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Abstract

Since the outbreak of the global COVID-19 pandemic, social distancing has been known to

everyone and recommended almost everywhere everyday. Social distancing has been and

will be one of the most effective measures and sometimes, the only available one for fighting

epidemics and saving lives. However, it has not been so clear how social distancing should

be practiced or managed, especially when it comes to regulating everyone’s otherwise nor-

mal social activities. The debate on how to implement social distancing often leads to a

heated political argument, while research on the subject is lacking. This paper is to provide a

theoretical basis for the understanding of the scientific nature of social distancing by consid-

ering it as a social dilemma game played by every individual against his/her population.

From this perspective, every individual needs to make a decision on how to engage in social

distancing, or risk being trapped into a dilemma either exposing to deadly diseases or get-

ting no access to necessary social activities. As the players of the game, the individual’s

decisions depend on the population’s actions and vice versa, and an optimal strategy can

be found when the game reaches an equilibrium. The paper shows how an optimal strategy

can be determined for a population with either closely related or completely separated social

activities and with either single or multiple social groups, and how the collective behaviors of

social distancing can be simulated by following every individual’s actions as the distancing

game progresses. The simulation results for populations of varying sizes and complexities

are presented, which not only justify the choices of the strategies based on the theoretical

analysis, but also demonstrate the convergence of the individual actions to an optimal dis-

tancing strategy in silico and possibly in natura as well, if every individual makes rational dis-

tancing decisions.

Introduction

Since the outbreak of the global COVID-19 pandemic, social distancing has been known to

everyone and practiced almost everywhere everyday. Social distancing has been and will be
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one of the most effective measures and sometimes, the only available one for fighting epidem-

ics and saving lives [1–8]. Social distancing is not just simply keeping 6 feet away from each

other. In a broader sense, it is to restrict regular social activities in whatever ways to avoid

virus or bacteria infections, ranging from complete social isolation to limited business opening

[9–12]. On one hand, complete isolation, although safe for health, is not socially or economi-

cally practical unless it is only for a few days or weeks. On the other hand, free participation in

all social activities, although socially or economically beneficial, is dangerous of contracting

deadly diseases. When in a severe pandemic, every individual needs to make a conscientious

decision when managing his/her distancing practices [13–18].

Consider a simple case where there are only two types of activities to choose, one for quar-

antine such as staying home with only limited social activities such as going to grocery stores

or gas stations, and another for more regular social activities including going to workplaces,

schools, restaurants, etc. Then the question is what an individual in a given population should

choose between the two types of activities? The answer often depends on what the whole popu-

lation would do: If the whole population quarantines by choosing the first type of activities, the

individual may instead take advantage to participate in the second type, where he/she can

obtain more social or economic benefits yet without concerning his/her health because he/she

may be the only one around there. However, if everyone else discovers this advantage, they

will join this individual to get access to more social activities as well. The risk of contracting

diseases is then increased for all. Everyone will retreat to the first type of activities for quaran-

tine. The whole process then repeats due to the social dilemma every individual faces.

The above distancing behaviors can be described in a more concrete form as a social

dilemma game between an individual and the population [19, 20]. Suppose the choices

between the two types of activities correspond to two distancing strategies. Let’s call the first

type of activities as Q for quarantine and the second type as F for free-social. Then, there will

be four extreme scenarios for the interactions between the individual and the population:

1. (Q, F) / (quarantine, free-social);

2. (Q, Q) / (quarantine, quarantine);

3. (F, Q) / (free-social, quarantine);

4. (F, F) / (free-social, free-social);

where each scenario is described by a pair of strategies, (Strategy i, Strategy j), with Strategy

i taken by the individual and Strategy j by the population.

The four scenarios can be arranged into a 2 × 2 table as shown in Fig 1, with rows corre-

sponding to the strategies of the individual and the columns to the strategies of the population.

Each cell of the table corresponds to one of the scenarios. A number is assigned to each cell to

represent an estimate on the amount of social contacts made by the individual in the corre-

sponding interaction. In Scenario 1, the individual makes a small amount of social contacts, α
> 0. In Scenario 4, the individual makes a large amount of social contacts, β> α. In Scenarios

2 and 3, the individual is assumed to make zero social contacts.

Assume that the goal of every individual is to minimize his/her social contacts while partici-

pating in either type of activities, quarantine (Q) or free-social (F). Suppose the game starts at

Scenario 1, where the population is in a free-social state, but the individual chooses to quaran-

tine. The individual makes zero social contacts. However, when everyone else realizes their

risks of getting diseases, they will follow this individual, and the population will shift from

free-social to quarantine. The game then goes to Scenario 2, where the individual and the pop-

ulation both choose to quarantine. The amount of social contacts the individual makes in this
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state is then increased slightly to α. However, the individual may change his/her strategy to

free-social, for he/she can get access to more social activities without exposing to other individ-

uals. The game then moves to Scenario 3, where the individual makes zero social contacts. It

follows that after everyone else discovers this advantage, they will again join this individual for

more social activities, and the whole population will shift from quarantine to free-social. The

game then enters in Scenario 4, where the amount of social contacts of the individual is

increased dramatically to β. In this state, to prevent from contracting or spreading diseases, the

individual will immediately decide to change his/her strategy to quarantine. The game then

returns to Scenario 1 again, and the whole process will repeat.

While in the cycle of scenarios 1! 2! 3! 4! 1, the whole population will move back

and forth between states where either all stay in quarantine or all have free social activities.

However, in theory, there is a better strategy to avoid falling in this cycling trap. Instead of

choosing complete quarantine or complete free-social, each individual can spend a certain

part of his/her time for quarantine and the rest for free-social. Indeed, in the above simple

game, if every individual spends β/(α + β) time for quarantine, while α/(α + β) time for free-

social, he/she will be able to reduce his/her social contacts to the least. Yet, any change in this

strategy brings no incentive other than an increase in social contacts. The whole population

then reaches an equilibrium with a probable fraction in quarantine and the rest free-social.

Fig 1. Social distancing game. A game with two choices of activities, either quarantine (Q) or free-social (F), can be

described by a 2 × 2 table. The rows of the table correspond to the strategies played by an individual, while the columns

to those by the population. A number is assigned to each cell to represent an estimate on the amount of social contacts

the individual can make in the corresponding interaction. When the individual and population both choose to

quarantine, the individual makes a small amount of social contacts α> 0. When they both participate in free social

activities, the individual makes a large amount of social contacts β> α. In the other two cases, the individual makes

zero social contacts.

https://doi.org/10.1371/journal.pone.0255543.g001
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The latter situation has been observed in real world communities, where during the COVID-

19 pandemic, social activities have not been completely closed, nor fully opened either.

A typical population of course has far more than two different types of social activities. The

activities also have complex social connections among them. Then, an immediate question for

the above game description of social distancing would be how optimal distancing strategies

can be found for general cases. This question will be answered via further theoretical analysis

on various types of distancing games. Results from computer simulation will also be presented

to justify the theoretical analysis, and show that the optimal strategies can in fact be reached

through the collective actions of the individuals in the population as well. However, a popula-

tion may consist of different social groups such as students, working adults, seniors, etc. with

different but partially shared social activities. Therefore, another question would be whether or

not the game should be played collectively by every individual against only his/her subpopula-

tion with a subset of social activities or strategies. The answer to this question is yes, and analy-

sis and simulation on populations of different activity groups will also be discussed to

demonstrate how the model can be extended from single to multiple populations.

Results

Optimal strategies: Balancing among multiple needs

Consider a general population with more than two, say n, different social activities. The activi-

ties may differ in the contents or locations, but may or may not be socially or physically

completely separated, i.e., the participants in one activity may or may not have social contacts

with those in any others. Assume that a contact value αi� 1 is assigned to each activity i. Let xi
be the frequency (or probability) for an individual to participate in activity i, and yi the fre-

quency (or probability) for the population to participate in activity i in average. First, assume

that the activities are independent of each other. Then it is easy to verify that the optimal dis-

tancing strategy for every individual is to choose a participating frequency x�i ¼ l
�
=ai for activ-

ity i, where 1/λ� = 1/α1 + � � � + 1/αn. The distancing strategy of the whole population for

activity i, i.e., y�i , then becomes x�i as well, and the game reaches an equilibrium, with the

amount of social contacts for every individual minimized to λ�. Note that x�i is inversely pro-

portional to αi. Therefore, if the contact value αi for activity i is high, the optimal frequency x�i
to join this activity will be low (see Analysis General in Methods).

The activities may have some connections, where direct or indirect social contacts can be

made by individuals in between. For example, individuals in a grocery store may come across

those in a nearby cafeteria; individuals who go to two separate activities in different times but

via the same bus line may have indirect contacts. However, if a so-called maximal independent

set of activities can be found in the given activities, an optimal distancing strategy can still be

determined by participating in only such a set of activities while avoiding all others. Let {1, . . .,

m} represent the selected set of activities. Then, an optimal distancing strategy given n social

activities is to take x�i ¼ l
�
=ai for all i = 1, . . ., m and x�i ¼ 0 for all i = m + 1, . . ., n, if the maxi-

mum amount of social contacts one can make in activity i = m + 1, . . ., n is no less than λ�,
where 1/λ� = 1/α1 + � � � + 1/αm. With this strategy, the amount of social contacts for every indi-

vidual is again minimized to λ� at equilibrium (Analysis 1 in Methods).

A maximal independent set of activities is not the only choice for distancing. A dependent

set of activities may also be selected if they form a maximal independent set of regular groups

of activities. A regular group of activities is a group of activities, each having the same degree

of connectivity, i.e., each connecting with the same number of other activities in the group.

Consider a simple case where activities form connected pairs, but any two pairs are separated.

A maximal set of such activities is called a maximal strong matching. Suppose there are m
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pairs of activities in a maximal strong matching. Let {i1, i2} be the ith matched pair, i = 1, . . .,

m. Assume the two activities in each matched pair are given the same contact value, i.e.,

ai1 ¼ ai2 ¼ ai. Then, it can be justified that an optimal distancing strategy can be obtained by

choosing fx�i1 ; x
�
i2
g such that x�i1 þ x�i2 ¼ l

�
=ai for all i = 1, . . ., m, and x�i ¼ 0 for all i

unmatched, if the maximum amount of social contacts one can make in an unmatched activity

i is no less than λ�, where 1/λ� = 1/α1 + � � � + 1/αm. The amount of social contacts for every

individual is then minimized to λ� at equilibrium. Note that in general, the regular groups in

the selected activities may have different group sizes and degrees. Let V� be the set of the

selected activities, and V�i be a connected regular group called a component in V�, i = 1, . . ., m.

Let mi and ri be the size and degree of V�i , respectively, and assume that the activities in V�i are

given the same contact value αi. Then, an optimal distancing strategy can be obtained such

that x�j ¼ 0 for all j not in V� and
P

j2V�i
x�j ¼ l

�mi=ai=ðri þ 1Þ for all i = 1, . . ., m, where

1=l
�
¼
Pm

i¼1
mi=ai=ðri þ 1Þ (Analysis 2 in Methods).

Fig 2 shows an example population with ten possible activities. Assume that the activities

{1, 2, 3, 4} are of high contact rates. They are therefore assigned with a higher contact value,

say αi = 4, for all i = 1, . . ., 4. The rest of the activities are of low contact rates, and are assigned

with a lower contact value, say αi = 1, for all i = 5, . . ., 10. The activities may or may not have

connections. If they all are separated, an optimal distancing strategy can immediately be

obtained with the frequencies x�i ¼ l
�
=ai ¼ 1=28 for all i = 1, . . ., 4 and x�i ¼ l

�
=ai ¼ 4=28 for

all i = 5, . . ., 10, and the amount of social contacts is minimized to λ� = 1/7 or about 14.29% for

everyone while the maximum amount of social contacts that can be achieved is 4 or 400% (if

the whole population goes to one of the first four activities).

If the activities do have connections as depicted with the dash lines in Fig 2, an optimal dis-

tancing strategy can still be obtained by selecting a maximal independent set of activities. For

example, the activities {4, 6, 8} form a maximal independent set. Then, an optimal distancing

strategy can be obtained with x�
4
¼ l

�
=a4 ¼ 1=9, x�

6
¼ l

�
=a6 ¼ 4=9, x�

8
¼ l

�
=a8 ¼ 4=9, and

x�i ¼ 0 for all i 6¼ 4, 6, 8. With this strategy, the amount of social contacts is then minimized to

λ� = 4/9 or about 44.44%. An optimal distancing strategy can also be obtained by selecting a

dependent set of activities such as the activities {1, 2, 5, 7, 8, 10}, which form a maximal strong

matching of the activities. The optimal strategy then becomes x�
1
þ x�

2
¼ l

�
=a1 ¼ 1=9,

Fig 2. Example population. A population of ten possible activities, where activities {1, 2, 3, 4} are considered to be of high contact rates, and therefore assigned with a

higher contact value αi = 4, i = 1, . . ., 4. The rest of the activities are considered of low contact rates, and assigned with a lower contact value αi = 1, i = 5, . . ., 10.

https://doi.org/10.1371/journal.pone.0255543.g002
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x�
5
þ x�

7
¼ l

�
=a5 ¼ 4=9, x�

8
þ x�

10
¼ l

�
=a8 ¼ 4=9, and x�

3
¼ x�

4
¼ x�

6
¼ x�

9
¼ 0. With this strat-

egy, the amount of social contacts is minimized to λ� = 4/9 or about 44.44%, which is the same

as the previous strategy, but it admits more activities, and allows flexible participating

frequencies.

Dynamic simulation: Collective behaviors of social distancing

The theoretical analysis on the distancing game can be justified through computer simulation

if not experimental data which can be difficult to collect. With social distancing as the collec-

tive actions of the individuals in the population, the simulation is easy to implement just by fol-

lowing the changes of the individual strategies as they converge to an optimal one at

equilibrium. The convergence is expected if every individual makes a rational distancing deci-

sion with the following deliberation: Every individual once a while examines the social contacts

he/she may have in each activity; if the potential level of contacts in an activity is higher than

the population average, the participating frequency for this activity is reduced; otherwise, it is

increased. The successful convergence would also suggest that an optimal distancing strategy

can be agreed upon naturally by the collective decisions repeatedly made by the individuals in

the population (see Simulation General in Methods).

Consider the example population in Fig 2 again with all the activities assumed to be inde-

pendent. Assume that there are 100 individuals in the population. A simulation was carried

out for this population for 100 time periods, with each called a generation. At each generation,

a change was made on every individual strategy once, followed by an update on the population

strategy. In the end, almost all the individual strategies converged to an equilibrium one with

x�i � 0:0357 � 1=28 for i = 1, . . .4 and x�i � 0:1429 � 4=28 for i = 5, . . ., 10, and the social

contact λ� � 0.1429� 1/7. These results agreed with all their theoretically expected values.

They were also about the same in ten test runs with ten different sets of randomly generated

initial strategies for all the individuals. Any subset of activities is an independent set, but the

simulation never stopped with a partial completion on a subset of activities. It seemed to be

able to expand the number of activities until a maximal independent set was reached, which

includes all the activities for this population (Simulation 1 in Methods).

The dynamic behaviors of the above population in a typical simulation run are illustrated in

Fig 3. The top two graphs show the initial and final distributions of the individual frequencies

over the ten activities. The activities are listed along the x-axis. The individual frequencies are

displayed in blue circles, one for one individual on one activity. The red stars represent the

average frequencies of the population. At the initial stage, the frequencies were randomly dis-

tributed with the ranges varying from small to large, as shown in graph (A). In 100 genera-

tions, the frequencies for all the activities converged to their respective equilibrium ones, as

shown in graph (B). In each generation, the root-mean-square-deviation (RMSD) of the activ-

ity frequencies of each individual deviated from the average frequencies of the population was

calculated and then averaged over all the individuals. The blue curve in graph (C) shows the

changes of the averaged RMSD over generations. The red curve is a smoother regression show-

ing the general trend of the changes. As shown in this graph, the averaged RMSD gradually

decreased to zero as the simulation progressed, further confirming the convergence of the

individual frequencies to their equilibrium values (Simulation 1 in Methods).

Now assume that the activities do have some dependencies as depicted with the dash lines

in Fig 2. Then, in theory, there are more than one equilibrium strategies, most notably, strate-

gies on independent sets {6, 9}, {4, 6, 8}, {1, 5, 9}, and dependent sets {5, 6, 8, 9}, {6, 7, 9, 10}, {1,

3, 5, 7, 8, 10}, {2, 4, 5, 7, 8, 10}, {1, 3, 5, 7, 8, 9, 10}, and {2, 4, 5, 6, 7, 8, 10} as well. These strate-

gies involve different numbers of activities and different degrees of connectivity, and therefore,
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Fig 3. Dynamic behaviors of the distancing population. The simulation results from a typical test run for a

population of 100 individuals with 10 independent activities are displayed: The graphs (A) and (B) show the initial and

final distributions of the individual frequencies over the 10 activities. The activities are listed on the x-axis. The

frequencies are displayed in blue circles, one for one individual on one activity. The red stars represent the average

frequencies of the population. The blue curve in graph (C) shows the changes of the averaged RMSD of the individual

frequencies over generations. The red curve is a smoother regression showing the general trend of the changes.

https://doi.org/10.1371/journal.pone.0255543.g003
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have different levels of social contacts. However, between two strategies with different levels of

social contacts, the one with lower social contacts would be preferred for obvious reasons.

Also, between two strategies with the same level of social contacts but different numbers of

activities, the one with more activities would be preferred, for it is socially or economically

more beneficial (Simulation 2 in Methods).

A similar simulation to the previous one was run with the assumed dependencies among

the activities for ten times with ten different sets of randomly generated initial strategies for all

the individuals. The ending strategies were recorded as shown in Table 1, where the ending

frequencies of the population on all the activities are listed for all ten test runs. The dynamic

behaviors of the population in one of the simulation runs are illustrated in Fig 4. The top two

graphs, (A) and (B), show the initial and final distributions of the individual frequencies over

the ten activities. The convergence of the individual frequencies is demonstrated in graph (C),

with the averaged RMSD of individual frequencies gradually decreasing to zero in 100 genera-

tions. In the ten test runs, the simulation converged to the following strategies: the one on {1,

3, 5, 7, 8, 9, 10} (3 times), with x�
1
þ x�

3
� 0:1111 � 1=9, x�

5
þ x�

7
¼ x�

8
þ x�

9
þ x�

10
� 0:4444 �

4=9, on {2, 4, 5, 6, 7, 8, 10} (2 times), with x�
2
þ x�

4
� 0:1111 � 1=9, x�

5
þ x�

6
þ x�

7
¼ x�

8
þ x�

10
�

0:4444 � 4=9, and on {1, 2, 3, 4, 5, 7, 8, 10} (5 times), with x�
1
þ x�

2
þ x�

3
þ x�

4
� 0:1111 � 1=9,

x�
5
þ x�

7
¼ x�

8
þ x�

10
� 0:4444 � 4=9. All these strategies selected a maximal independent set of

regular groups of activities (not necessarily the same group size or degree), and their social

contacts are all around λ� � 0.4444� 4/9 (Simulation 2 in Methods).

Strategies for subpopulations: Do not have to act the same

In the real world, a population often consists of many different groups or in other words, sub-

populations, such as students, essential workers, remote workers, seniors, etc. The subpopula-

tions may have different but partially shared subsets of activities, and the individuals in

different subpopulations may not take the same distancing strategy, i.e., there may not be a

strategy optimal for everyone. However, the single population model discussed above can still

be extended to multi-population cases, with the individuals playing the game against only their

own subpopulations. Of course, the game in each subpopulation may depend on the outcomes

of the games in other subpopulations if they share some activities. In terms of game theory,

this is more like a multi-player game, with different players using different but partially shared

subsets of strategies [19, 20].

Table 1. Simulation results for the population in Fig 2 with the assumed dependencies among the activities.

Act Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

1 0.0924 0 0.0007 0 0.0474 0.0485 0.0384 0.0128 0.0340 0.0005

2 0 0.0915 0.0872 0.0584 0 0.0047 0 0.0320 0.0025 0.0373

3 0.0187 0 0.0006 0 0.0637 0.0526 0.0728 0.0151 0.0707 0.0013

4 0 0.0196 0.0226 0.0528 0 0.0053 0 0.0512 0.0039 0.0720

5 0.1880 0.1736 0.1599 0.1449 0.3331 0.3511 0.2083 0.2038 0.1953 0.1976

6 0 0.0289 0 0.0048 0 0 0 0 0 0

7 0.2564 0.2419 0.2845 0.2948 0.1113 0.0933 0.2361 0.2407 0.2492 0.2468

8 0.1966 0.1998 0.1968 0.1811 0.1786 0.1830 0.0950 0.3288 0.3402 0.2006

9 0.0053 0 0 0 0.0053 0 0.1177 0 0 0

10 0.2425 0.2447 0.2477 0.2634 0.2605 0.2614 0.2317 0.1157 0.1042 0.2439

Table Legends: Act—activities. Test #—simulation test. Each column—ending frequencies for corresponding activities.

https://doi.org/10.1371/journal.pone.0255543.t001
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Fig 4. Dynamic behaviors of the distancing population. The simulation results from a typical test run for a

population of 100 individuals with 10 dependent activities are displayed: The graphs (A) and (B) show the initial and

final distributions of the individual frequencies over the 10 activities. The activities are listed on the x-axis. The

frequencies are displayed in blue circles, one for one individual on one activity. The red stars represent the average

frequencies of the population. The blue curve in graph (C) shows the changes of the averaged RMSD of the individual

frequencies over generations. The red curve is a smoother regression showing the general trend of the changes.

https://doi.org/10.1371/journal.pone.0255543.g004
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Consider the case as described in Fig 2. Assume that the population is divided into two sub-

populations called P1 and P2. The individuals in P1 participate in activities H1 = {1, 2, 3, 4, 5, 6,

7}, and those in P2 participate in activities H2 = {1, 2, 3, 4, 8, 9, 10}. Let xð1Þj be the frequency of

participating in activity j in H1 by the individuals in P1,
P

j2H1
xð1Þj ¼ 1, and xð2Þj the frequency

of participating in activity j in H2 by the individuals in P2,
P

j2H2
xð2Þj ¼ 1. If the activities are all

separated, then it is not hard to show that an optimal distancing strategy is such that x�ð1Þj ¼

l
�
=aj for all j in H1 \ H2, x�ð2Þj ¼ l

�
=aj for all j in H2 \ H1, and x�ð1Þj þ x�ð2Þj ¼ l

�
=aj for all j in H1

\H2, which minimizes everyone’s social contacts to λ�, where 1/λ� = (1/α1 + � � � + 1/αn)/2. If

the activities are connected as shown in Fig 2, assume a maximal strong matching of activities

is selected, and assume every matched pair of activities {j1, j2} is either entirely in H1 or in H2

and has the same contact value αj. Then, x�ð1Þj ¼ x�ð2Þj ¼ 0 for all j 2 H1 [ H2 not matched,

x�ð1Þj1 þ x�ð1Þj2 ¼ l
�
=aj for all matched pair {j1, j2} in H1 \ H2, x�ð2Þj1 þ x�ð2Þj2 ¼ l

�
=aj for all matched

pair {j1, j2} in H2 \ H1, and x�ð1Þj1 þ x�ð1Þj2 þ x�ð2Þj1 þ x�ð2Þj2 ¼ l
�
=aj for all matched pair {j1, j2} in H1

\H2, where 1/λ� = (1/α1 + � � � + 1/αm)/2. Note that in general, the selected activities may be a

maximal independent set of regular groups of different sizes and degrees (Analysis 3 in

Methods).

The above analysis was also confirmed by computer simulation. The simulation was run for

ten times with ten different sets of randomly generated initial strategies for all the individuals.

Tables 2 and 3 contain the results from the simulation with the dependencies among the activi-

ties as shown in Fig 2. The ending strategies for subpopulation P1 are listed in Table 2 and

for subpopulation P2 in Table 3. They all agree with their expected equilibrium values. For

example, in Test 1, a set of activities, {1, 3, 5, 7, 8, 9, 10}, was selected for distancing by the

simulation. For the selected activities in H1nH2, i.e., {5, 7}, x�ð1Þ5 þ x�ð1Þ7 � 0:3902þ 0:4987 ¼

0:8889 � 8=9 ¼ l
�
=a5. For the selected activities in H2nH1, i.e., {8, 9, 10}, x�ð2Þ8 þ x�ð2Þ9 þ

x�ð2Þ10 ¼ 0:3823þ 0:0453þ 0:4614 ¼ 0:8890 � 8=9 ¼ l
�
=a8. For the selected activities in H1

\H2, i.e., {1, 3}, x�ð1Þ1 þ x�ð1Þ3 þ x�ð2Þ1 þ x�ð2Þ3 � 0:0972þ 0:0140þ 0:0914þ 0:0197 ¼

0:2223 � 2=9 ¼ l
�
=a1, where λ� = 8/9 (Simulation 3 in Methods).

The dynamic behaviors of single or multiple subpopulations demonstrated above are also

observed when the dependencies among the activities in Fig 2 are changed. The simulation

Table 2. Simulation results for the population in Fig 2 with two subpopulations P1 and P2, each having a preferred subset of activities.

Act Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

1 0.0972 0.0500 0 0 0.0385 0.0022 0.0524 0 0.0364 0

2 0 0.0498 0.1071 0.0646 0 0.0466 0 0.0368 0 0.0321

3 0.0140 0.0035 0 0 0.0726 0.0014 0.0587 0 0.0747 0

4 0 0.0077 0.0040 0.0465 0 0.0610 0 0.0743 0 0.0790

5 0.3902 0.3732 0.3603 0.3150 0.6049 0.5849 0.4550 0.4176 0.3438 0.3643

6 0 0 0 0.0204 0 0 0 0.0035 0 0.0219

7 0.4987 0.5157 0.5286 0.5535 0.2840 0.3040 0.4339 0.4677 0.5451 0.5026

8 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0

Table Legends: Act—activities. Test #—simulation test. Each column—ending frequencies for corresponding activities for P1.

https://doi.org/10.1371/journal.pone.0255543.t002
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results are obtained and stored in S1 and S2 Files for either single or multiple subpopulations

with 10 social activities to form a Petersen’s diagram.

Beyond model problems: A more realistic example

A simulation was also carried out for a larger population in a more complex social environ-

ment resembling a small university town, Ames, Iowa, where Iowa State University is located.

The social activities in the town can be divided into 14 groups with roughly 85 different activi-

ties at different locations (see Fig 5 and description below). For each activity, a contact value

can be estimated according to the average physical proximity of the person-to-person interac-

tions in the activity. However, some activities are more essential than others and have higher

participating frequencies even if their contact values are high. Likewise, some are less essential

than others and have lower participating frequencies even if their contact values are low. To

take such a factor into account, the estimated contact values are further adjusted based on the

importance of the activities: If ci is the estimated contact value of activity i, then a contact value

αi = ci/si is actually assigned to activity i, where si is an estimate on the importance of the activ-

ity, called the importance factor, 1/2� si� 2. If 1< si� 2, activity i is considered to be more

important or essential than average, and its contact value is downgraded. If 1/2� si< 1, activ-

ity i is considered to be less important or essential, and its contact value is then upgraded. Use

ci� 2. Then, αi� 1.

• College Campus: Activities 1–8, including classrooms, office buildings, cafeterias, student

activity centers, surrounding labs, service buildings, organizations. Estimated contact values:

8; importance factors: 4/3; assigned contact values: 6.

• College Town: Activities 9–14, including pharmacies, banks, printing services, post offices,

barbershops, restaurants, student dorms. Estimated contact values: 8; importance factors: 4/

3; assigned contact values: 6.

• W. HyVee: Activities 15–24 at the west HyVee plaza, including grocery stores, clinics, res-

taurants, banks, city offices, fitness centers, beauty shops. Estimated contact values: 4; impor-

tance factors: 2; assigned contact values: 2.

• Somerset: Activities 25–28 at a small community center, including restaurants, fitness cen-

ters, business offices, flower shops, salons, clinics, banks. Estimated contact values: 4; impor-

tance factors: 1; assigned contact values: 4.

Table 3. Simulation results for the population in Fig 2 with two subpopulations P1 and P2, each having a preferred subset of activities.

Act Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

1 0.0914 0.0786 0 0 0.0589 0.0001 0.0366 0 0.0271 0

2 0 0.0179 0.0960 0.0577 0 0.0577 0 0.0429 0 0.0368

3 0.0197 0.0119 0 0 0.0522 0.0009 0.0745 0 0.0840 0

4 0 0.0027 0.0151 0.0534 0 0.0524 0 0.0683 0 0.0743

5 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0

8 0.3823 0.4271 0.3965 0.4379 0.4266 0.3516 0.2656 0.6267 0.7237 0.4280

9 0.0453 0 0 0 0.0253 0 0.1111 0 0.0293 0

10 0.4614 0.4618 0.4924 0.4510 0.4370 0.5373 0.5122 0.2621 0.1359 0.4609

Table Legends: Act—activities. Test #—simulation test. Each column—ending frequencies for corresponding activities for P2.

https://doi.org/10.1371/journal.pone.0255543.t003
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• N. Residential: Activities 29–32 in the northern residential area, including home activities,

nearby convenient stores, and gas stations. Estimated contact values: 2; importance factors:

2; assigned contact values: 1.

• N. Dakota: Activities 33–35 in the North Dakota residential area, including home activities,

nearby convenient stores, and gas stations. Estimated contact values: 2; importance factors:

2; assigned contact values: 1.

• S. Dakota: Activities 36–38 in the South Dakota residential area, including home activities,

nearby convenient stores, and gas stations. Estimated contact values: 2; importance factors:

2; assigned contact values: 1.

• S. Residential: Activities 39–41 in the southern residential area, including home activities,

nearby convenient stores, and gas stations. Estimated contact values: 2; importance factors:

2; assigned contact values: 1.

Fig 5. Simulation of social distancing in a university town. Nodes represent social activities. Links represent contact connections. The population is

divided into 6 subpopulations, P1, . . ., P6, each having a preferred subset of social activities. In the end of the simulation, a maximal independent set of

regular groups of activities is selected by the subpopulations together. Those colored in dark blue are not selected by any subpopulation. Those colored in

red are selected by P1, yellow by P2, green by P3, purple by P4, light blue by P5, brown by P6, and orange by more than one subpopulations.

https://doi.org/10.1371/journal.pone.0255543.g005
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• E. Residential: Activities 42–44 in the east residential area, including home activities, nearby

convenient stores, and gas stations. Estimated contact values: 2; importance factors: 2;

assigned contact values: 1.

• N. Grand Mall: Activities 45–56 in the northern mall area. Inside the Mall, there are about

20 retail stores, a couple of small restaurants, and a movie theater. Outside the Mall, there

are several surrounding business buildings including drug stores, banks, and restaurants.

Estimated contact values: 4 for activities 45–48 and 51–54, and 2 for activities 49, 50, 55, 56.

The importance factors are all given 1, and therefore, the assigned contact values are all the

same as the estimated ones.

• N. Lights: Activities 57–67 in a northern business plaza called the Northern Lights, including

restaurants, food stores, beauty shops, gas stations, and a Walmart superstore. Estimated

contact values: 2 for activities 57–63, and 4 for activities 64–67. Again the importance factors

are all given 1, and therefore, the assigned contact values are all the same as the estimated

ones.

• Commercial: Activities 68–75 and 80–81, including all in the old town and along a newly

developed commercial street, the most busy and crowded area in town. Estimated contact

values: 4; importance factors: 1; assigned contact values: 4.

• E. Commercial: Activities 76–79, in the east part of the town, including hotels, car garages,

material retailers, small factories, car dealers. Estimated contact values: 4; importance factors:

2; assigned contact values: 2.

• S. Commercial: Activities 82–85, in the southern part of the town, including whole sale

stores, home improvement stores, car dealers, research labs, tech companies. Estimated con-

tact values: 4; importance factors: 1; assigned contact values: 4.

Note that in order to simplify the model, the number of activity nodes in each of the above

areas is much smaller than the actual number, but they are representative of the activities

there. For example, there is a circle of only three activity nodes in most residential areas, which

could be expanded to a much larger circle of many neighboring residential blocks, but the

home-gas-store triangle may be adequate to describe the major activities in the areas, and the

nature of the model is not changed much.

The population is divided into 6 different groups based on their residential locations. Each

group has its own preferred activities, some exclusively for the group and some shared with

other groups:

• P1 subpopulation: All students living around College Town. Their preferred activities

include all in College Town, College Campus, W. HyVee, and N. Grand Mall.

• P2 subpopulation: All residents in N. Residential. Their preferred activities include all in N.

Residential, College Campus, Somerset, N. Lights, N. Grand Mall, Commercial, E. Commer-

cial, and S. Commercial.

• P3 subpopulation: All residents in N. Dakota. Their preferred activities include all in N.

Dakota, College Campus, W. HyVee, Somerset, N. Grand Mall, Commercial, E. Commer-

cial, and S. Commercial.

• P4 subpopulation: All residents in S. Dakota. Their preferred activities include all in S.

Dakota, College Campus, W. HyVee, Somerset, N. Grand Mall, Commercial, E. Commer-

cial, and S. Commercial.
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• P5 subpopulation: All residents in S. Residential. Their preferred activities include all in S.

Residential, College Campus, W. HyVee, Somerset, N. Grand Mall, Commercial, E. Com-

mercial, and S. Commercial.

• P6 subpopulation: All residents in E. Residential. Their preferred activities include all in E.

Residential, College Campus, Somerset, N. Lights, N. Grand Mall, Commercial, E. Commer-

cial, and S. Commercial.

The whole population is assumed to have 850 individuals, with 250 in P1, 120 in each of P2,

P3, P4, P5, and P6. The actual population size is about 100 times larger, but for simulation, a

small population size is assumed for more efficient testings.

The simulation was carried out for 10 times with 10 different randomly generated initial

strategies for all the individuals in the population. In each time, it ran for 400 generations, and

in the end, converged successfully to an equilibrium state where each subpopulation reached

its own optimal distancing strategy. All simulation results were recorded and documented in

Supporting information. The activities selected by the ending strategies in all ten simulation

runs were almost the same as those color-coded in Fig 5: The locations in dark blue are those

not selected by any subpopulation at equilibrium. All other colored locations are those selected

by some subpopulations with certain non-zero participating frequencies. The activities colored

in red are those selected exclusively by subpopulation P1, yellow by P2, green by P3, purple by

P4, light blue by P5, and brown by P6. The activities colored in orange are those shared and

selected by more than one subpopulations.

As shown clearly in Fig 5, the selected activities form a maximal independent set of regular

groups. This means that no activities were left unselected yet separated from the selected ones

or in other words, each unselected activity has at least one connection with the selected activi-

ties. In addition, each connected component of the selected activities is a regular group of

activities with the degree ranging from 0 to 3. Let V�i be the set of activities in the ith connected

component of the selected activities, mi ¼ jV�i j. Let ri and αi be the degree and the contact

value of the activities in V�i , respectively. Then, based on the previous analysis, at equilibrium,

the average amount of social contacts minimized for all the subpopulations is equal to λ� such

that 1=l
�
¼ ð
Pm

i¼1
mi=ai=ðri þ 1ÞÞ=M, where m is the number of connected components in

the selected activities and M is the number of subpopulations. For the strategy shown in Fig 5,

m = 38, and M = 6. Therefore, it is easy to verify that λ� = 72/203 (Analysis 3 in Methods).

Let x�ðkÞj be the optimal frequency for the subpopulation Pk to participate in activity j 2 V�i .

Then,
P

k:V�i �Hk

P
j2V�i

x�ðkÞj ¼ l
�mi=ai=ðri þ 1Þ. For example, the activity 30 in N. Residential is

a component of the selected activities with only one activity and contact value equal to 1. It is

also selected only by subpopulation P2. Therefore, x�ð2Þ30 ¼ 72=203. The regular group of activi-

ties 33, 34, and 35 in N. Dakota is a component of the selected activities with contact value

equal to 1. It is also selected only by subpopulation P3. Therefore,

x�ð3Þ33 þ x�ð3Þ34 þ x�ð3Þ35 ¼ 72=203. Also, the activity 57 in N. Lights is a component of the selected

activities with only one activity and contact value equal to 2. However, it is shared by two sub-

populations P2 and P6. Therefore, x�ð2Þ57 þ x�ð6Þ57 ¼ 36=203. For the selected activities, the simu-

lated frequencies all converged to their theoretical values. For example, x�ð2Þ30 � 0:354680 �

72=203, x�ð3Þ33 þ x�ð3Þ34 þ x�ð3Þ35 � 0:113215þ 0:118777þ 0:122688 ¼ 0:354680 � 72=203, and

x�ð2Þ57 þ x�ð6Þ57 � 0:043988þ 0:133352 ¼ 0:177340 � 36=203. (Simulation 3 in Methods).

Note that the simulation was also run without dividing the population, i.e., no subsets of

activities for subpopulations, and the individuals can choose among all 85 activities. The activi-

ties selected at equilibrium were almost the same as in the multi-population case, i.e., the
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population also selected a maximal independent set of regular activity groups similar to that in

Fig 5, except that the frequencies on the activities have changed: Since there is only a single

population, the frequencies are not associated with subpopulations any more. Let x�j be the

optimal frequency for an individual to participate in activity j 2 V�i for the ith regular activity

group in the selected activities. Then,
P

j2V�i
x�j ¼ l

�mi=ai=ðri þ 1Þ. The simulation was again

run for 10 times with 10 different randomly generated initial strategies for all the individuals.

In each time, it converged to an optimal strategy with all frequency values approximating well

to their theoretical values. (The simulation results for either single or multiple subpopulations

in the above university town are all stored in S3 and S4 Files).

Discussion

Work on social distancing for mitigating the spread of epidemics has been done in the past [1–

4, 21–26], and been intensified after the outbreak of the COVID-19 pandemic [5–8, 27–35].

Social distancing has been and will be one of the most important measures and often the only

available one for fighting epidemics and saving lives [1–8]. However, so far it is still very con-

fusing on how social distancing should be practiced or managed when the issue goes beyond

six feet. The debate on the issue often leads to a heated political argument especially when it

comes to restricting daily lives and businesses and regulating everyone’s otherwise normal

social activities [13–18].

This paper is to provide a theoretical basis for the understanding of the scientific nature of

social distancing and to motivate further investigation into the issue. The points to make in

this paper are essentially the following: First, social distancing can be considered as a social

dilemma game. The game is played by every individual against his/her population. Everyone

needs to make a decision on how to engage in social distancing, or risk being trapped into a

dilemma either exposing to deadly diseases or getting no access to necessary social activities.

Second, based on the game theory, an optimal strategy exists for the distancing game to bal-

ance between health and social or economic concerns. It can be determined in theory as a

Nash equilibrium of the game, whether it is for dependent or independent activities and for

single or multi-populations. Third, the collective behaviors of social distancing, though diffi-

cult to measure, can be simulated by computer. The simulation results justify the game model,

and also suggest that an optimal distancing strategy can in fact be achieved naturally through

the collective actions of the individuals in the population. Finally, the game model for social

distancing shows the dependency between the individuals and the population. The population

depends on every individual to make a sensible distancing decision, which not only benefits

himself/herself, but also helps the population to maintain a balanced distribution on the activi-

ties, which in turn benefits every individual in the population. The last point is rather philo-

sophical, but is true for many collective social behaviors.

This work is based on the multidisciplinary studies on evolutionary dynamics of social bio-

logical populations in the past several decades, including the development of evolutionary

game theory [19, 20, 36–44], research on social grouping and cooperation [45–53], collective

animal behaviors [54–57], and network-based evolutionary games [58–65]. It is worth noting

that it is not new to use game theory in epidemic modeling. Most notably is the work on vacci-

nation, where the behavior for taking or refusing a vaccine can be modeled as a social dilemma

game. Bauch and Earn in 2004 first named and studied the vaccination game, and investigated

the effect of vaccination on the dynamic changes of infections in a given population [66]. In

2015, Tanimoto [62] applied the idea to other applications, and for vaccination, in particular,

further extended it to more realistic populations, where individuals interact only with their

neighbors in their social networks. Later on, during the COVID-19 pandemic, a series of
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investigations have also been carried out on the vaccination game and related issues [67–71].

Note that most of these studies focus on the vaccination game with the percentage of the vacci-

nated population as a key parameter for the investigation on the dynamic changes of the infec-

tions and in particular, the reach of the herd immunity of the population. They incorporate

the game model for vaccination into conventional disease dynamic models such as the SIR

model for the study of the disease dynamics.

This paper, on the other hand, investigates a game for social distancing, not for vaccination,

and therefore, is focused on social distancing for mitigating the spread of epidemics or pan-

demics, although it uses a similar evolutionary game theory approach to the problem. To be

clear, it is not on the effect of social distancing on the infection dynamics of the population,

either. The paper is concerned with the problem of how to manage or practice social distanc-

ing and in particular, how to participate in some social activities while avoiding some others so

that the social contacts of every individual in the given population can be minimized. This

problem is formulated as a population game, with the selection of each social activities as a

pure distancing strategy, and the selection of a number of social activities as a mixed strategy.

The game reaches an equilibrium when every individual can find an optimal strategy that min-

imizes his/her social contacts.

While vaccination is the most critical measure for stopping epidemics, social distancing can

be as important: A vaccine may take at least several months or even a year to develop and test

before it can be distributed. Worse, for worldwide distribution, it may take two or three years

to complete. Then, there could be millions of people who have contracted the disease and tens

or hundreds of thousands of them who have died before the vaccine becomes fully accessible.

Therefore, before a vaccine is developed and becomes available, social distancing can be a criti-

cal and sometimes an only available tool to fight epidemics and save lives. Yet, research on this

subject has been very limited, and the decision making on social distancing often relies on

political or practical instincts rather than scientific judgements. The current practice has not

been very successful, often struggling in between either complete shut-down of all businesses

or free participation in all social activities, while neither approach is practical and sustainable.

The social dilemma for social distancing is demonstrated with a simple example in the

Introduction section. This example is similar in nature to the paradox for vaccination. It has

only two pure strategies, quarantine or not, similar to the pure strategies in the vaccination

game, vaccinate or not. However, the real problem considered in this paper is much more

complex than the simple example. It investigates more realistic distancing games when there

are a number of social activities corresponding to a number of pure distancing strategies. The

number of social activities (or pure distancing strategies) may range from several tens to hun-

dreds and in practice, could be thousands with different levels of contact values. Then, the real

distancing game for reducing social contacts while participating in a minimal amount of social

activities is actually an n-strategy game between every individual and the population. When n
is large, the game is nontrivial to solve, especially when there are also dependencies among the

social activities.

The work presented in the paper has three aspects that are beyond the complexity of the

example game given in the Introduction section. First, it deals with distancing games with n
independent social activities (or strategies). Second, it considers distancing games with n
dependent social activities (or strategies) as well. Third, it also solves distancing games with

multiple subpopulations. For each case, the method to recognize and compute a solution for

the game is given. The solution is rigorously proved and further justified through computer

simulation. The latter also shows the potential for the development of a computational tool for

the determination of the optimal strategies for social distancing. In addition, a more realistic

simulation for a population in a small university town has been carried out. The results are
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interesting, providing valuable insights into how social distancing could be practiced or orga-

nized in a real-world environment.

In general, there may always be dependencies among a given set of social activities, which

can be described by a dependency network. In some sense, it is a special type of social network,

but is different from conventional social networks, which usually describe the social relation-

ships among individuals in a given population such as the social networks considered in the

studies on the vaccination game. This unique feature of the social distancing game allows the

payoff function of the game to be defined in terms of a weighted adjacency matrix for the

dependency network. The games with a similar type of construction have been studied in theo-

retical biology and applied mathematics. For example, Vickers and co-workers in 1980s have

conducted a series of investigations on this type of games for the study of genetic mutation

and selection [58, 72, 73]; In the same time period, Bomze et al. published a series of papers on

the same class of games for the solution of the maximum clique problem in combinatorial

optimization [59, 74, 75]. Wang et al. 2019 [64] formulated a similar class of games for model-

ing social networking, which later on was extended to the study on social distancing as dis-

cussed in Wu 2021 [65] as well as in this paper. Research along this line is believed to have

direct impacts in science as well as applied mathematics.

Wang et al. 2019 [64] worked on a so-called social networking game where the members of

a population select to visit among a set of interconnected social sites so they can maximize

their social connections. They showed that an optimal strategy can be obtained by choosing a

maximal set of completely connected social sites (a maximal clique), and derived the stability

conditions for such strategies. The social distancing game, which is to minimize the social con-

tacts, is opposite to the social networking game. It is therefore not surprising that an optimal

strategy for social distancing can be obtained by choosing a maximal set of completely sepa-

rated social sites (a maximal independent set). Wu 2021 [65] investigated the social distancing

game and showed that an optimal distancing strategy can be obtained by choosing a maximal

regular set of social sites in general. The latter form a maximal r-regular graph where each

node connects to r other nodes in the graph [76]. The maximal independent sets, maximal

strong matchings, and maximal sets of cycles are all maximal r-regular sets [77, 78]. In the cur-

rent paper, the selection of social sites (or social activities) is extended to a mixed set of regular

groups of sites (or activities) of any sizes and degrees. The model is also generalized to multiple

as well as single populations with separated or connected social sites (or social activities). A

series of computer simulations are also performed to justify the theoretical results and to prove

the potential use of a computational tool to achieve the optimal distancing strategies for a

given distancing game.

Several issues still need to be clarified: First, the game model discussed in this paper is dif-

ferent from general models for collective behaviors in the sense that it assumes or requires all

the individuals to be able to make their own decisions, not simply following the crowds. Each

time when deciding a strategy x, the individual is assumed to be informed for the current pop-

ulation strategy y. The individual can then evaluate the potential contact pi(y) at each activity i.
If this value is high, the corresponding frequency xi is decreased, and otherwise, it is increased.

It is not simply changed to the population average yi. Second, it is probably unrealistic to

assume that the individuals can always make rational decisions. Sometimes, they may just fol-

low the crowds or make random decisions. Some preliminary simulation tests showed that

random decisions did slow down or even change the convergence of the distancing strategies.

Research along this line will be further pursued in future efforts. Finally, as an evolutionary

game, the evolutionary stability of the optimal strategies for the distancing game is not dis-

cussed in this paper. It is partially because it requires more mathematical analysis and it would

be better to discuss it separately elsewhere. In addition, it seems that for social distancing, it is
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sufficient for the strategies to be weakly stable. Indeed, as shown in this paper, many distancing

strategies are not necessarily strictly stable, allowing small perturbations in their frequencies,

but they are more flexible and may be more preferred for practical purposes.

In addition to the research contribution, this paper is intended to emphasize the scientific

nature of social distancing and increase the public awareness of the importance of active indi-

vidual engagement. Therefore, to make it more accessible, the paper is presented in a more

narrative form to avoid heavy technical details. Efforts have been made to use less mathemati-

cal terms until the sections for Methods where more rigorous descriptions and proofs are

needed. In the sections for Results, simple examples have been used to illustrate the ideas

before more substantial results are discussed. Extra testings and detailed simulation results are

all recorded and documented separately in Supporting information.

A case study for distancing in a small university town is performed and discussed in this

work, showing the potential use of the game model in practice. However, the case was oversim-

plified. For example, the actual number of the activities was much larger than considered in

the study; the determination of the connectivity among the activities was quite arbitrary; the

assignment of the contact values is lack of a general rationale; etc. These are all serious issues

yet to be addressed in future research. Nonetheless, based on this work, with a reasonable esti-

mate on these parameters, the model is expected to be applicable to real world distancing prob-

lems and to provide an effective analytical tool for the investigation and implementation of

social distancing.

Methods

Analysis general

The game model for social distancing discussed in this paper belongs to a special class of

games called evolutionary games or population games [19, 20]. Assume there is a set of n activ-

ities V = {1, . . ., n} for a given population. Let x = (x1, . . ., xn)T be the strategy of an individual,

with xi being the frequency of the individual to participate in activity i,
Pn

i¼1
xi ¼ 1. Let y =

(y1, . . ., yn)T be the strategy of the population, with yi being the average frequency of the popu-

lation to participate in activity i,
Pn

i¼1
yi ¼ 1. Assume each activity is assigned with a contact

value αi for activity i. Then, in activity i, the individual has an xi chance to meet a probable

population fraction yi, and be able to make xi yi αi of social contacts. In addition, if activity j is

connected with activity i, i.e., the individuals in activity i can also have social contacts with

those in activity j, then, in activity i, the individual has an xi chance to also meet a probable

population fraction yj, and be able to make xi yj(αi + αj)/2 of social contacts. Here, the contact

value for the interactions between the individuals in activities i and j is assumed to be the aver-

age of the two corresponding contact values αi and αj.
Let A = {Ai,j: i, j = 1, . . ., n} be the connectivity matrix for the activities, with Ai,i = 1 for all

i = 1, . . ., n, and Ai,j = 1 if activities i and j are connected, and Ai,j = 0 otherwise. Then, in activ-

ity i, the individual can have social contacts xi pi(y), where piðyÞ ¼
Pn

j¼1
Ai;jyjðai þ ajÞ=2. Let

Aα = {Ai,j(αi + αj)/2: i, j = 1, . . ., n}. Then, Aα is a weighted connectivity matrix, and Aα = (AW
+ WA)/2, where W is a diagonal matrix with α = (α1, . . ., αn)T as the diagonal vector. It follows

that in all n activities, the individual can have social contacts
Pn

i¼1
xipiðyÞ ¼

Pn
i¼1

xi

Pn
j¼1

Ai;jyjðai þ ajÞ=2 ¼
Pn

i;j¼1
xiAa

i;jyj ¼ xTAay. The last formula shows

a clear dependency of the social contacts of the individual on the strategy x of the individual

and strategy y of the population. Therefore, the social contacts of an individual of strategy x in

a population of strategy y can be defined as a function π(x, y) = xTAαy.
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Assume that the game is played out by every individual against the population in order to

minimize his/her social contacts. Then, given a population of strategy y, each individual tries

to find a strategy x to minimize π(x, y). Once a decision is made, y is also changed, and a new

decision is again required, and the game continues. In the end, a strategy x� is hopefully found

that is optimal for everyone, when the population strategy also becomes x�, and the game

reaches an equilibrium, i.e., a strategy x� is found such that

pðx�; x�Þ � pðx; x�Þ; for all x 2 S

where S ¼ fx 2 Rn :
Pn

i¼1
xi ¼ 1; xi � 0; i ¼ 1; . . . ; ng is the set of all possible strategies.

A strategy x� at equilibrium for the distancing game, called a Nash equilibrium, represents

a distancing strategy for the given activities. A sharp distinction among the activities based on

this strategy is x�i > 0 for i in a subset V� of V, but x�i ¼ 0 for all the others. This means that the

individuals will only participate in the activities in V� while avoiding all the others. Based on

the evolutionary game theory, at equilibrium, all pi(x�) for i such that x�i > 0 should be equal

to the same value, say λ�, and all pi(x�) for i such that x�i ¼ 0 should be greater than or equal to

λ�. These conditions are necessary and also sufficient for x� to be an equilibrium strategy, as

given in the following theorem.

Theorem 1. Let V = {1, . . ., n} be the set of activities for a given population. Let Aα be the
weighted connectivity matrix of the activities. Then, a strategy x� 2 S is a Nash equilibrium of
the social distancing game if and only if there is a scalar λ� such that pi(x�) = λ� for all i such that
x�i > 0 and pi(x�)� λ� for all i such that x�i ¼ 0, where piðx�Þ ¼

Pn
j¼1

Aa
i;jx
�
j . [19, 20, 65]

Analysis 1: Maximal independent sets of activities

If all the activities are separated, the connectivity matrix Aα is simply a diagonal matrix with α
as the diagonal vector. Assume all activities are selected. Then, pi(x�) = λ�, i.e, aix�i ¼ l

�
for all

i = 1, . . ., n. It follows that 1/λ� = 1/α1 + � � � + 1/αn and x�i ¼ l
�
=ai, and x� is an optimal strategy

by Theorem 1. Note that there is no way to select only a subset of activities, for pi(x�) = 0< λ�

for any activity i not selected, violating the inequality conditions stated in Theorem 1.

If the activities do have some dependencies but there is a maximal independent set of activi-

ties V�, an optimal strategy x� can be determined with x�i > 0 for all i in V� and x�i ¼ 0 for all i
not in V�. Let pi(x�) = λ� for all i in V�. Then, aix�i ¼ l

�
for all i in V�. It follows that 1/λ� =

∑i2V� 1/αi, and x�i ¼ l
�
=ai for all i in V�. Assume that pi(x�)� λ� for all i not in V�. Then, x� is

an optimal strategy by Theorem 1.

Analysis 2: Maximal dependent sets of activities

In general, if there is a maximal independent set of activity groups V�, with each group being a

regular set of activities, an optimal strategy x� can be determined with x�i > 0 for all i in V� and

x�i ¼ 0 for all i not in V�. A regular group of activities is a set of activities, each having the same

degree of connectivity, i.e, connecting with the same number of other activities in the group. A

maximal strong matching of activities is a maximal independent set of activity groups, with

each group being a regular set of two activities of degree 1. The following theorem gives a

description for the optimal strategy on a maximal independent set of regular groups of

activities.

Theorem 2. Let V� be a maximal independent set of regular activity groups, V�i , i = 1, . . ., m.

Assume that each activity in V�i connects with other ri activities in V�i and all the activities in V�i
are given the same contact value αi. Let x�j > 0 for all j in V� such that

P
j2V�i

x�j ¼ l
�mi=ai=ðri þ

PLOS ONE Social distancing is a social dilemma game

PLOS ONE | https://doi.org/10.1371/journal.pone.0255543 August 2, 2021 19 / 26

https://doi.org/10.1371/journal.pone.0255543


1Þ for all i = 1, . . ., m, and x�j ¼ 0 for all j not in V�, where 1=l
�
¼
Pm

i¼1
mi=ai=ðri þ 1Þ and

mi ¼ jV�i j, i = 1, . . ., m. Then, if pj(x�)� λ� for all j not in V�, x� is an optimal strategy.

Proof. For all j not in V�, set x�j ¼ 0. For all j in V�, let pj(x�) = λ� for some λ�. Then, add all

the equations for j in V�i to obtain aiðri þ 1Þ
P

j2V�i
x�j ¼ l

�mi. It follows that
P

j2V�i
x�j ¼

l
�mi=ai=ðri þ 1Þ for all V�i . Add the latter equations again for all V�i . Then,

1=l
�
¼
Pm

i¼1
mi=ai=ðri þ 1Þ. If pj(x�)� λ� for all j not in V�, x� is an optimal strategy by Theo-

rem 1.

Analysis 3: Strategies for multi-populations

Consider M subpopulations, P1, . . ., PM, with M corresponding subsets of activities, H1, . . .,

HM. Let H = {1, . . ., n} be the set of all the activities. Assume that [M
k¼1

Hk ¼ H, and for each k,

Hk \ Hl 6¼ F for some l 6¼ k. Let x(k) be the strategy vector for Pk with xðkÞi � 0 for all i 2 Hk and

xðkÞi ¼ 0 for all i =2 Hk,
Pn

i¼1
xðkÞi ¼ 1. Let V� be a maximal independent set of regular activity

groups, V�i , jV�i j ¼ mi, i = 1, . . ., m. Assume that each activity in V�i connects with other ri
activities in V�i and all the activities in V�i are given the same contact value αi. In addition, each

activity group V�i is assumed to belong to one or more activity groups Hk and belong to each

entirely. Then, with a proof similar to that for Theorem 2, it is easy to verify that a strategy set

{x
�(1), . . ., x

�(M)} is optimal if x�ð1Þj ¼ . . . ¼ x�ðMÞj ¼ 0 for all j not in V�, and
P

j2V�i

PM
k¼1

x�ðkÞj ¼

l
�mi=ai=ðri þ 1Þ for all V�i � V�, and if pj(z)� λ� for all j not in V�, where z ¼

PM
k¼1

x�ðkÞ, and

1=l
�
¼ ð
Pm

i¼1
mi=ai=ðri þ 1ÞÞ=M.

Simulation general

The dynamic behaviors of population games have been modeled by using replicator equations

[19, 20, 42, 43]. For a distancing game, the same principle applies by considering the popula-

tion strategy yi as a probable population distribution in activity i. Let p = (p1, . . ., pn)T be a vec-

tor of contact functions. Then, piðyÞ ¼
Pn

j¼1
Aa

i;jyj represents the amount of social contacts one

receives from full participation in activity i, while yTpðyÞ ¼
Pn

i¼1
yipiðyÞ represents the average

social contacts one receives with strategy y, and a system of replicator equations for social dis-

tancing can be written in the following form:

_yi ¼ yiðyTpðyÞ � piðyÞÞ; i ¼ 1; . . . ; n;

meaning that the changing rate of each population fraction yi in activity i is proportional to the

difference between the average social contact yTp(y) of the population and the maximum social

contact pi(y) of the individual in activity i: If pi(y) is lower than yTp(y), yi increases, and other-

wise, it decreases. Based on the evolutionary game theory, the equilibrium strategy for the dis-

tancing game should always be a fixed point or equilibrium solution of the above system [19,

20].

The simulation in this work is not done by tracking the solution curves of the replicator

equations. Instead, it is implemented more like an agent-based model, with every individual in

the population playing the game and making responses as the population evolves to an equilib-

rium state. However, the rationale behind the decision makings of the individuals is still con-

sistent with the general principle of the replicator equations: In every generation, every

individual decides to make some changes on his/her strategies. For each activity i, if pi(y) is

lower than yTp(y), yi needs to be increased and therefore, if the individual frequency xi is

smaller than the population frequency yi, xi is increased to yi as an individual contribution; if xi
is larger than yi, xi is still increased but not as much, only by half of the difference of xi − yi or 1
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− xi whichever is smaller. On the other hand, if pi(y) is higher than yTp(y), yi needs to be

decreased and therefore, if the individual frequency xi is larger than the population frequency

yi, xi is decreased to yi as an individual cooperation; if xi is smaller than yi, xi is still deceased

but again not as much, only by half of the difference of yi − xi or xi − 0 whichever is smaller.

There is no guarantee that such a simulation procedure can truly reveal the dynamic behaviors

of the distancing game, but it seems to be more intuitive and realistic, and follows whatever

the individuals would or should do when it comes to social distancing. In any case, based on

all the test results, the simulation procedure has performed well, produced expected dynamic

behaviors, and converged to the equilibrium strategies as predicted by the distancing games as

well as the replicator equations.

Simulation 1: Behaviors with independent sets of activities

A population of m individuals are considered with n independent activities. A contact value is

assigned to each activity i with αi� 1, i = 1, . . ., n. Since all the activities are independent, Aα is

just a diagonal matrix with α = (α1, . . ., αn)T as the diagonal vector. The simulation is run for K
generations. At each generation, a strategy change on x is made for every individual once, fol-

lowed by an update on the strategy y of the population. The change for the frequency xi on

activity i is based on the difference between the maximum possible contacts one can make in

activity i and the average contacts of the population, i.e., between pi(y) = αi yi and yTpðyÞ ¼
Pn

i¼1
aiy2

i . In the end of the generation, the root-mean-square-deviation σ (RMSD) of the strat-

egy x of each individual deviated from the population strategy y is calculated, where

s2 ¼
Pn

i¼1
ðxi � yiÞ

2
. The RMSD of the individual strategy is then averaged over all the indi-

viduals. The simulation is run for 10 times, with 10 different sets of randomly generated initial

strategies for all the individuals.

Simulation 2: Behaviors with dependent sets of activities

A population of m individuals are considered with n dependent activities. A contact value is

assigned to each activity with αi� 1, i = 1, . . ., n. The weighted connectivity matrix Aα = (AW
+ WA)/2, where W is a diagonal matrix with α = (α1, . . ., αn)T as the diagonal vector, and A is

the connectivity matrix of the activities, Ai,i = 1 for all i = 1, . . ., n, and Ai,j = 1 if activities i and

j, i 6¼ j, are connected and Ai,j = 0 otherwise. The simulation is run for K generations. At each

generation, a strategy change on x is made for every individual once, followed by an update on

the strategy y of the population. The change for the frequency xi on activity i is based on the

difference between the maximum possible contacts one can make in activity i and the average

contacts of the population, i.e., between piðyÞ ¼
Pn

j¼1
Aa

i;jyj and yTpðyÞ ¼
Pn

i;j¼1
Aa

i;jyiyj. In the

end of the generation, the root-mean-square-deviation σ (RMSD) of the strategy x of each

individual deviated from the population strategy y is calculated, where s2 ¼
Pn

i¼1
ðxi � yiÞ

2
.

The RMSD of the individual strategy is then averaged over all the individuals. The simulation

is run for 10 times, with 10 different sets of randomly generated initial strategies for all the

individuals.

Simulation 3: Behaviors of multi-populations

A population of m individuals is divided into M subpopulations, P1, . . ., PM, with a subset Hk

of activities associated with Pk. Let H = {1, . . ., n} be the set of all the activities. Assume

[M
k¼1

Hk ¼ H, and for each k, Hk \ Hl 6¼ F for some l. Let x(k) be the strategy vector for an indi-

vidual in Pk. Then, xðkÞi � 0 for all i 2Hk, and xðkÞi ¼ 0 for all i =2Hk,
Pn

i¼1
xðkÞi ¼ 1. The simula-

tion is run for K generations. At each generation, a strategy change is made on x(k) once for
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every individual in Pk. An update on the corresponding population strategy, y(k) for Pk, is fol-

lowed. The change for the frequency xðkÞi on activity i for the individual in Pk when i 2 Hk is

based on the difference between the maximum possible contacts one can make in activity i and

the average contacts of Pk, i.e., between piðzÞ ¼
Pn

i¼1
Aa

i;jzj and ½yðkÞ�TpðzÞ ¼
Pn

i;j¼1
Aa

i;jy
ðkÞ
i zj,

where z ¼
PM

k¼1
yðkÞ. In the end of the generation, the root-mean-square-deviation σ(k)

(RMSD) of the strategy x(k) of each individual in Pk deviated from the corresponding subpopu-

lation strategy y(k) is calculated, where ½sðkÞ�
2
¼
Pn

i¼1
ðxðkÞi � yðkÞi Þ

2
. The RMSD of the individual

strategy is then averaged over all the individuals in the corresponding subpopulation. The sim-

ulation is run for 10 times, with 10 different sets of randomly generated initial strategies for all

the individuals.
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