develop strategic planning to avoid possible epidemics. In this paper, a hybrid learning
framework is developed to forecast multi-step-ahead (one, two, and three-month-ahead) meningitis cases in
four states of Brazil. First, the proposed approach applies an ensemble empirical mode decomposition (EEMD)
to decompose the data into intrinsic mode functions and residual components. Then, each component is used
as the input of five different forecasting models, and, from there, forecasted results are obtained. Finally,
all combinations of models and components are developed, and for each case, the forecasted results are
weighted integrated (WI) to formulate a heterogeneous ensemble forecaster for the monthly meningitis cases.
In the final stage, a multi-objective optimization (MOO) using the Non-Dominated Sorting Genetic Algorithm
– version II is employed to find a set of candidates’ weights, and then the Technique for Order of Preference
by similarity to Ideal Solution (TOPSIS) is applied to choose the adequate set of weights. Next, the most
adequate model is the one with the best generalization capacity out-of-sample in terms of performance criteria
including mean absolute error (MAE), relative root mean squared error (RRMSE), and symmetric mean absolute
percentage error (sMAPE). By using MOO, the intention is to enhance the performance of the forecasting
models by improving simultaneously their accuracy and stability measures. To access the model’s performance,
comparisons based on metrics are conducted with: (i) EEMD, heterogeneous ensemble integrated by direct
strategy, or simple sum; (ii) EEMD, homogeneous ensemble of components WI; (iii) models without signal
decomposition. At this stage, MAE, RRMSE, and sMAPE criteria as well as Diebold–Mariano statistical test
are adopted. In all twelve scenarios, the proposed framework was able to perform more accurate and stable
forecasts, which showed, on 89.17% of the cases, that the errors of the proposed approach are statistically
lower than other approaches. These results showed that combining EEMD, heterogeneous ensemble and WI
with weights obtained by optimization can develop precise and stable forecasts. The modeling developed in
this paper is promising and can be used by managers to support decision making.
1. Introduction

Meningitis is an inflammation that has several classifications with
specific causes and symptoms, and, unfortunately, it is still a major
public health problem because it causes irreversible health damages
and has kept mortality rates high [1]. Besides, this disease could be a
result of viral, bacterial, or fungal infection of the fluid surrounding the
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Branco, Parana, 85503-390, Brazil.

brain and spinal cord [2]. Early diagnosis and the immediate initiation
of the treatment are fundamental for a good prognosis of the disease.
Concerning the number of meningitis cases registered in Brazilian states
located in the South or Southeast such as Parana (PR), São Paulo
(SP), Minas Gerais (MG), and Rio de Janeiro (RJ) presented over ten
thousand cases in 2018 [3]. Within this context, the development of
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efficient public policies and preventive campaigns are the key to change
this scenario. The development of efficient predictive models plays an
important role in epidemiological modeling.

Predictive mathematics models are widely used to design the epi-
demiological scenario of specific diseases. These approaches are adop-
ted for different purposes such as comparing, implementing, evaluat-
ing, prevention, therapy, and the development of public policies [4].
Usually, the epidemic models are based on parameters related to sus-
ceptibility (S), infected (I), and removed (R), as well as exposed (E)
individuals can be considered which leads to the SIR or SEIR models.
Each variation of these models has its particularity, and different factors
can be considered in these approaches to provide knowledge about
the disease spread. Nowadays, these approaches have been proposed
to understand the spread of new coronavirus [5,6]. Also, different
mathematical approaches are proposed to mitigate the effects of several
diseases such as ebola [7], influenza [8], and malaria [9]. In the last
years, a computer science field called artificial intelligence (AI) able to
recognize patterns of historical data and support the decision making
has received attention to solving problems from the commerce [10],
and industry [11]. Machine learning models, an AI sub-field, becomes
the kernel of data analysis, once dealing with classification [12], data
clustering [13], and regression tasks [14]. Nonetheless, when it comes
to matters of diseases that plague the Brazilian public health system,
such as dengue, malaria, and others, there are limited discussions
as regards the effectiveness of machine learning models to develop
predictive models. Some of these studies aimed to define the incidence
of diseases such as ventriculitis and meningitis [15], as well as map the
transmission risk of Zika [16], and make probabilistic forecasting of
influenza [17].

Considering the purpose of knowing the number of future cases
for any disease, once the datasets contain temporal information, time
series forecasting should be used for this task. Therefore, time series
forecasting aims to use past data to know future values with the purpose
of, for example, making strategic planning to improve the knowledge in
the domains that are inserted and help develop public policies. In this
aspect, developing an efficient model is desirable; moreover, techniques
such as the ensemble learning and decomposition may be used for this
purpose. These strategies can be employed to deal with nonlinearity,
nonstationarity, and cyclicity inherent to time series.

Faced with this, the ensemble learning is an approach that is ap-
plicable in regression [18] and/or classification [19] tasks which have
the objective of improving the model’s predictive accuracy. The main
aspect of this approach lies in training several base (weak) models
and combining their predictions to build an efficient model [20]. It is
believed that this improvement occurs because each base model learns
the different characteristics of the data and adds this information to
the final results. Indeed, this methodology has proven effective in fore-
casting tasks in different fields of knowledge such as agribusiness [21],
chemometrics [22], ecology [23], and medicine [24,25].

Also, an additional approach usually adopted to improve the mod-
els’ performance is the ensemble empirical mode decomposition
(EEMD) [26]. By employing EEMD, it is possible to separate the original
signal into components (intrinsic mode functions — IMF and residual
signals) with different amplitudes and frequencies added to the noise,
aiming to extract relevant data information. The EEMD approach has
been proven effective in then forecasting field of dealing with appli-
cations in several domains of knowledge, such as aquaculture [27],
economy [28], and energy [29]. The EEMD steps consist of data
decomposition and aggregating the components or aggregating the
predictions of each component to obtain the original signal. In respect
of this, each component is treated as an input set, and they can be
trained separately using various algorithms. One strategy considers
the same weight for all components (direct strategy — DI), which
penalizes those that explain more data variability by attributing the
same importance for all components, while another strategy employs
2

different weights (weighted strategy – WI) for each component. Because
the disease series show up nonlinear and nonstationary on most of the
cases, the EEMD is efficient to analyze series related to meningitis cases.

Considering the aforementioned, because of the use of the EEMD
approach, two questions emerge. The first one lies in which algorithm
should be employed to train and forecast each component. The second
refers to which approach will be used to reconstruct the decomposed
signal, that is, which strategy should be adopted to obtain an ensemble
of components. To deal with these questions, this paper aims to propose
a hybrid framework that was developed in three steps for multi-month-
ahead forecasting (one, two and three-month-ahead) meningitis cases
in the Brazilian states of MG, SP, PR, and RJ. As regards to this, in
the first, the original signal is split into five components (four IMF and
one residual). In the sequence, each component is used as the input
of techniques: Bayesian Regularized Neural Networks (BRNN) [30],
Cubist (CUBIST) [31], Gradient Boosting Machine (GBM) [32], Partial
Least Squares (PLS) [33], and Quantile Random Forest (QRF) [34].
Following, predictions for all components are obtained by each model.
Different combinations of models to predict the components are devel-
oped, and, for each combination, the results are weighted integrated
to formulate a heterogeneous ensemble (HTE), considering that at
least two different models are used in each combination. Besides,
multi-objective optimization (MOO) using elitist Non-Dominated Sort-
ing Genetic Algorithm — version II (NSGA-II) [35] is employed to
find a Pareto Front (composed by a set of candidate’s weight), and
Technique for Order of Preference by similarity to Ideal Solution (TOP-
SIS) [36] is applied to choose the adequate set of weights from Pareto
Front. Finally, considering all the combinations developed, the most
adequate model is the one with the best generalization of out-of-sample
capacity in terms of mean absolute error (MAE), relative root mean
squared error (RRMSE), and symmetric mean absolute percentage error
(sMAPE).

The contributions of this paper lie in four-folds, such as:

1. The development of a unique hybrid framework based on data
decomposing, ensemble, and MOO can improve simultaneously
the accuracy and stability of forecasts of meningitis cases.

2. Performing multi-step-ahead forecast, once that in papers related
to diseases incidence forecasting, single forecasting horizon is
used;

3. An investigation of the effectiveness of the multi-objective pro-
cedure for choosing weights used to aggregate the forecasts
of EEMD components. In this regard, this paper seeks to add
discussions in this field, taking into account most of the de-
bates regarding single–objective optimization for components
aggregation, such as Du et al. [37] and Zhang and Wang [38];

4. Another contribution lies in the use of a diversified set of al-
gorithms, concerning algorithms structure, to train and fore-
cast each component after the EEMD performance, where these
different algorithms can capture their inherent variability.

The remainder of this paper is structured as follows: Section 2
presents some related works on the use of machine learning to fore-
casting disease cases. Section 3 describes the datasets adopted, while
Section 4 details the methods employed in this paper for such an
approach. Section 5 lists the steps for modeling. Section 6 presents the
results and discussions. Finally, Section 7 concludes and presents the
proposals of future research for the theme hereby adopted.

2. Related works

This section presents a summary of some recent developments in
time series forecasting for epidemic diseases using machine learning
and general models. Considering the matter above mentioned, there
were sixteen relevant papers, in the last years, found in the literature.
With regard to diseases type, most of the papers aimed to perform

comparisons either between machine learning models on the task of



Journal of Biomedical Informatics 111 (2020) 103575M.H.D.M. Ribeiro et al.
Fig. 1. Diseases related and its adopted modeling.
forecasting future cases or pandemic risk for dengue, malaria, and in-
fluenza. In these cases, one paper focuses on the diseases of dengue and
malaria, simultaneously. This information is summarized in Table A.1
contained in Appendix A which presents a review of related papers with
the use of machine learning and general models for forecasting disease
cases.

In the context of the employed techniques, the adopted approaches
may be split into different classes, such as: (i) Artificial neural net-
works (ANNs): Multilayer perceptron (MLP), deep learning (DL), neural
network autoregressive (NNAR) model, and long-short-term memory
(LSTM); (ii) Regression trees: Decision trees (DT), random forests (RF),
gradient boosting machine (GBM), and eXtreme gradient boosting (XG-
Boost); (iii) General regressions: Least absolute shrinkage and selection
operator (LASSO), support vector regression (SVR), multivariate adap-
tive regression splines (MARS), elasticnet (ENET), and linear regression
(LR); (iv) Remain approaches: Ensembled adjustment Kalman filter
(EAKF), Gaussian process (GP), generalized additive model (GAM),
autoregressive integrated moving average (ARIMA), and seasonal au-
toregressive integrated moving average (SARIMA). Fig. 1 associates the
diseases and adopted modeling.

Adjacent to the above mentioned, as well the presented in Ap-
pendix A, some gaps in relation to the developed approaches can be
found and are stated as follows:

• Considering the disease’s type, around of 93.75% of the pa-
pers focused on malaria, dengue or influenza. Hence, there is
a lack of discussion concerning the predictive capacity of ma-
chine learning-based approaches for diseases such as measles,
meningitis, and chikungunya on the forecast task;

• In the modeling aspect, only four papers focused on ensemble
approaches such as bagging and boosting or models combined by
average. One paper used an optimization approach of the swarm
intelligence field called firefly algorithm (FFA) for hyperparame-
ters tuning, and no paper adopted signal decomposition or MOO
with the purpose of building ensembles. It is well known that the
combination of these strategies can help on the improvement of
the model’s accuracy and, therefore, out-of-sample generalization;

• In general, to the forecast horizon, most of the papers focused
on a single horizon, that is, one week or one-month-ahead. The
discussions are narrow for the multi-step-ahead forecast. Indeed,
the use of other horizons could be important because they can
be useful for managers to develop strategic plains with the goal
of preventing the population from having these diseases, as well
as developing strategies and public policies so that these diseases
3

will affect as few people as possible.
Therefore, faced with the aforementioned aspects, this study seeks
to fill the pointed-out gaps, by proposing a hybrid framework to fore-
cast the number of meningitis cases, which considers EEMD, heteroge-
neous ensemble, and MOO approaches to reconstruct the decomposed
signal.

3. Material

The datasets adopted in this paper refer to the monthly number
of confirmed cases of meningitis, recorded on a disease information
system at the Brazilian Ministry of Health. The adopted period of
analysis ranges from January of 2007 to December of 2018, and the
data is available at the Department of Informatics of the Unified Health
System (Departamento de Informática do Sistema Único de Saúde, in
Portuguese, DATASUS) [3]. The data ranged from January of 2007 to
December of 2017 is used in the training process and the remaining
information is used to test the proposed framework’s performance,
respectively. In this context, the adopted data refers to information on
the number of confirmed cases of meningitis in the Brazilian states PR,
SP, MG, and RJ taking into account that these states presented the four
largest notifications number in 2018.

In this paper, to verify the generalization ability of the proposed
methodology, the above-described datasets are used. We did not fit
the proposed model on the time series of a single region, and then
validate the model by evaluating the prediction of new cases of another
region because each state has different features, such as demography,
geography, population density, economic and human development in-
dex, as well as public health policies. Therefore, to avoid erroneous
conclusions, the proposed model is trained (training set) and validated
(test set, out-of-sample forecasting) in the same Brazilian state, but
in different splitting setups of the datasets. In this way, we tried to
accommodate the data variability for each state.

Fig. 2 shows the study areas, the behavior of the number of notified
cases by state and its descriptive measures, as well as the autocorre-
lation function (ACF) for the MG(A), PR(B), RJ(C) and SP(D) series.
Secondly, as highlighted by Fig. 2, for the state of PR, there is a greater
number of notifications than presented for other states, as reported
by the descriptive measures (number of observations — n, minimum
— Min, average, maximum — Max, and standard deviation — SD).
The Augmented Dickey–Fuller (DF) test shows that the four time series
are non-stationary (DF = −5.35 - −3.32, p-value > 0.05). Aiming at
evaluating the presence of seasonality within the data, the Kruskal–
Wallis test is performed. In this case, for the MG, SP, and RJ time
series, there is no evidence of seasonality (𝜒2

11 = 13.32 - 15.50, p-value
> 0.05), while the series related to the state of PR present evidence
of seasonality (𝜒2

11 = 33.07, p-value < 0.05) [39]. Additionally, the
autocorrelation measures suggest, due to lags, that up to the first four
observations are correlated and can be used as inputs for the data

modeling.
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Fig. 2. Study area representation and datasets behavior.
4. Methods

The objective of this section is to present each technique employed
in this paper.

4.1. Ensemble Empirical Mode Decomposition

The EEMD technique was proposed by Wu and Huang [26]. It is
an extension of the Empirical Mode Decomposition (EMD) algorithm
and should be used with the purpose of data de-noising. The EMD
4

approach allows the analyzing of nonlinear and non-stationary signals.
The steps followed in this technique are data decomposition, and later
data aggregation. First, in the decomposition stage, the EMD separates
the original signal into coexisting oscillatory components (IMF and
residual signal) [40]. Next, after the modeling of each component, it
is necessary to perform the aggregation of results to obtain the original
signal.

When the EMD is used, the main drawback is named ‘‘mode mix-
ing’’, that is, each single IMF consists of signals with dramatically
disparate scales or a signal of the same scale appears in different IMF
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components [26]. Seeking to solve this problem, the noise assisted
EEMD was proposed. In this approach, EMD is performed k times,
and different white noise (a random signal that follows a normal
distribution with zero mean and constant variance) is added to the data
in each trial. Two disadvantages can be stated for EEMD, as follows:
(i) extra noise exists in the reconstructed signal and (ii) it needs more
computational resources than EMD [41].

Initially, the EMD approach is presented and generalized for EEMD.
In fact, the main steps are stated as follows:

1. Input the original time series;
2. Add white noise on the original time series;
3. Obtain the local maximum and minimum values of time series

of step 2;
4. Generate envelops for the new time series, taking into account

its boundaries;
5. Calculate the average of the boundaries of step 4;
6. Extract from the generated data the average value obtained in

step 5;
7. After performing each step 2–6, each component is named

IMF [42] if it has the following characteristics: (i) in the entire
dataset, the number of extreme and zero crossings must either
be equal or different, at most, by one, and (ii) at any point, the
mean value of the envelopes is defined by the local maximal and
the local minimal which must be zero;

8. Defining that the component of the step 7 is an IMF, the residual
component is computed as the difference between the IMF and
the remaining data. The steps 2–7 are performed until that
residual component becomes a monotonic function or has one
local extreme point from which no more IMF can be extracted.

The EEMD performed the steps 2–8 k times and for each trial
there are n components (IMF(1,𝑘), . . . , IMF(𝑛,𝑘), Residual(𝑛+1,𝑘)). There-
fore, each final component is treated as the average of the respective
components of the k executions; the number of repeated procedures
is called the ensemble number. After the end of the decomposition
process, the original time series can be expressed as the sum of IMF
and residual components. In this stage, DI or WI strategies should be
used. The DI consists of assuming the same weight for each component,
while WI considers different weights for each component. When a
decomposition technique is adopted, there are two possibilities for data
analysis, as follows: (i) datasets are decomposed and components are
aggregated and used as input in some forecasting method, see the
example developed by Jiang and Liu [43], and (ii) each component
obtained during the decomposition stage is used as an input by some
forecast method, and the forecasting of each component is used in
the aggregation stage, see the example developed by Wang et al. [44]
or Wu et al. [45]. In this paper, the second possibility and WI are used
for data modeling. The parameters used for the decomposition task are
presented in Section 5, item 1.

4.2. Bayesian Regularized Neural Network

The BRNN is a type of feedforward neural network, composed by
one input and one hidden layer, which uses the Bayesian methods,
such as Empirical Bayes, for parameter estimation, with the purpose
of avoiding overfitting [46]. The mathematical modeling can be stated
as follows:

𝑦𝑖 =
𝑠
∑

𝑘=1
𝑤𝑘𝑔𝑘

(

𝑏𝑘 +
𝑝
∑

𝑗=1
𝑥𝑖𝑗𝛽

𝑘
𝑗

)

(1)

in which 𝑦𝑖 is ith output value (𝑖 = 1,… , 𝑛), s is the number of neurons,
𝑥𝑖𝑗 is an input value, 𝜽 = [𝑤1,… , 𝑤𝑘, 𝑏1,… , 𝑏𝑘, 𝛽11 ,… , 𝛽1𝑝 , 𝛽

𝑠
1 ,… , 𝛽𝑠𝑝],

is the vector of weights and biases, 𝑤𝑘 is the weight of kth neuron
𝑘

5

(𝑘 = 1,… , 𝑠), 𝑏𝑘 is the bias of kth neuron, 𝛽𝑗 is the weight of jth input c
to the network (𝑗 = 1,… , 𝑝), and 𝑔(.)𝑘 is the activation function. In this
paper, the activation function is the hyperbolic tangent.

According to the procedure proposed by MacKay [46], the elements
of 𝜽 are estimated by using an empirical Bayesian approach, according
to two steps described as follows,

1. Minimization of

𝐹 (𝜽) = 1
2𝜎2𝑒

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 +

1
2𝜎2𝜽

𝑚
∑

𝑗=1
𝜽2𝑗 (2)

in which, F (.) is a function of 𝜽, 𝑦𝑖 and �̂�𝑖 are the observed and
estimated values, respectively. Also, 𝜎2𝑒 and 𝜎2𝜽 are the variance
of errors, weights and biases, respectively;

2. Updating the variance components 𝜎2𝑒 and 𝜎2𝜽 by maximizing a
conditional probability (𝑝) given the observed values according
to the variances, i.e., 𝑝(𝐲|𝜎2𝑒 , 𝜎

2
𝜽). When the early expression is not

present in the closed form, an approximation for the marginal
log-likelihood is adopted.

In Eq. 2, the variances are regularization parameters, where the
rade-off between goodness-of-fit and smoothing can be controlled. In
his approach, only the neurons number should be determined.

.3. CUBIST

The CUBIST is a rule-based model, which performs predictions
ollowing the regression of trees principle [47]. Giving a regression
ree, for each leaf is constructed a linear regression model, or in this
ase, a rule, associated with the information contained in each leaf.
nce all rules are constructed, the final predictions are based on the

inear combination of developed rules. The main difference between
simple regression tree and a CUBIST model is how the models make
redictions within the nodes [31]. In order, to attempt an improvement
n the model’s accuracy, this rule-based model generates a set of rules,
amed a committee, as happens with the boosting approach. This is
eveloped to correct the predictions of the previous members. Also,
iven a set of new features, the CUBIST can adjust the model prediction
sing samples from the training set by employing the neighborhood
oncept, like the 𝑘-nearest-neighbors approach [48]. Aiming at finding
he number of neighbors, a distance measure, in this case, Manhattan
s applied. Finally, once the set of committees and number of neigh-
ors are defined, the final rule prediction is the simple average of
ommittees predictions.

.4. Generalized boosted regression

The generalized boosted regression modeling or gradient boosting
achine (GBM) model is based on the boosting principle, proposed

y Friedman [49], which seeks to find an additive model that minimizes
he loss function. By using a gradient descent approach, the GBM builds
odels in the negative sense of the partial derivative of the loss func-

ion regarding the set of predictors. The GBM performs iteratively so
hat a regression tree model is fitted to the data, and the residuals from
he fitted model are obtained. A new model is adjusted for previous
esiduals, a new prediction is obtained, to which the initial forecast
s added, and then a new residual measure is obtained. This process
s performed iteratively until a convergence criterion is reached, and
he final prediction is obtained by the average in regression problems.
djacent to the improvement that can be reached by the GBM struc-

ure, this process tends to generate overfitting. To avoid this problem,
eights are assigned for observations whose errors are greater. In this
aper, for the adopted GBM approach, control hyperparameters such
s number of boosting iterations, maximum tree depth, shrinkage and
inimum terminal node size are used. The best combination of these
arameters should be found; this is a challenge since an inappropriate

hoice can result in a computationally costly and inefficient process.
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4.5. Quantile random forests

The quantile random forests (QRF) [50] approach is an extension
of the RF ensemble learning model [51]. It provides information about
the full conditional distribution of the response variable, and not only
about the conditional mean. In this approach, the use of conditional
quantile is to enhance the RF performance, which makes this a con-
sistent approach [50]. The main assumption about QRF lies on the
weighted observations that can be used for estimating the conditional
average [52]. Additionally, while the RF approach retains the result’s
information about the average of notifications number of the leaves, the
QRF keeps all notifications contained in the leaves to estimate, where

𝑃
(

𝑦𝑡+ℎ ≤ 𝑦|𝑝𝑡
)

= 𝐹 (𝑦|𝑝𝑡), (3)

in which the left side of the equation represents the conditional proba-
bility of the number of notifications conditioned to the predictors, being
𝑦𝑡+ℎ the notifications in a ℎ horizon and 𝑝𝑡 the predictors’ number,
and (t = 1,… , 𝑁). The right side refers to the conditional distribu-
tion function (CDF) of the average notification numbers regarding the
predictors. Considering that QRF uses the quantiles in the prediction
process, the 𝛼-quantile of CDF is stated as the probability that the
number of notifications is lower than 𝑄𝛼 if the given 𝑝𝑡 is equal to 𝛼,
where the estimate of 𝛼 is stated as follows:

�̂�𝛼(𝑝𝑡) = 𝑖𝑛𝑓
{

𝑦 ∶ 𝐹 (𝑦|𝑝𝑡) ≥ 𝛼
}

, (4)

in which �̂�𝛼(𝑝𝑡) is the 𝛼-quantile estimated relation to the predictor
𝑡 [50]. For the QRF architecture adopted in this paper, only the number
of randomly selected predictors should be determined.

4.6. Partial least squares

The PLS regression approach is a technique to analyze multivariate
data, in which the aim is to relate one or two output variables (𝐘) with
several inputs (𝐗). For this purpose, given a linear model, the problem
that often arises is the matrix of inputs being singular. Faced with this,
to deal with this problem, the PLS decomposes 𝐗 into orthogonal scores
𝐓 and loadings 𝐏, in which 𝐗 = 𝐓×𝐏. Regarding this approach, 𝐓 and 𝐏
values are chosen in such a way that the covariance between inputs and
outputs is maximized. In other words, the PLS finds components that
maximize the variation of the predictors while simultaneously requiring
these components to have a maximum correlation with the response. In
a more general way, the PLS finds linear combinations of the predictors,
named components that are like the principal component analysis.
Additionally, the PLS in its classical form is based on the nonlinear
iterative partial least squares [53,54], and the number of components
should be defined.

4.7. Multi-objective optimization

On some problems, it is necessary to minimize (or maximize) multi-
ple objectives to achieve a preferable solution. Naturally, MOO should
be adopted [55], and it is performed in three steps. First, it is necessary
to define the multi-objective problem (MOP); second, some algorithms
are used to optimize the objectives; third, it is essential to choose
the most appropriate result for the formulated problem, appointed as
multicriteria decision making (MCDM) [56]. In time series analysis,
the multi-objective approach is used to develop a model that makes
predictions with small errors which should vary slightly, in other
words, it is adopted to deal with bias–variance trade-off [57] where
forecast errors and errors variation are minimized.

According to Marler and Arora [55], in the first step, the MOP is
defined, regarding which decision variables, constraints and objectives
are stated. The MOP for two 𝐽 objectives can be stated as follows:

min/max 𝐽 (𝜽) = [𝐽1(𝜽), 𝐽2(𝜽)], (5)
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�̂�

subject to inequality constraints

𝐿 ≤ 𝜃𝑖 ≤ 𝑈, (6)

in which 𝜽 = [𝜃1,… , 𝜃𝑖], (𝑖 = 1,… , 𝑛) is a vector of decision variables, L
and U are the lower and upper boundaries for each decision variable,
and 𝐽𝑘(𝜽) is the kth objective to be minimized or maximized.

In this respect, during the MOO step, an optimization algorithm
is applied to find the Pareto Front approximation (PF). This set is
composed of non-dominated solutions for which there is no other
permissible solution that simultaneously improves all the objective
functions without sacrificing at least one of the other objective function.
Each set of decision variables associated with each element of PF makes
up the Pareto Set (PS) [55].

As regards to the MOO approach, most of the algorithms proposed
in the literature are based on evolutionary computation and are named
multi-objective evolutionary algorithms (MOEA). An evolutionary al-
gorithm is based on nature’s laws, and it uses mechanisms such as
crossover (an operation used to combine the genetic information of
parents to produce a new offspring), mutation (an operator used to
maintain the diversity of the population by introducing another level
of randomness) and selection (an operation applied to select the fittest
individuals according to the objectives to be optimized) [58].

Basically, in an MOEA, the fittest members of a parent in a popula-
tion will survive and propagate their fitness along with the evolution of
its populations of offspring. In the literature, new approaches to deal
with MOO are constantly being proposed. Nevertheless, in this paper
NSGA-II is adopted [35], considering it is a classical MOO approach
and has already shown good results (in terms of accuracy, in general
for regression analysis, lower error) to deal with MOP on several fields
of knowledge [59,60]. The NSGA-II is a derivative-free method which
employs a non-sorting ordering operator and crowding distance criteria
in the optimization process. The first operation is used to find a set
of equally good solutions closest to the Pareto-optimal front, while
the second is employed to promote diversity among members of the
solution population. The main idea behind the crowding distance is
finding the Euclidean distance between neighboring individuals in the
m-dimension space [35,61]. The NSGA-II parameters adopted in this
paper are exposed in Section 5, item 4b.

Lastly, in the MCDM step, it is possible to find a preferable set of
decision variables (weights in this paper) that allows dealing with the
trade-off between the objectives. It means finding the best compromise
between the optimized objectives. An approach used for this purpose
is TOPSIS, which was proposed by Hwang and Yoon [36]. The TOPSIS
was meant to determine the best alternative based on the concepts of
the compromised solution. In other words, the chosen solution should
be as close to the positive ideal solution as possible, and as far away
from the negative ideal solution as possible, considering a measure of
similarity. The distance of ideal and negative ideal solutions can be
obtained by the Euclidean distance [62,63]. The TOPSIS weights used
for each objective are defined in Section 5, item 4c.

5. Methodology

1. Performing EEMD for the datasets and obtaining four IMF and
one residue component. The parameters, number of ensemble
components, number of components (IMF and residual compo-
nents) and amplitude of white noise are defined as 100, 5 and
6.4 × 10−7, respectively. These values are obtained according
to Wu and Huang [26]. This paper does not focus on the dis-
cussion of the model’s performance according to the parameter
setting;

2. For each component, the ACF analysis showed, for most cases,
that up to four lags are suitable to be used as predictors. Without
loss of generality, for all components and states studied, this
configuration is used as inputs of each adopted model (BRNN,

CUBIST, GBM, PLS, and QRF);
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Fig. 3. Flowchart of proposed approach.
3. Training each IMF and residual components using the models
mentioned in step 2 by leave-one-out cross-validation with a
time slice window (LOOCV-TS), according to

𝑦(𝑡+1,𝑘) = 𝑓
{

𝑦(𝑡,𝑘), 𝑦(𝑡−1,𝑘), 𝑦(𝑡−2,𝑘), 𝑦(𝑡−3,𝑘)
}

+ 𝜖 𝜖 ∼ 𝑁(𝟎, 𝜎2), (7)

and forecast the meningitis cases according to the recursive
method, as given by Eq. (8),

𝑆 ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̂�(𝑡+ℎ,𝑘) = 𝑓
{

𝑦(𝑡+ℎ−1,𝑘), 𝑦(𝑡+ℎ−2,𝑘),… , 𝑦(𝑡+ℎ−𝑛𝑦 ,𝑘)
}

if ℎ = 1,

�̂�(𝑡+ℎ,𝑘) = 𝑓
{

�̂�(𝑡+ℎ−1,𝑘), 𝑦(𝑡+ℎ−2,𝑘),… , 𝑦(𝑡+ℎ−𝑛𝑦 ,𝑘)
}

if ℎ = 2,

�̂�(𝑡+ℎ,𝑘) = 𝑓
{

�̂�(𝑡+ℎ−1,𝑘), �̂�(𝑡+ℎ−2,𝑘),… , 𝑦(𝑡+ℎ−𝑛𝑦 ,𝑘)
}

if ℎ = 3,

(8)

in which 𝑓 is a function related to the adopted model in the
training process, �̂�(𝑡+ℎ,𝑘) is the forecast value for kth component
obtained in the decomposition stage (k = 1,. . . ,5) on time 𝑡 and
forecast horizon ℎ (ℎ = 1, 2, 3), 𝑦(𝑡+ℎ−𝑛𝑦 ,𝑘) are the previously
notified cases lagged in 𝑛𝑦 = 1,… , 4 and 𝜖 is the random error
which follows a normal distribution (𝑁) with zero mean and
constant variance.
The recursive method, also known as an iterated method, can
lead to poor accuracy in long forecasting horizons. According
to Pouzols and Barros [64], and Veloz et al. [65], the recursive
strategy uses forecasting values as a model’s input to forecasting
the next predicted values. Its main disadvantage is to accumulate
the previous forecasting errors in the recursive process. How-
ever, the advantage of the recursive method lies in the use of one
7

model for all processes, i.e., train one model to forecast a one-
step-ahead horizon, and use it for multi-step-ahead forecasting
task. On the other hand, the direct method uses only past values
to predict the future, which is its advantage, as it does not
accumulate prediction errors. However, its disadvantage lies in
the necessity to fit or training a new model for each forecasting
horizon. Therefore, this disadvantage makes the process complex
and computationally intensive. Due to separated models are used
to forecasting two points, there is no opportunity of handling the
dependency between two consecutive predictions.
According to Ma and Fildes [66], comparative studies between
Recursive and Direct strategies have shown contradictory results
as to which strategy achieves better forecasting performances
than others. While Rana and Rahman [67] achieved better re-
sults for direct method over the recursive method, Xue et al. [68]
provided evidence of better results from the recursive method
over the direct method. There is a trade-off between compu-
tational cost and accuracy in the choice of a multi-step-ahead
forecasting method.
Machine learning models, sometimes, have high training time,
either due to the use of different training strategies such as cross-
validation (k-fold or LOOCV-TS), or even due to the number of
parameters to be tuned. In this context, because in this paper
several models are evaluated, to find an efficient ensemble learn-
ing forecasting model to study meningitis cases, the recursive
forecasting strategy is adopted. Moreover, the forecasting hori-
zons are defined as one, two, and three months-ahead, which
are considered short-term. Therefore, even though the recursive
method could lead to high forecasting errors, it is used in this
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paper due to its lower computational cost. However, the direct
method can be considered for this study.
In this paper, the hyperparameters of the adopted models in step
2 are obtained during the LOOCV-TS by a grid-search (GS) and
each situation is presented in Table B.1 of Appendix B. Giving a
set of combinations of the hyperparameters values, GS consists
of searching exhaustively throughout the combinations which
is the best set of hyperparameters that minimize/maximize any
criteria; in this paper, root mean squared error is considered.
The LOOCV-TS consists of using an initial slice of training data
as an estimation set, and then it validates the performance of
the trained model over a desired number of horizons. The next
step consists of using the data for validation while incorporating
it into the training set, and the process is performed until the
entire training set is used. The model performance is obtained
as the average criteria used in each iteration [69].

4. To aggregate the EEMD’s components, the forecasting obtained
in step 3 are used. To choose the order of the models used to
train and predict the results of each component, a set of 3125
models is evaluated. These models are obtained by permuting
the five forecasting models QRF, PLS, BRNN, GBM, and CUBIST
(in this order) for the five EEMD components. Therefore, the
methodology used to select the models’ order is the grid-search.
Table 1 shows a sample of 3 out of 3125 ensemble learning
models, randomly selected, where the order of models for each
component is detailed.
After defining the weights for each model-component, suppose
that the ensemble learning model number 295 has better accu-
racy for out-of-sample forecasting, then the order of the models
used for each component is the presented in Table 1.
For each combination, the optimization process is conducted
according to what is described as follows:

(a) In the MOP, the cost function, for each combination of
models and components, is stated as follows:

�̂�𝑡+ℎ =
𝑛=4
∑

𝑗=1
𝜃𝑗𝐼𝑀𝐹𝑀𝑜𝑑𝑒𝑙𝑗 + 𝜃5 ̂𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑀𝑜𝑑𝑒𝑙5 , (9)

in which �̂�𝑡+ℎ is the predicted value on time 𝑡 and h
horizon, 𝐼𝑀𝐹𝑀𝑜𝑑𝑒𝑙𝑗 (𝑗 = 1,… , 4) and ̂𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑀𝑜𝑑𝑒𝑙5 are
the predictions of each component and 𝜽 = [𝜃1,… , 𝜃𝑗 ]
is the weight vector to be estimated, in which 𝜽𝑗 ∼
𝑈𝑛𝑖𝑓 [−2, 2] [70]. Considering the bias–variance frame-
work [57], the objectives are defined as follows:

𝐽1(�̂�) =

𝐵𝑖𝑎𝑠−𝐸𝑟𝑟𝑜𝑟
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[𝐸(�̂�) − 𝐲]2 and 𝐽2(�̂�) =

𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒−𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐸[�̂� − 𝐸(�̂�)]2 , (10)

𝐸(�̂�) = 1
𝑛

𝑛
∑

𝑖=1
�̂�𝑖 and 𝐲 = 1

𝑛

𝑛
∑

𝑖=1
𝑦𝑖, (11)

in which �̂�𝑖 is the ith predicted value through the aggrega-
tion of components and 𝑦𝑖 is the ith observed value. The
error is computed through the mean squared error crite-
rion, and the stability by the variance of the forecasting
errors.

(b) In the sequence, the NSGA-II is applied (one run) and
the PF approximation is obtained. In this paper, the pa-
rameters used for this algorithm, population size (number
of candidate solutions), maximum number of generations
(stopping criterion), crossover and mutation probability,
crossover and mutation distribution, are defined as 100,
100, 0.9, 0.1, 0.7 and 0.2, respectively. The crossover
rate is set to 0.9 because it allows new structures to be
introduced into the population at a faster rate, whereas
8

Table 1
Randomly selected ensembles learning models and their order with respect to the EEMD
components.

Grid-search index IMF1 IMF2 IMF3 IMF4 Residual

295 CUBIST GBM PLS BRNN QRF
1831 QRF PLS GBM CUBIST BRNN
2639 GBM BRNN QRF PLS CUBIST

the mutation rate is set to 0.1 because it prevents a given
position from becoming stationary in a set of values for
the parameters to be optimized [35];

(c) To find the best set of weights, between all candidates,
the TOPSIS approach is employed, in which the weights
for bias (error) and variance objectives are 50% and 50%,
respectively;

5. Forecasting the meningitis cases, out-of-sample, according to

�̂�𝑡+ℎ =
𝑛=4
∑

𝑗=1
�̂�𝑗𝐼𝑀𝐹𝑀𝑜𝑑𝑒𝑙𝑗 + �̂�5 ̂𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑀𝑜𝑑𝑒𝑙5 , (12)

where �̂�𝑗 is the estimated weight;
6. Computing the performance measures MAE, RRMSE and sMAPE

given by,

MAE =
𝑛
∑

𝑖=1

|

|

|

|

𝑦𝑖 − �̂�𝑖
𝑛

|

|

|

|

, (13)

sMAPE = 2
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑖 − �̂�𝑖||
|

|

𝑦𝑖|| + |

|

�̂�𝑖||
, (14)

RRMSE = 100 ×

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2

1
𝑛

𝑛
∑

𝑖=1
𝑦𝑖

, (15)

where 𝑛 represents the number of observations, 𝑦𝑖 and �̂�𝑖 are the
ith observed and predicted values, respectively. The best model
is the one with the best capacity of out-of-sample generalization
in terms of MAE, RRMSE, and sMAPE.
Aiming to compare the forecast errors of two models, the Dieb-
old–Mariano (DM) test [71] is applied. In this paper, the lower
tail priori hypothesis H is given by Eq. (16),

H ∶
{

𝐻0 ∶ 𝜖𝑃𝑖 = 𝜖𝐶𝑖
𝐻1 ∶ 𝜖𝑃𝑖 < 𝜖𝐶𝑖 ,

(16)

and statistic of DM test is given by Eq. (17),

DM =

𝑖=1
∑

𝑛

[

𝐿(𝜖𝑃𝑖 ) − 𝐿(𝜖𝐶𝑖 )
]

𝑛
√

𝑆2

𝑛

𝑠2, (17)

in which L is a loss function that can estimate the accuracy
of each model, 𝜖𝑃𝑖 is the error of the proposed model, 𝜖𝐶𝑖 is
the error of the compared model, and 𝑠2 is an estimate for the
variance of 𝑑𝑖 = 𝐿(𝜖𝑃𝑖 ) − 𝐿(𝜖𝐶𝑖 ). By using the hypothesis defined
for the DM test, the interest lies in knowing if the errors for
the proposed model are lower than the compared model. If the
null hypothesis is rejected, it is possible to say that there is
statistically evidence that there is a reduction in the errors of
the EEMD-HTE-MOO model regarding the compared model at
the 𝛼 level of significance.

In addition, Fig. 3 presents the modeling process.
The results presented in Section 6 are generated using the proces-

sor Intel(R) Core(TM) i5-4200U central processing unit of 1.6 Hz in
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Windows 10 operating system with 8GB of random access memory.
The R software [72] is adopted to perform the modeling. The pack-
ages hht [73], caret [74], mco [75] and MCDM [76] are used on
he steps 1, 3, 4b and 4c, respectively. Moreover, the codes adopted
n the proposed methodology are available at https://github.com/
Ribeiro2107/-JBI-19-1008.

. Results and discussions

This section presents the results and discussions of the information
btained from the developed experiments. Table B.1 contained in Ap-
endix B presented the control hyperparameters of the adopted models
or the task of training and predicting each component of the decompo-
ition stage, as well as the data trained without EEMD decomposition.
n the context of the structure of the hybrid, the framework pro-
osed Table C.1 contained in Appendix C shows the set of weights, and
he respective models used to train and predict each IMF and residue.
onsidering all the forecast horizons, for the developed models, the
BM model is the most used to train the components, while QRF is the

east employed for this task. In both cases, GBM and QRF are ensemble
earning approaches; however, the first model is based on boosting,
hile the second one on bagging. The objective of Sections 6.1–6.3 is to
resent the main results obtained with the proposed approach against
arious classes of models. Faced with this, three different comparisons
ere developed and performance on the out-of-sample forecast (for test

et) is presented. Through these comparisons, the prediction accuracy
f the proposed framework is effectively evaluated. In Tables 2 to 4,
he best results are presented in bold.

.1. Comparisons I: Evaluation of proposed ensemble learning and decom-
osed homogeneous optimized ensemble learning models

The comparisons I is designed to verify the forecast performance
f the proposed hybrid framework by comparing it with five models
ased on decomposition, which uses the same model for all compo-
ents and MOO in the aggregation step, namely EEMD-BRNN-MOO,
EMD-CUBIST-MOO, EEMD-GBM-MOO, EEMD-QRF-MOO, and EEMD-
LS-MOO. The comparisons are shown in Table 2 and additional dis-
ussion are also presented. These results shows that the approach
onsidered as a heterogeneous ensemble of components is more accu-
ate than other approaches that consider the same model for all IMF and
esidual, to forecast the number of meningitis cases one, two and three-
onth-ahead of time. According to Zhang et al. [77], this effectiveness

s associated with the diversity used by the heterogeneous ensemble
pproach, which is an efficient and simple way to perfect forecasting
ccuracy and stability (lower standard deviation of the errors). Faced
ith this, it makes the predictive model more robust.

Concerning the one-month-ahead forecast, for all states, the pro-
osed framework achieves better accuracy than the compared models.
egarding MAE criterion, the compared models increasing the fore-
asting errors regarding proposed methodology, which ranges between
2.73% and 36.36%, 36.87% and 138.22%, 0.72%, and 54.35%, as
ell as 41.51% and 66.04% for the Brazilian states MG, SP, PR, and
J, respectively. Regarding the sMAPE the compared models increasing

he forecasting errors regarding proposed ensemble learning model,
hich is ranged between 1.81%-3.51, 4.72%–17.72%, 0.46%–5.96%
nd 2.16%–3.32% for the states of MG, SP, PR, and RJ, respectively.
onsidering the RRMSE, the compared models increasing the fore-
asting errors regarding proposed ensemble learning model, which
s ranged between 2.09%–3.98%, 3.76%–15.75%, 0.74%–6.58% and
.22%–4.75% for the states of MG, SP, PR, and RJ, respectively. The
ame behavior is reproduced when the forecasting horizon is two
nd three-month-ahead of time and in some situations with a greater
agnitude of the reduction.

In this scenario, the largest and smallest reductions in these mea-
ures occurred when the proposed approach and EEMD-QRF-MOO for
9

the states of SP and PR are compared. This is associated with the
fact that in the proposed framework, for these states, there is the
use of two and four different models, respectively, to compose the
heterogeneous ensemble approach. This diversity allows the developed
model to achieve the best performance, regarding RRMSE and sMAPE,
associated to the fact that the manipulation of some algorithms to build
the ensemble is an important strategy to get an efficient model [78]. In
this respect, each model learns different patterns of the data, and when
the results are combined, they build an effective model. These results
corroborate with the findings of Heinermann and Kramer [79],Xiang
et al. [80], proving that using different models for the decomposed
components is promising for time series forecasting.

6.2. Comparisons II: Evaluation of proposed ensemble learning and non-
decomposed models

The comparison II is designed to verify the forecasting performance
of the proposed hybrid framework by comparing it with five models
which do not consider EEMD for signal decomposition, namely BRNN,
CUBIST, GBM, QRF, and PLS. The comparisons are shown in Table 3
and additional discussion is presented. Regarding these results, it is
observed that the use of signal decomposition, specifically in the case
of the EEMD approach, can enhance the model’s performance. This
shows that the EEMD approach is suitable for decomposing the time
series of meningitis case for all states. For this reason, the idea of
decomposition and ensemble is feasible, and the proposed framework
can overcome the drawbacks of individual models by removing the
noise of the original data.

Considering the average of each criterion for each forecast horizons,
there is a reduction in the criteria for the proposed approach compared
to models that do not consider signal decomposition. The increasing on
MAE criterion compared models regarding proposed ensemble learning
model is ranged between 95.03%–116.18%, 64.90%–91.48%, 75.20%–
99.88%, 98.52%–125.62% for the states of MG, SP, PR, and RJ. In
its turn, for sMAPE and RRMSE, the same behavior is observed. The
smallest reduction is visualized by comparing the proposed framework
to the PLS model, and the largest when it is performed comparison with
QRF, for both criteria.

The results of one-month-ahead up to three-month-ahead forecast
for meningitis cases were obtained. The comparisons between the pro-
posed approach and the models without decomposition showing that
the performance measures of the proposed model are lower than others
obtained from the classic single models. For this reason, the proposed
model is more adequate than the single models without decomposition
to forecasting meningitis cases. The EEMD presents itself as being the
more robust and accurate model, after the nonlinear and non-stationary
signals are separated into a series of components. Consequently, this
effectiveness allows an improvement of the model’s performance by
removing the noise from the time-series [81,82].

6.3. Comparisons III: Evaluation of proposed ensemble learning and decom-
posed heterogeneous direct integrated ensemble learning models

The comparison III is designed to verify the forecasting performance
of the proposed hybrid framework by comparing it with the same struc-
ture of EEMD-HTE which uses DI to aggregate the EEMD components,
namely EEMD-HTE-DI. The comparisons are shown in Table 4, and
additional discussion is presented.

In accordance, with these results, it can be stated that the use of
MOO in the WI aggregation allows an improvement of the model’s ac-
curacy. Based on the evaluation of all criteria for the EEMD-HTE-MOO,
its approach achieves more optimum accuracy than the EEMD-HTE-DI
approach. Thus, the proposed methodology can generate robust models
that have enhanced forecasting performance with this model combined
with it based on decomposition, ensemble, and MOO.

https://github.com/MRibeiro2107/-JBI-19-1008
https://github.com/MRibeiro2107/-JBI-19-1008
https://github.com/MRibeiro2107/-JBI-19-1008


Journal of Biomedical Informatics 111 (2020) 103575M.H.D.M. Ribeiro et al.

t
d
t
t
i
t
c
u
t
e

Table 2
Performance measures of proposed and decomposed homogeneous optimized ensemble learning models.

State Model Forecasting Horizon

One-month-ahead Two-months-ahead Three-months-ahead

MAE sMAPE RRMSE MAE sMAPE RRMSE MAE sMAPE RRMSE

EEMD-MOO-BRNN 10 11.34% 14.04% 12.58 14.38% 15.79% 11.83 13.62% 14.75%
EEMD-MOO-CUBIST 9.08 10.39% 12.93% 8.75 10.14% 13.13% 10.75 12.37% 14.30%

MG EEMD-MOO-GBM 9 10.48% 13.36% 9.67 11.03% 13.84% 7.83 8.77% 11.75%
EEMD-MOO-PLS 10.50 11.86% 14.81% 13.25 15.14% 16.94% 12.33 14.17% 15.68%
EEMD-MOO-QRF 9.17 10.16% 13.96% 12.50 14.37% 17.31% 11.67 13.20% 16.04%
Proposed 7.33 8.35% 10.83% 7.92 9.02% 10.63% 6.67 7.37% 10.38%

EEMD-MOO-BRNN 151.42 26.86% 28.01% 104.92 16.86% 21.55% 137.33 22.76% 27.24%
EEMD-MOO-CUBIST 92.50 14.62% 18.89% 103.83 16.44% 21.64% 115.83 18.44% 23.78%

SP EEMD-MOO-GBM 146.50 23.52% 30.02% 127.92 19.60% 26.74% 161.75 26.12% 34.24%
EEMD-MOO-PLS 106.50 17.02% 21.72% 157.50 27.18% 28.56% 172.58 28.96% 33.65%
EEMD-MOO-QRF 161 27.62% 30.89% 127.67 20.43% 24.67% 182.58 31.73% 32.35%
Proposed 67.58 9.90% 15.14% 80.67 12.02% 17.04% 87.08 12.77% 17.21%

EEMD-MOO-BRNN 15.42 10.95% 14.24% 16.33 11.41% 15.06% 33.83 28.72% 28.43%
EEMD-MOO-CUBIST 15.83 11.19% 15.18% 27.17 21.45% 25.55% 15.25 10.86% 14.67%

PR EEMD-MOO-GBM 17.75 12.41% 17.52% 38.83 33.13% 34.74% 47 43.93% 39.73%
EEMD-MOO-PLS 15.83 10.77% 15.14% 35.50 30.08% 31.50% 40.17 35.06% 33.82%
EEMD-MOO-QRF 11.58 8.03% 12.84% 15.33 10.37% 19.80% 17.50 11.52% 17.42%
Proposed 11.50 7.57% 12.10% 12.50 8.61% 11.95% 11.75 7.70% 13.40%

EEMD-MOO-BRNN 6.33 7.47% 8.57% 7.08 7.99% 9.12% 4.83 5.46% 7.21%
EEMD-MOO-CUBIST 7.33 8.71% 9.71% 8.25 9.36% 10.58% 10.75 12.64% 13.91%

RJ EEMD-MOO-GBM 6.25 7.13% 8.11% 8.58 9.73% 11.06% 6.92 7.89% 8.43%
EEMD-MOO-PLS 7.33 8.29% 9.32% 7.42 8.32% 9.19% 6 6.76% 7.99%
EEMD-MOO-QRF 6.75 8.13% 10.64% 8.42 9.87% 12.49% 8 9.20% 10.21%
Proposed 4.42 4.98% 5.89% 6.58 7.37% 8.52% 4.08 4.52% 6.49%
Table 3
Performance measures for proposed and non-decomposed models.

State Model Forecasting Horizon

One-month-ahead Two-months-ahead Three-months-ahead

MAE sMAPE RRMSE MAE sMAPE RRMSE MAE sMAPE RRMSE

BRNN 15.47 17.56% 19.38% 13.83 15.79% 18.14% 13.67 15.60% 17.66%
CUBIST 14.99 17.05% 20.14% 14.67 16.73% 20.12% 13.08 14.96% 18.57%

MG GBM 16.97 19.21% 21.88% 14.67 16.72% 19.53% 15.74 17.88% 20.99%
PLS 15.72 17.82% 19.65% 13.92 15.89% 18.18% 13.93 15.88% 17.99%
QRF 15.58 17.60% 20.05% 15.33 17.30% 19.50% 12.67 14.48% 16.93%
Proposed 7.33 8.35% 10.83% 7.92 9.02% 10.63% 6.67 7.37% 10.38%

BRNN 120.37 17.99% 24.60% 135.33 20.39% 27.14% 160.56 23.82% 30.24%
CUBIST 122.94 18.62% 23.92% 151.33 22.79% 28.65% 153.82 22.93% 27.96%

SP GBM 117.98 17.86% 23.37% 143.83 21.26% 29.62% 178.91 26.14% 32.15%
PLS 110.80 16.76% 22.53% 117 17.97% 23.41% 160.26 24.12% 28.83%
QRF 129.83 19.12% 26.82% 148.83 21.97% 30.39% 171.96 25.69% 32.34%
Proposed 67.58 9.90% 15.14% 80.67 12.02% 17.04% 87.08 12.77% 17.21%

BRNN 20.36 14.49% 22.52% 22.58 16.24% 25.05% 23.21 16.38% 24.29%
CUBIST 20.58 14.91% 24.88% 22 16.08% 28.90% 25.42 18.08% 26.75%

PR GBM 21.41 15.15% 25.21% 23.67 17.14% 27.91% 25.76 18.39% 27.87%
PLS 19.13 13.71% 22.22% 20.58 14.82% 24.06% 22.92 16.15% 24.18%
QRF 22.17 15.74% 23.75% 24.67 17.85% 28.19% 25.75 18.40% 25.89%
Proposed 11.50 7.57% 12.10% 12.50 8.61% 11.95% 11.75 7.70% 13.40%

BRNN 11.79 13.25% 15.46% 11.58 13.06% 15.98% 10.66 12.09% 14.75%
CUBIST 11.60 12.99% 15.26% 11.42 12.87% 15.90% 10.86 12.29% 15.24%

RJ GBM 10.45 11.81% 14.34% 9.50 10.80% 13.39% 9.99 11.36% 14.00%
PLS 10.50 11.83% 13.93% 10.50 11.83% 14.49% 10.11 11.42% 14.24%
QRF 11.96 13.40% 14.83% 12 13.59% 15.93% 11.50 13.04% 15.43%
Proposed 4.42 4.98% 5.89% 6.58 7.37% 8.52% 4.08 4.52% 6.49%
The EEMD-HTE-MOO presents a better generalization capacity than
he EEMD-HTE-DI, considering that the nonlinearities are accommo-
ated by the use of different weights for each component. In general,
his shows that the proposed ensemble model can combine the advan-
ages of the single forecasting models, through the use of MOO, making
t possible to add more accuracy and stability to the model [83]. Also,
he effectiveness of the proposed approach, according to Bui et al. [84],
an be attributed to the process of construction of the combined model
sing the optimization. Consequently, the MOO allows dealing with the
rade-off between bias–variances while assigning different weights for
ach model. By minimizing the forecast and standard deviation errors
10
it becomes possible to obtain an efficient model with both accuracy
and stability improved simultaneously presenting a balance between
the two optimized objectives.

As presented in Section 5, the results presented in Tables 2 to
4 are obtained through the recursive method to forecasting multi-
step-ahead meningitis cases. Through this method, the errors can be
accumulated according to the growth of the forecasting horizon. This
phenomenon can be observed in MG, PR, and RJ states when are
compared the first two forecasting horizons (regarding to MAE and
sMAPE), and for SP state in the three forecasting horizons. However,
in some cases, the proposed model reduces the forecasting errors, even
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Table 4
Performance measures for proposed and decomposed heterogeneous direct integrated ensemble learning models.

State Model Forecasting Horizon

One-month-ahead Two-months-ahead Three-months-ahead

MAE sMAPE RRMSE MAE sMAPE RRMSE MAE sMAPE RRMSE

MG Proposed 7.33 8.35% 10.83% 7.92 9.02% 10.63% 6.67 7.37% 10.38%
EEMD-HTE-DI 8.92 9.93% 12.51% 8.75 10.14% 13.13% 8.58 9.43% 12.51%

SP Proposed 67.58 9.90% 15.14% 80.67 12.02% 17.04% 87.08 12.77% 17.21%
EEMD-HTE-DI 101.92 15.31% 20.18% 102.25 15.49% 20.52% 132.83 20.57% 25.87%

PR Proposed 11.50 7.57% 12.10% 12.50 8.61% 11.95% 11.75 7.70% 13.40%
EEMD-HTE-DI 12.67 8.73% 13.43% 16 10.81% 19.85% 17.75 11.68% 17.48%

RJ Proposed 4.42 4.98% 5.89% 6.58 7.37% 8.52% 4.08 4.52% 6.49%
EEMD-HTE-DI 5.92 6.72% 8.12% 7.83 8.68% 10.51% 5.83 6.65% 8.05%
Table 5
Average standard deviation of errors obtained by each model in forecast out-of-sample (test set forecast).

Model MG SP PR RJ Model MG SP PR RJ

Proposed 5.84 96.97 17.68 6.36 EEMD-MOO-QRF 9.06 126.69 23.41 9.72
EEMD-MOO-BRNN 6.29 104.19 20.40 7.45 GBM 12.75 189.43 36.73 12.79
EEMD-MOO-CUBIST 6.36 97.25 21.41 7.96 PLS 12.96 166.82 32.62 12.81
EEMD-MOO-PLS 7.41 113.27 23.99 8.10 BRNN 13.67 182.64 33.24 14.05
EEMD-HTE-DI 7.47 124.95 23.51 8.16 CUBIST 13.97 177.90 36.55 13.98
EEMD-MOO-GBM 7.82 145.54 27.33 8.24 QRF 14.29 198.99 34.66 14.23
s
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with the increase of the forecasting horizon. Nevertheless, according
to Taieb et al. [85], there is greater evidence of errors accumulation in
long-term forecasting horizons, once the input vector adopted by the
predictive model can be formed only by previously forecasting, instead
of observed values. However, this is not the case of this paper, once
the forecast horizon is short (h equals to 1, 2, and 3). In its turn, as
hree values (𝑛𝑦=4) are adopted as input to the models, there are always
𝑦-h+1 observed values in the input vector. Therefore, the forecasting
rrors can reduce according to the adopted forecasting horizons.

Additionally, this information is supported by the results presented
n Table 5, in which the error’s standard deviation is presented for
ach model throughout the twelve study scenarios. The best results are
resented in bold.

By considering the behavior of the meningitis monthly incidence,
here is no clear trend in the time series. In this respect, once the
orecasting value of two months-ahead is used as models’ input to
orecasting three-months-ahead, the information provided in the pre-
ious forecasting value can be beneficial to the next forecasting, even
hough they are different of observed values. In this context, the
orecasting errors of the next step-ahead can be reduced, which is
bserved in Tables 2 to 4. The same is observed in the results achieved
y Xiong et al. [86] when the hybrid model which combines seasonal
nd trend decomposition using locally estimated scatterplot smoothing
ith extreme learning machine was applied to forecast the vegetable
arket, and Moreno et al. [87] when the authors proposed a hybrid
odel based on singular spectral analysis, variational mode decomposi-

ion, and long short-term memory to forecasting multi-step-ahead wind
peed.

.4. Statistical tests and graphical analysis.

In this subsection, the results of DM tests are used to evaluate the
orecasting validity of the proposed model, further verifying the perfor-
ance of this framework. The EEMD-HTE-MOO errors are compared to

he models presented in Sections 6.1–6.3 , and the results of DM test
tatistics for the errors during the task of forecasting the out-of-sample
eningitis cases are presented in Table 6.

The comparisons are developed according to three situations. First,
he proposed framework and the structures that use a homogeneous
nsemble of components and MOO are compared. According to this,
or the one-month-ahead forecast, the results of Table 6 highlights that
n 95% of the comparisons, the errors of the proposed approach are
11
tatistically smaller than errors of the compared approaches. In the
ases of EEMD-QRF-MOO and EEMD-GBM-MOO, for the states of PR
nd RJ respectively, the proposed approach presents only smaller errors
han these approaches. Considering two-month-ahead or three-month-
head forecasting, in 85% and 95% of the comparisons, respectively,
here is a statistical difference between the errors. For this scenario,
he biggest differences are found when the proposed model and EEMD-
LS-MOO approaches are compared with two and three-month-ahead
orecast in the states of MG and PR, respectively. It is possible to
erceive that the proposed approach shows better performance in a
tatistical context, in 91.67% of the cases, allowing an inference that
akes the developed framework efficient for the proposed task. Second,
hen the errors of the developed structure and the models that do
ot employ signal decomposition are compared, for all cases, there is
statistical difference. By comparing these results, Table 6 illustrates

hat the biggest differences are −3.82, −37.76 and −3.69 in MG and
P, states on the task of one, two and three-month-ahead forecast,
espectively, for models GBM and QRF. Additionally, the smallest
ifferences are −1.24, −1.24 and −1.40 for the state of PR, for the

three forecast horizons, for models PLS, QRF, and BRNN, respectively.
Therefore, these results showed that the use of signal decomposition
to forecasting meningitis cases allows the enhancement of the models’
accuracy. Also, the results presented in Table 6, by comparing the
EEMD-HTE-MOO and EEMD-HTE-DI, in 86.67% of the cases, there is
a statistical difference between the errors. Moreover, on the task of
forecasting the meningitis cases in one and two-month-ahead for the
state of PR, and three-month-ahead for the state of RJ, there is no
statistical difference between the errors. Moreover, the smallest and
biggest differences are observed on three-month-ahead for the state of
MG (−1.32) and two-month-ahead forecast for the state of RJ (−1.92),
respectively. Regarding what has previously been mentioned, it can be
stated that the proposed approach showed a significant improvement
concerning the use of the DI strategy for the task of grouping the EEMD
components.

Therefore, regarding the results presented in Sections 6.1–6.4 , the
proposed approach showed better accuracy than the compared models.
In parallel, the proposed framework achieves excellent performance in
83.33% and 25% of the cases, and good results in 16.67% and 25%
of the cases for sMAPE and RRMSE, respectively Li et al. [101]. This
shows that the use of signal decomposition, heterogeneous ensemble
components and MOO combined can enhance the model’s performance,

taking into account the combination of each methodology’s expertise.
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Table 6
Diebold–Mariano test results.

Model MG SP

One-month-ahead Two-months-ahead Three-months-ahead One-month-ahead Two-months-ahead Three-months-ahead

EEMD-MOO-QRF −1.32* −2.91*** −2.48** −2.88*** −2.06** −3.05***
EEMD-MOO-PLS −3.08*** −7.02*** −2.97*** −2.91*** −3.57*** −4.23***
EEMD-MOO-BRNN −2.12** −4.07*** −1.65* −3.77*** −2.18** −2.78**
EEMD-MOO-GBM −2.02** −1.58* −1.22* −2.62** −1.90** −2.43**
EEMD-MOO-CUBIST −1.99** −1.35* −2.55** −2.63** −2.08** −2.37**
QRF −3.62*** −2.84*** −2.11** −1.96** −2.39** −1.96**
PLS −3.51*** −4.52*** −2.40** −2.17** −2.07** −3.48***
BRNN −3.54*** −5.99*** −2.42** −2.08** −2.23** −1.87**
GBM −3.82*** −2.71*** −2.03** −1.83** −37.76*** −2.01**
CUBIST −2.81*** −2.41*** −2.02** −2.09** −2.65** −2.48**

Model PR RJ

One-month-ahead Two-months-ahead Three-months-ahead One-month-ahead Two-months-ahead Three-months-ahead

EEMD-MOO-QRF −0.58 −1.07 −1.39* −1.55* −1.84** −1.72**
EEMD-MOO-PLS −2.26** −2.95*** −12.61*** −2.50** −0.59 −2.94***
EEMD-MOO-BRNN −2.43** −1.91** −6.89*** −2.16* −4.00*** −1.56*
EEMD-MOO-GBM −1.67* −2.35** −2.74*** −2.96*** −1.10* −0.95
EEMD-MOO-CUBIST −1.59* −2.64** −0.80 −2.35** −2.08** −3.76***
QRF −1.31* −1.24* −1.91** −2.97*** −2.35** −3.69***
PLS −1.24* −1.28* −1.40* −2.41** −1.45* −1.51*
BRNN −1.29* −1.30* −1.40* −3.02*** −1.81** −2.56**
GBM −1.30* −1.33* −1.55* −2.12** −1.43* −5.19***
CUBIST −1.33* −1.26* −1.42* −3.14*** −1.65* −2.13**

***1% significance level.
**5% significance level.
*10% significance level.
Fig. 4. Performance analysis of proposed framework in MG state for one-month-ahead forecast.
Fig. 5. Performance analysis of proposed framework in SP state for one-month-ahead forecast.
In addition to the presented analysis, Figs. 4–7 illustrate the Pareto
ront (a) of the MOO step, the observed and predicted time series (b)
nd the residual autocorrelation function of the trained models (c) for
12
the task of one-month-ahead forecasting for the states of MG, SP, PR,

and RJ, respectively.
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Fig. 6. Performance analysis of proposed framework in PR state for one-month-ahead forecast.
Fig. 7. Performance analysis of proposed framework in RJ state for one-month-ahead forecast.
Considering what is shown by Figs. 4(a), 5(a), 6(a) and 7(a) ev-
dence of a trade-off among the objectives adopted on MOO can be
een, in other words, depending on the weights used to create the
nsemble obtained from the EEMD, there is a bias increase while the
ariance decreases. In this aspect, the use of MOO is adequate, because
t allows the obtaining of an efficient model that is able to reach small
orecast errors and lower standard deviation errors. The same behavior
s replicated for the other two forecast horizons.

During this round, Figs. 4(b), 5(b), 6(b) and 7(b) show that the
ata behavior is learned by the models, in most of the cases, which
llows predictions compatible with the observed values. That is, the
eningitis cases forecasted are close to the observed values. The good
erformance regarding accuracy obtained in the training phase persists
n the test stage, indicating that the hybrid framework is robust to reach
he developed predictions.

The overfitting phenomenon occurs when the model has great gen-
ralization in the training set, but not in test set or out-of-sample
orecasting. To avoid it, two approaches were considered. First, each
dopted model was trained using a cross-validation procedure, as de-
cribed in the methodology section, to prevent overfitting. And second,
hen the bias and variance are objectives adopted in multi-objective
ptimization, the trade-off between these measures is considered which
eads to overfitting treatment. Also, by the illustrated trough of pre-
icted and observed values (Figs. 4(b), 5(b), 6(b) and 7(b)), once a
imilar performance is observed in training and test sets, there is no
vidence of overfitting.

Finally, according to what is shown in Figs. 4(c), 5(c), 6(c) and
(c), it is possible to evaluate the residuals (autocorrelation function)
f final models adopted in each case study, from training the set results.
he Box–Ljung test is applied to the residuals from the final ensemble
13
models to determine whether residuals are random. In both cases, this
test shows that the first 11 lag autocorrelation among the residuals are
zero (𝜒2

11 = 0.84 - 9.28, p-value >0.05), indicating that the residuals are
random and that the model provides an adequate fit to the data [39].
These results are supported by the Figures of residuals ACF since all
lags are between confidence interval extremes.

7. Conclusion and future works

In this paper, a hybrid framework was proposed which combines
signal decomposition, a heterogeneous ensemble of EEMD components
and WI strategy do aggregate the decomposed components. The MOO
approach used to find the PF and TOPSIS is employed to find the best
set of weights used during the WI stage. This approach is applied to
forecasting three different horizons (one, two, and three-month-ahead)
of the meningitis cases for the states of MG, SP, PR, and RJ, Brazil.
The performance of the proposed framework was compared to the
performance of the models that do not employ signal decomposition,
models that apply the same model to forecast all components obtained
in the decomposition stage combined with MOO to signal reconstruc-
tion, and finally with an approach that employs signal decomposition,
heterogeneous ensemble of components and DI strategy to reconstruct
the original signal. The MAE, sMAPE, and RRMSE criteria, as well as the
DM test, were adopted to evaluate the performance of the developed
approach. Finally, a residual analysis was conducted by the ACF plot
and Ljung–Box [39] test to validate the proposed hybrid model.

According to the forecasting results, it is possible to conclude that:

1. Employing signal decomposition improves the final results on
not applying decomposition;



Journal of Biomedical Informatics 111 (2020) 103575M.H.D.M. Ribeiro et al.
Table A.1
Related works to machine learning and general models for the epidemiologic time series forecasting.

Publication Disease Models Objective Finding

Ch et al. [88] Malaria SVR-FFA, ANNs and ARMA Predicting the malaria incidences in
India using SVR and FFA.

Proposed approach outperform
compared models.

Guo et al. [89] Dengue SVR, GBM,LASSO and
GAM

Use the state-of-the-art machine
learning algorithms to develop dengue
forecasting in China.

The SVR model had the consistently
smallest prediction error rates for
tracking the dynamics of dengue and
forecasting the outbreaks.

Scavuzzo et al. [90] Dengue SVR, ANNs, KNN and DT Temporal modeling of the oviposition
activity (measured weekly on 50
ovitraps in a north Argentinean city) of
Aedes aegypti (Linnaeus)

These new tools perform better than
linear approaches, in particular KNN
performs better than compared
approaches.

Chen et al. [91] Dengue, Malaria LASSO Access how the LASSO method may be
useful in providing useful forecasts for
different pathogens in countries with
different climates.

Short-term predictions generally
perform better than longer-term
predictions, suggesting public health
agencies may need the capacity to
respond at short-notice to early
warnings.

Chekol and Hagras [92] Malaria ANFIS and SVR Comparing ANFIS and SVR approaches
on the task of predict the malaria
epidemic, in Ethiopia, up to
three-months-ahead.

Similar results were observed for both
approaches and they can be used in
parallel.

Poirier et al. [93] Influenza RF, SVR and ENET Compared internet and electronic health
records data and by statistical models
to identify the best approach for
influenza estimates in real time.

For national and Brittany region
influenza incidence rate, SVR model is
the best approach.

Liang et al. [94] Influenza SVR Explore the application of the SVR
model for forecasting influenza data in
Liaoning, China.

It is observed the feasibility of using
internet search engine query data and
the efficiency of SVR model in tracking
the influenza.

Mollalo et al. [95] Tuberculosis MLP and LR Investigated the applicability of MLP to
predict the tuberculosis incidence.

Among the developed models, single
hidden layer MLP had the best test
accuracy.

Soliman et al. [17] Influenza DL, LASSO, MARS and
ARIMA

Investigate utility of DL to forecast
influenza in Dallas County, USA.

DL and multi-model ensemble of
forecasts yield a similar competitive
performance.

Chen et al. [14] Influenza LASSO-GP, LR, ANNs, SVR
and SARIMA

Developing a non-parametric model
based on LASSO-GP regression for
influenza prediction considering
meteorological effect.

Proposed approach outperform
compared models.

Guo et al. [32] Dengue Ensemble Develop an ensemble penalized
regression algorithm for initializing
near-real time forecasts of the dengue
epidemic trajectory.

The proposed algorithm had the best
performance in comparison with
regression models using single penalties.

Shirmohammadi et al. [96] Brucelossis RF, SVR and MARS Investigate and compared the
performance of three data mining
techniques to predict monthly
brucellosis.

Results indicated that the RF model
outperformed the SVM and MARS and
it can be utilized to diagnose the
behavior of brucellosis over time.

Venna et al. [97] Influenza ARIMA, EAKF, LSTM Propose a novel data-driven machine
learning method using long short-term
memory-based multi-stage for influenza
forecasting.

Proposed method performs better than
the existing well-known influenza
forecasting methods (ARIMA and EAKF)
and the results offer a promising
direction to improve influenza
forecasting.

Thakur and Dharavath [98] Malaria ANNs Determine the malaria abundances
using clinical and environmental
variables with Big Data by ANNs.

The results vary from area to area
based on clinical variables and rainfall
in the prediction model corresponding
to areas.

Chakraborty et al. [99] Dengue NNAR, ARIMA, LSTM and
SVR

Proposed a hybrid ARIMA-NNAR for
dengue forecasting on three regions.

The ARIMA-NNAR give better
forecasting accuracy in comparison to
the state-of-the-art.

Su et al. [100] Influenza SARIMA, LASSO, LSTM
and XGBoost

Develop a self-adaptive model by
integrating the SARIMA and XGBoost
approaches for real-time estimation of
influenza in Chongqing, China.

Compared with LASSO and LSTM
approaches, the proposed framework
reach better improvement than this
approaches for the adopted task.
2. The combination of EEMD, HTE, and WI strategy for result
aggregation with weights select by NSGA-II TOPSIS allowing the
enhancement of the model’s performance for the adopted time
series;
14
3. The use of HTE models for components allowing to improve the

framework accuracy in relation to the use of a homogeneous

ensemble of components;
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Table B.1
Control Hyperparameters obtained by GS during cross-validation process for each adopted model.

State Component BRNN CUBIST GBM QRF PLS

Neurons Committes Instances Boosting Iterations Max Tree Depth Randomly Selected Predictors Components

IMF1 (2,3,4) (1,1,1) (5,5,5) (50,150,50) (2,2,2) (4,4,4) (2,2,2)
IMF2 (1,1,1) (1,1 ,1) (1,0,0) (150,150,150) (2,3,2) (3,3,3) (3,3,2)

MG IMF3 (3,3,3) (20,20,20) (9,9,9) (50, 150,50) (2,1,2) (3,3,3) (3,3,3)
IMF4 (3,2,3) (10,10,10) (1,0,0) (150,150,150) (3,2,3) (4,4,4) (3,3,3)
Residual (2,1,2) (10,10,10) (1,0,0) (150,50,150) (3,2,3) (4,3,4) (3,3,2)
Non-decomposed (1,1,1) (10,10,10) (9,9,9) (50, 50,50) (1,3,2) (4,3,2) (2,2,2)

IMF1 (1,4,4) (20,20,10) (9,9,9) (150,50,50) (3,3,3) (4,4,4) (2,2,2)
IMF2 (1,4,4) (1,1,1) (0,0,0) (150,150,150) (2,2,2) (4,4,4) (3,3,3)

SP IMF3 (1,4,4) (20,20,20) (0,0,0) (100,50,50) (1,1,1) (4,4,4) (3,3,3)
IMF4 (1,4,4) (1,1,1) (0,0,0) (150,150,150) (2,3,3) (4,4,4) (3,3,3)
Residual (1,2,2) (20,20,20) (5,5,5) (150,150,150) (3,3,3) (2,2,2) (3,3,3)
Non-decomposed (3,4,4) (10,10,10) (5,5,5) (150,100,100) (3,2,3) (4,4,4) (3,3,3)

IMF1 (2,3,4) (10,10,10) (0,0,0) (150,50,50) (2,1,2) (4,3,4) (1,1,1)
IMF2 (1,4,4) (1,1,1) (0,0,0) (150,150,150) (3,2,3) (4,4,4) (3,3,3)

PR IMF3 (1,2,3) (1,1,1) (5,5,5) (100,100,100) (2,2,2) (3,2,3) (3,3,3)
IMF4 (2,2,2) (20,20,20) (0,0,0) (150,150,150) (3,2,3) (2,2,2) (3,3,3)
Residual (1,4,4) (1,1,1) (9,9,9) (150,150,150) (3,3,3) (4,4,4) (3,3,3)
Non-decomposed (1,2,3) (1,5,5) (5,5,5) (50,50,50) (2,2,3) (4,2,3) (3,3,3)

IMF1 (3,3,4) (20,20,10) (9,9,9) (50,100,50) (1,1,2) (3,3,4) (2,2,1)
IMF2 (3,4,4) (10,10,1) (0,0,0) (150,150,150) (2,3,3) (3,4,4) (2,2,3)

RJ IMF3 (3,4,3) (1,1,1) (5,5,5) (150,150,100) (3,2,2) (3,4,3) (3,3,3)
IMF4 (4,3,2) (10,10,20) (0,0,0) (150,150,150) (3,2,3) (4,3,2) (3,3,3)
Residual (4,4,4) (20,20,1) (5,5,9) (100,150,150) (2,1,3) (4,4,4) (3,3,3)
Non-decomposed (2,2,3) (10,10,1) (0,0,5) (50,50,50) (1,1,3) (2,2,2) (1,1,3)
Table C.1
Weights obtained by MOO approach, which are assigned for each model adopted in the signal reconstruction and models used in the structure of proposed hybrid framework.

Forecast Horizon Weight MG SP

M1 M2 M3 M4 M5 Proposed (Models) M1 M2 M3 M4 M5 Proposed (Model)

𝜃1 1.1560 1.3087 1.4370 1.1319 1.1022 1.4536 (GBM) 1.1003 1.1498 1.2433 1.0204 1.0451 1.1457 (CUBIST)
𝜃2 0.9380 0.8953 0.9507 0.8686 1.0314 0.9076 (CUBIST) 1.0084 0.9331 0.8977 1.0061 1.0878 0.9404 (CUBIST)

One-month 𝜃3 0.7798 0.7556 0.8098 0.7723 0.8772 0.8034 (BRNN) 0.9084 1.0287 1.0712 0.9596 1.0524 1.0561 (CUBIST)
𝜃4 1.0579 1.0622 1.0897 1.0485 1.1001 1.0877 (QRF) 1.0428 1.2218 1.1090 1.0314 1.3202 1.2278 (GBM)
𝜃5 0.9954 0.9968 0.9544 0.9950 1.0373 0.9917 (GBM) 0.8722 0.9745 0.8874 0.9833 0.8774 0.9804 (GBM)

𝜃1 1.2223 1.2938 1.2598 1.2065 1.1202 1.3093 (GBM) 0.9872 1.1302 1.1864 1.1550 1.0449 1.1903 (CUBIST)
𝜃2 0.9750 0.9045 0.9448 1.0174 1.0365 1.0226 (BRNN) 0.9121 0.8508 0.9004 0.9999 1.0486 0.9527 (PLS)

Two-months 𝜃3 0.7539 0.7544 0.8083 0.8209 0.8863 0.7738 (BRNN) 0.9362 1.0505 1.1512 0.9756 1.0440 1.1667 (BRNN)
𝜃4 1.0166 1.0630 1.1071 1.0289 1.0808 1.1105 (CUBIST) 1.0942 1.2205 1.0800 1.0262 1.3320 1.2825 (GBM)
𝜃5 0.9881 0.9865 0.9541 0.9835 0.9909 0.9891 (BRNN) 0.9812 0.9691 0.9780 0.8914 0.9829 0.9999 (GBM)

𝜃1 1.1500 1.3704 1.3130 1.0271 1.1125 1.3541 (GBM) 0.8756 1.0992 1.0945 1.4139 0.9896 1.1008 (CUBIST)
𝜃2 0.9111 0.8950 0.9729 0.6465 0.9666 0.9625 (GBM) 0.9951 0.8980 0.7734 0.6323 1.1430 0.9084 (CUBIST)

Three-months 𝜃3 0.7999 0.8214 0.7725 0.6758 0.8098 0.7603 (BRNN) 0.8441 0.9291 1.2280 0.9544 1.0558 0.9713 (BRNN)
𝜃4 1.0835 1.1000 1.0323 1.0361 1.0889 1.0578 (QRF) 1.0106 1.1220 1.0468 1.0358 1.2480 1.0956 (GBM)
𝜃5 1.0024 1.0020 0.9956 1.0011 1.0966 1.0179 (QRF) 0.9122 0.9681 0.8743 0.9010 0.9040 1.0354 (GBM)

Forecast Horizon Weight PR RJ

M1 M2 M3 M4 M5 Proposed (Models) M1 M2 M3 M4 M5 Proposed (Model)

𝜃1 0.8906 1.9995 1.1349 0.7480 1.0860 1.0751 (QRF) 1.0137 1.1176 1.4646 1.0315 1.1216 1.4744 (GBM)
𝜃2 0.8028 0.6284 0.8472 0.7622 1.0030 1.0158 (QRF) 0.9331 0.9455 0.9498 0.9149 1.0566 0.9518 (GBM)

One-month 𝜃3 0.9298 0.9333 0.8244 0.9503 1.0320 1.0065 (CUBIST) 1.0328 0.9799 1.0489 1.0215 1.0272 1.0502 (PLS)
𝜃4 0.8120 0.7744 0.8983 0.7863 0.9759 0.9686 (PLS) 1.0829 1.0986 1.0613 1.0648 1.0367 1.0807 (GBM)
𝜃5 0.9741 0.9397 0.9822 0.9688 1.0023 0.9972 (BRNN) 0.9958 0.9975 0.9706 0.9970 0.9970 0.9983 (CUBIST)

𝜃1 0.8185 1.9988 0.6224 0.6241 1.0629 0.9358 (QRF) 0.8916 1.2057 1.5927 0.8198 1.1703 0.9121 (BRNN)
𝜃2 0.7554 0.5625 0.6877 0.7407 0.9314 0.8234 (CUBIST) 0.9198 0.9425 0.9489 0.8507 1.0886 0.9051 (GBM)

Two-months 𝜃3 0.9652 0.8543 0.7656 0.8175 1.0728 0.9067 (BRNN) 0.9634 0.9550 1.0031 0.9967 1.0478 0.9746 (PLS)
𝜃4 0.7683 0.6067 0.5662 0.5488 0.9881 1.1394 (GBM) 1.0953 1.0393 1.0554 1.0076 1.0569 1.1191 (CUBIST)
𝜃5 0.9694 0.7624 0.7565 0.7307 0.9789 0.9959 (GBM) 0.9971 1.0016 0.9929 0.9962 1.0018 0.9959 (BRNN)

𝜃1 0.8343 1.9998 0.8795 0.5539 1.0713 0.8521 (QRF) 1.0679 0.9724 1.6017 1.2063 1.1190 1.0491 (BRNN)
𝜃2 0.8085 0.6458 0.7049 0.6158 0.9602 0.8281 (CUBIST) 0.9606 0.9374 0.9182 0.7245 1.1178 0.7348 (PLS)

Three-months 𝜃3 0.8305 0.9981 0.6917 0.8321 1.0991 0.8287 (BRNN) 1.0310 0.9963 0.9085 0.9815 1.0073 0.9590 (PLS)
𝜃4 0.6500 0.7918 0.5345 0.5267 0.9292 1.2443 (BRNN) 1.0994 1.1006 1.1181 1.0159 1.0274 1.0157 (CUBIST)
𝜃5 0.7722 0.9420 0.7122 0.6980 0.9702 0.9997 (GBM) 0.9962 0.8994 0.9628 0.9992 0.9689 1.001 (QRF)
4. The use of WI strategy to combine the components is better than

the use of DI strategy when optimization is employed to finding

the set of weights;
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5. The proposed approach reaches better accuracy and stability

(lower standard deviation of the errors) than the compared

models;
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6. In 89.17% of the cases, there is a statistical difference between
the errors of the EEMD-HTE-MOO framework and the compared
structures.

For future works, the adoption of other decomposition techniques,
uch as variational mode decomposition and singular spectral analysis,
s intended to reconstruct the decomposed signal through the clus-
ering of techniques, and using artificial neural networks, adopting
tacking ensemble approaches after the decomposition performance,
sing coyote [102,103], owls [104], and falcon [105] metaheuristics
o tune hyperparameters of adopted forecasting models, using other
OEA to find the weights of WI strategy, as well as make use of the

ssembling of MCDM techniques. Also, is desirable to compare the
ecursive and direct methods to perform multi-step-ahead forecasting
or the proposed task.
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ppendix A. Summary of related works

Table A.1 presents the related works regarding to machine learning
nd general models for epidemiologic time series forecasting.

ppendix B. Hyperparameters.

Table B.1 presents the hyperparameters obtained by GS during
ross-validation process, for each component obtained by EEMD as well
s for models that not considers signal decomposition. Alongside, the
S is performed only for tunable parameters of each model contained in
aret package. Between parentheses, for each algorithm are present the
arameters used on one up three-months-ahead forecast, respectively.
n addition, for GBM model, the parameters shrinkage and minimum
umber of terminal node size are set as 0.1 and 10, respectively.

ppendix C. Weights adopted for each model in the signal recon-
truction.

Table C.1 presents the weights assigned for each model adopted in
he signal reconstruction, in which M1 is the model EEMD-MOO-BRNN,
2 is the model EEMD-MOO-CUBIST, M3 is the model EEMD-MOO-
BM, M4 is the model EEMD-MOO-PLS and M5 is the model EEMD-
OO-QRF. Additionally, after the weight assigned for each component

f proposed model, the models employed for each component are
resented.
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