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Abstract: There is an acute need for advances in pharmacologic therapies and a better understanding
of novel drug targets for severe asthma. Imatinib, a tyrosine kinase inhibitor, has been shown to
improve forced expiratory volume in 1 s (FEV1) in a clinical trial of patients with severe asthma.
In a pilot study, we applied systems biology approaches to epithelium gene expression from these
clinical trial patients treated with imatinib to better understand lung function response with imatinib
treatment. Bronchial brushings from ten imatinib-treated patient samples and 14 placebo-treated
patient samples were analyzed. We used personalized perturbation profiles (PEEPs) to characterize
gene expression patterns at the individual patient level. We found that strong responders—patients
with greater than 20% increase in FEV1—uniquely shared multiple downregulated mitochondrial-
related pathways. In comparison, weak responders (5–10% FEV1 increase), and non-responders to
imatinib shared none of these pathways. The use of PEEP highlights its potential for application as a
systems biology tool to develop individual-level approaches to predicting disease phenotypes and
response to treatment in populations needing innovative therapies. These results support a role for
mitochondrial pathways in airflow limitation in severe asthma and as potential therapeutic targets in
larger clinical trials.

Keywords: personalized medicine; asthma subtypes; personalized perturbation profiles; systems
biology; mitochondria; pharmacogenetics

1. Introduction

Severe asthma is a major global cause of morbidity and healthcare costs [1]. More than
60% of adults with asthma, have uncontrolled, symptomatic asthma [2]. There is an acute
need for advances in pharmacologic therapies and pharmacogenetics in asthma to improve
the identification of novel drug targets [3]. In a randomized clinical trial repurposing
imatinib, a tyrosine kinase inhibitor of the KIT proto-oncogene receptor tyrosine kinase, for
severe asthma, imatinib use improved forced expiratory volume in 1 s (FEV1) compared
to placebo treatment [4]. KIT is the receptor for stem cell factor; soluble stem cell factor
levels are increased in the serum of asthmatics and correlate with asthma severity [5]. In
that trial, imatinib-treated patients with the greatest increases in FEV1 had higher baseline
bronchoalveolar lavage neutrophil counts, suggesting that imatinib may particularly benefit
non-eosinophilic asthmatics.
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Patients with non-eosinophilic asthma phenotypes report poor disease control despite
multiple controller medications and have limited treatment options [6]. Despite significant
advances in asthma treatment over the past decade, biomarkers and available biologics
(e.g., anti-IgE, anti-interleukin (IL)-5, anti-IL-4R) are primarily directed to eosinophilic
phenotypes [7]. Therefore, clinicians face a dual challenge in treating non-eosinophilic
asthma: lack of data-guided therapy and limited therapeutic interventions.

Systems biology analytic approaches are designed to capture complex biological in-
teractions that may inform a particular clinical phenotype [8]. The application of these
quantitative tools can identify biological pathways or components of those pathways that
predict phenotypes/endotypes, biomarkers and drug interventions [3]. Clinically mean-
ingful findings may contribute to personalized approaches to care. In this pilot study, we
conducted a network analysis of bronchial epithelium gene expression to characterize the
phenotypes of severe asthma patients with, and without, lung function change following
imatinib treatment.

2. Materials and Methods

We performed low input RNA-seq on bronchial brushing samples obtained from
patients enrolled in the KIT Inhibition by Imatinib in Patients with Severe Refractory
Asthma (KIA) trial [1]. Ten imatinib-treated patient samples and 14 placebo-treated patient
samples were analyzed. We defined clinical response to imatinib treatment as an increase
of ≥5% between baseline and post-imatinib FEV1 measurements.

To identify changes in gene expression by imatinib treatment, we first performed
differential expression (DE) analysis (paired t-test) on normalized data from all paired
samples between pre-and post-imatinib and pre- and post- placebo treatments. To account
for false positive expressions related to placebo effects, we removed genes that were
significantly DE and had the same direction of effect in both placebo and imatinib-treated
groups. The Benjamini-Hochberg method was used to control the false discovery rate.

We, then, constructed personalized perturbation profiles (PEEPs) from the gene ex-
pression data using genes uniquely expressed in imatinib-treated patients [9]. PEEP
methodology addresses the genetic heterogeneity of complex diseases, such as asthma,
by characterizing gene expression patterns at the individual patient level. For each indi-
vidual in the imatinib treatment (case) group, PEEP compares the expression level of a
gene to a reference distribution of the expression level of that same gene in the placebo
(control) group. The resulting deviation, calculated as a z-score, is positive if the gene
is overexpressed with respect to the control distribution, and negative otherwise. This
analytic approach has been validated in asthma, among other chronic diseases [9]. Using
PEEP, we identified post-imatinib gene expression changes at the level of single individuals,
compared to baseline gene expression in the pre-imatinib patient population. Based on
the PEEP analysis results, we then conducted a hierarchical clustering using the average
method and Euclidean distance metric. We examined the association of these profiles with
patient phenotypes with and without meaningful clinical improvements in FEV1.

Next, to reduce the false positives and account for fluctuations in expression levels,
only genes with absolute z-score of 2 or above are selected as differentially expressed in
the individual profiles. We identified biological processes upregulated or repressed across
the imatinib-treated population using pathway enrichment analysis (Enrichr, g:Profiler)
on genes with z-scores above 2 and z-scores below −2 [10]. We used a functional protein-
protein interaction (PPI) network (HumanNet-FN) [11] to identify a disease module (gene
set related to the imatinib response phenotype that forms a connected component) as a
means of identifying potentially relevant pathways, rather than individual genes, that
might not otherwise be detected with DE alone. Finally, we measured the distances
between genes of these pathways to genes from patients with greatest increases in FEV1,
and to genes from patients without improvement in FEV1. Genes in close proximity within
protein-protein interaction networks have been found to demonstrate similar biological
functions [12].
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3. Results
3.1. Personalized Perturbation Profile (PEEP) Analysis

At baseline, there were no significant clinical differences between the imatinib and
placebo-treated subsets with regards to demographics, FEV1, markers of airway hyperre-
sponsiveness, inflammation, and Asthma Control Questionnaire (ACQ-6) score (Table 1).

Table 1. Baseline demographic characteristics * of patients included in bronchial brushing analysis.

Characteristic Imatinib (N = 10) Placebo (N = 14)

Age (years) 44 ± 7 41.7 ± 12.3

Female sex (no. %) 60% 50%
White race ˆ (no. %) 50% 35.7%

Log2 methacholine PC20
‡ 1.29 ± 1.5 1.47 ± 1.3

FEV1—Percent of predicted 71.5 ± 12.4 68.3 ± 11.7

FeNO ‡—ppb 23.4 ± 11.5 32.4 ± 11

Peripheral eosinophil count, per cubic millimeter 6.6 ± 7.2 2.95 ± 7.2

BAL neutrophils # 4.2 ± 8.8 2.3 ± 5.6

BAL eosinophils & 0.79 ± 0.81 0.54 ± 0.88

ACQ-6 score † 1.8 ± 1.1 2.2 ± 1

* Plus–minus values are means ±SD. There were no significant differences between the groups using a two-tailed
t-test with significance set at p < 0.05. PC20 provocative concentration of methacholine ± causing a 20% decrease in
FEV1. FEV1 forced expiratory volume in 1 s. FeNO fraction of exhaled nitric oxide. BAL denotes bronchoalveolar
lavage. ˆ Race was reported by the patient. ‡ Data were available for 9 patients in the imatinib group. # Data were
available for 8 in imatinib group and 12 in placebo group. & Data were available for 7 in imatinib group and 12 in
placebo group. † Scores on the six-item Asthma Control Questionnaire (ACQ-6) range from 0 to 6, with lower
values denoting better asthma control. The minimally important difference is 0.5.

Paired t-testing from the RNA-seq data yielded 557 genes that were differentially
expressed in the imatinib treated group at a nominal level of significance (p-value ≤ 0.05)
(Supplementary Table S1). PEEP analysis on these genes resulted in a unique expression
profile for each patient (n = 10) (Figure 1). Differences in the gene expression profiles based
on PEEP analysis between imatinib and placebo-treated patients is depicted in Figure 2.

3.2. Hierarchical Clustering Based on PEEP

Unsupervised clustering on the gene expression profiles of the 557 genes based on the
PEEP analysis identified that patients with FEV1 improvement on imatinib (n = 5) shared
similar profiles (Figure 3). Clustering yielded distinct groups of patients corresponding
to percent change in FEV1: Two patients (green; entitled strong responders relative to
the other groups) had an improvement greater than 20% while three patients (yellow;
entitled weak responders) had a 5–10% increase in FEV1 and five patients (in gray) had
<5% response (entitled non-responders). The FEV1 response is a continuous variable [13];
therefore cut-offs for analyses were objectively based on the clustering results and not
pre-specified. In an exploratory analysis, we found that the average decrease in serum
tryptase during between pre- and post-treatment visits was greatest among FEV1 strong
responders, lower for weak responders, and least among non-responders (Supplementary
Figure S1).
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Figure 1. Personalized perturbation profile (PEEP) analysis pipeline. PEEP compares gene expression changes post-treat-
ment at the level of single individuals, to baseline gene expression in a pre-treatment patient population. 

Figure 1. Personalized perturbation profile (PEEP) analysis pipeline. PEEP compares gene expression changes post-
treatment at the level of single individuals, to baseline gene expression in a pre-treatment patient population.

Profiles of weak responders shared no common genes with z-scores above 2 or below
−2 and there were no common up- or down-regulated pathways. Similarly, imatinib-
treated patients without improvement in FEV1 shared no common up- or down-regulated
biological processes, suggesting that the lack of drug response in these patients may stem
from heterogenous factors.

In contrast, we found four genes were commonly repressed across the strong respon-
ders compared to the imatinib-treated population in the PEEP analysis: MPV17L2 (p = 0.02),
CNIH2 (p = 0.02), AP1M2 (p = 0.04), PTPMT1 (p = 0.04). We found that these strong re-
sponders uniquely shared multiple downregulated mitochondrial-related pathways, such
as mitochondrial ribosome assembly, gene expression, and localization (Supplementary
Table S2). Among weak responders, and non-responders, none of these pathways were
significantly affected.
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Figure 3. Individual patient gene expression profiles are associated with forced expiratory volume in
1 s (FEV1) improvement on imatinib and are further distinguished by the degree of FEV1 change. Pa-
tients in yellow demonstrated a weak (5–10%) increase in FEV1, while patients in green demonstrated
a strong (>20%) improvement in FEV1.
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3.3. Shortest Distance Analysis to Mitochondrial Genes

In the functional PPI mitochondrial genes in the Bcl-2 family measured in closer
proximity to the shared, repressed genes of strong responders, than to genes of imatinib
non-responders. In particular, mitochondrial genes BIK, BID3, BCLXL, MCL1 and BCLW
of the anti-apoptotic subgroup measured closest to strong responders’ genes (Figure 4).
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4. Discussion

In this pilot study, we applied systems biology approaches to clinical trial data to study
the heterogeneous response of patients with severe asthma to imatinib treatment. Applying
PEEP to the genomic data on a subset of trial participants generated individual-level gene
expression profiles of imatinib response. An analysis of these profiles identified a set of
pathways and related genes that distinguished strong responders from weak responders,
and from non-responders, based on FEV1 change with imatinib. Patients with improved
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lung function after treatment showed a set of uniquely repressed mitochondrial genes in
their bronchial epithelium brushings.

There has been increasing attention on mitochondrial dysfunction in airway dis-
ease [14]. Multiple features of mitochondrial function and structure have been implicated
in the pathophysiology of asthma [15,16]. Altered homeostasis of mitochondrial biogenesis
may lead to airway remodeling (e.g., increase in bronchial smooth muscle) that is charac-
teristic of severe asthma [17]. Similarly, reduced mitochondrial membrane potential and
metabolic activity may play a role in fibroblasts and other cell populations contributing
to the pathogenesis of fibrosis in severe asthma [18,19]. The non-eosinophilic phenotype
is more common in severe asthma, suggesting that mitochondrial mechanisms may be
particularly relevant in this domain. Mitochondrial membrane permeability and stability
responds to environmental stressors [14], as well as to mitochondrial products released
from damaged mitochondria, which may be important in inflammasome-mediated mech-
anisms of non-eosinophilic asthma [20]. Increasingly, bioinformatics [19] and omics [21]
approaches are being used to elucidate the impact of genetic differences in mitochondrial
dysfunction and airway disease. Our findings add to this growing literature and its rele-
vance to novel therapeutics [22]. Mitochondrial genes in the Bcl-2 family measured closer
to the genes of strong responders in our PPI network. Bcl-2 proteins have previously been
reported to be involved in mitochondrial stability [23], and mediate imatinib chemosensi-
tivity [24]. The close proximity of these genes within the PPI network further supports the
role of these pathways in airway response to imatinib.

The limitations to our pilot analysis include that we were only able to perform RNA-
seq on a subset of responders and non-responders in the KIA trial. While our subjects were
representative of trial participants, the relatively small sample size of many clinical trials
like ours, and the heterogeneity of clinical response to treatment, constitute a challenge
for traditional group-wise analyses. We accounted for the latter limitation by estimating
individual-level variation with PEEP. Specifically, the PEEP study design uses two sets of
controls in a robust analysis: Placebo-treated patients to eliminate false positive results and
the individual-level comparison to eliminate between person variability. This approach
likely contributes to our ability to see significant results despite a small sample size. Our use
of PEEP highlights its potential for application in omics analysis of larger cohorts from fu-
ture clinical trials to develop personalized phenotypes and targeted treatment—particularly
in traditionally poorly understood disease states such as non-eosinophilic asthma.

5. Conclusions

Our results suggest a new role for mitochondrial pathways in airflow limitation in non-
eosinophilic severe asthma and highlight these pathways as potential therapeutic targets.
Large-scale clinical trials using imatinib are planned, setting the stage for the validation of
these findings and addressing a pressing clinical need for additional treatment options for
severe asthma [25].
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426/11/4/240/s1, Table S1: Genes differentially expressed in imatinib-treated patients, Table S2:
Pathway enrichment analysis results for patients with >20% improvement in forced expiratory
volume in 1 s (FEV1) after imatinib treatment, Figure S1: Change in serum tryptase by FEV1 response.
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