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a b s t r a c t

Orchidaceae are one of the largest families of angiosperms in terms of species richness. In the last decade,
numerous studies have delved into reconstructing the phylogenetic framework of Orchidaceae,
leveraging data from plastid, mitochondrial and nuclear sources. These studies have provided new in-
sights into the systematics, diversification and biogeography of Orchidaceae, establishing a robust
foundation for future research. Nevertheless, pronounced controversies persist regarding the precise
placement of certain lineages within these phylogenetic frameworks. To address these discrepancies and
deepen our understanding of the phylogenetic structure of Orchidaceae, we provide a comprehensive
overview and analysis of phylogenetic studies focusing on contentious groups within Orchidaceae since
2015, delving into discussions on the underlying reasons for observed topological conflicts. We also
provide a novel phylogenetic framework at the subtribal level. Furthermore, we examine the tempo and
mode underlying orchid species diversity from the perspective of historical biogeography, highlighting
factors contributing to extensive speciation. Ultimately, we delineate avenues for future research aimed
at enhancing our understanding of Orchidaceae phylogeny and diversity.

Copyright © 2024 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Orchidaceae are among the largest families of angiosperms,
encompassing over 700 genera and more than 30,000 species
worldwide according to the Catalogue of Life (https://www.
catalogueoflife.org/). The family is distributed across all conti-
nents except Antarctica and in extremely dry deserts (Fig. 1;
Pridgeon et al., 2005; Chase et al., 2003; POWO, 2024). Many
orchid taxa, such as Cattleya, Cymbidium, Dendrobium, and
Paphiopedilum, play significant roles in horticulture, while spe-
cies, such as Cremastra appendicula, Dendrobium officinale, and
Gastrodia elata, possess vital medicinal value. All orchid species
are listed in the Convention on International Trade in Endan-
gered Species of Wild Fauna and Flora (CITES) appendices I or II
(https://cites.org/), highlighting their conservation importance.
Orchidaceae exhibit a variety of habits and ecological
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preferences, including terrestrial, epiphytic, climbing, and
mycoheterotrophic lifestyles. This diverse array of characteris-
tics represents an ideal case for the study of evolution and
diversification (Jersakova et al., 2006; Lin et al., 2015; Kikuchi
et al., 2020; Thompson et al., 2023).

Historically, orchid taxonomy has heavily relied on the
morphology of reproductive organs, such as pollinia and the lip
(Dressler, 1993). Numerous frameworks have attempted to trace
orchid evolution from the “three fertile anthers group” of aposta-
sioids (Apostasia and Neuwiedia) to the “two fertile anthers group”
of cypripedioids (Cypripedium, Mexipedium, Paphiopedilum, Phrag-
mipedium, and Selenipedium), followed by the monandrous orchids
(Epidendroideae, Orchidoideae, and Spiranthoideae) (Pfitzer, 1887;
Schlecter, 1926; Dressler and Dodson, 1960; Dressler, 1993). How-
ever, significant discrepancies often exist among various classifi-
cation systems proposed on the basis of morphology (Pridgeon
et al., 2005; Chase et al., 2003, 2015).

Molecular systematics has greatly revised the phylogenetic
placement of many tribes and genera within Orchidaceae (Judd
et al., 1993; Kocyan et al., 2004; Sosa, 2008; Raskoti et al.,
2016). Phylogenetic analysis based on rbcL gene sequences
Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This
censes/by-nc-nd/4.0/).
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Fig. 1. Species richness of georeferenced records in Orchidaceae, based on data of GBIF (GBIF.org, 2024).
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subdivide Orchidaceae into five major clades, subsequently
recognized as five subfamilies in the widely-accepted classifica-
tion system: Apostasioideae, Vanilloideae, Cypripedioideae,
Orchidoideae, and Epidendroideae (Cameron et al., 1999; Chase
et al., 2003). Further advances in sequencing technology have
resulted in a comprehensive phylogenetic framework for
Orchidaceae (Chase et al., 2015), although unresolved issues
persist, particularly concerning relationships within and between
tribes such as Cymbidieae, Epidendreae, and Vandeae (Deng
et al., 2015; Li et al., 2016, 2019b; Serna-Sanchez et al., 2021;
Perez-Escobar et al., 2024; Zhang et al., 2023). Genomic data have
generated numerous phylogenetic hypotheses and biogeograph-
ical inferences for Orchidaceae (Deng et al., 2015; Freudenstein
and Chase, 2015; Givnish et al., 2015; Fernandez et al., 2019; Li
et al., 2019b; Perez-Escobar et al., 2021, 2024; Serna-Sanchez
et al., 2021; Zhang et al., 2023a, 2024), many of which have
significantly clarified phylogenetic relationships within Orchid-
aceae. However, many previously recognized genera have been
found to be non-monophyletic, leading to proposals for alterna-
tive generic delimitations (Zhang et al., 2015).

Orchid phylogenetics has also benefited from high-throughput
sequencing technologies. Today, plant phylogenetic investigations
routinely utilize organellar (plastid and mitochondria) genomic
data and transcriptomic data (Wickett et al., 2014; Johnson et al.,
2016; Bazinet et al., 2017; Unruh et al., 2018; Jin et al., 2021; Xia
et al., 2022; Liu et al., 2023; Perez-Escobar et al., 2024; Zhang
et al., 2023). For example, studies have shown that mitochondrial
data is suitable for populations with diverse evolutionary rates, i.e.,
orchids (Ran et al., 2018; Guo et al., 2020; Stull et al., 2020).
Although there are concerns that the transcriptomes of different
tissues raise biases in phylogenetic inference, recent studies have
demonstrated that lineage transcriptomics can be effectively
employed for phylogenetic analysis as the results are only slightly
affected by tissue type (Cheon et al., 2020).

The mechanisms underlying orchid diversity have long fasci-
nated researchers. Previous work has examined net diversification
rates and biogeography of genera, subtribes, and tribes within
Ochidaceae (Micheneau et al., 2008; Guo et al., 2012; Givnish et al.,
2016; Xiang et al., 2016; Perez-Escobar et al., 2017; Gamisch et al.,
2021; Lai et al., 2021). Comprehensive studies of the biogeog-
raphy and diversification of Orchidaceae require a robust phylo-
genetic framework, preferably resolved at the species level.
However, efforts to resolve a phylogenetic framework of Ochida-
ceae at the genus level have been stymied by the pan-global dis-
tribution and exceptional diversity of the family (Givnish et al.,
2016; Perez-Escobar et al., 2024).
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In this review, we present a comprehensive synthesis of recent
advances in phylogenetics, biogeography, and the mechanisms of
diversification in Orchidaceae.
2. Phylogenetic research

Phylogenetic analyses based on plastid and nuclear genomes
have advanced our understanding of orchid relationships at the
subfamilial and tribal levels (Table 1; Unruh et al., 2018; Fernandez
et al., 2019; Li et al., 2019b; Guo et al., 2020; Serna-Sanchez et al.,
2021). Phylogenetic reconstructions based on chloroplast coding
sequences (ptCDS) and mitochondrial coding sequences (mtCDS)
have contrasted with previous studies based on morphology
(Dressler and Dodson, 1960; Vermeulen, 1966; Garay, 1972;
Dressler, 1981; Burns-Balogh and Funk, 1986; Berg et al., 2000;
Chase et al., 2003), repositioning subfamilies Vanilloideae and
Cypripedioideae (Li et al., 2019b), as well as designating Thaieae as
a sister to the higher epidendroids (Xiang et al., 2012). However,
recent research has also noted that phylogenetic trees based on
nuclear data differ from those based on plastid data (Perez-Escobar
et al., 2021).

Transcriptomic data have emerged as a source of information
that can confirm fundamental phylogenetic relationships in
Orchidaceae, but perhaps more importantly elucidate the evolution
of traits within the family (Cheon et al., 2020; Guo et al., 2020,
2023). For example, studies have used transcription data of 315
single-copy orthologous genes to confirm that Ochidaceae consists
of five subfamilies (Deng et al., 2015). In addition, transcriptomes
have been used to explore the phylogenetic relationships of Euro-
pean Ophrys and Gymnadenia, focusing on investigating the
deceptive pollination mechanism in orchids (Fernandez et al.,
2019). Transcriptomic data has also been used to reconstruct
orchid phylogeny in a study on the evolution of epiphytism across
610 orchid species (Zhang et al., 2023).

Here we provide a classification Orchidaceae based on research
since 2015 (Fig. 2). At the family level, the classification aligns with
the main taxonomic systems of Orchidaceae as outlined by Chase
et al. (2015). No revisions have been made to subfamilies Aposta-
sioideae, Vanilloideae, or Cypripedioideae. However, the placement
of several groups remains controversial, e.g., Orchidinae, Good-
yerinae, Angraecinae, Aeridinae, and Podochileae. Thus, in the
following two sections, we focus only on progress in understanding
subfamilies, tribes, and subtribes of Orchidoideae and Epiden-
droideae. Our summary highlights several controversial taxa pro-
posed by Chase et al. (2015), and includes updated information on



Table 1
Phylogenetic analysis of Orchidaceae since 2015 and the statistics from Chase et al. (2015).

References Subfamilies Tribes Subtribes Species/genera Datasets

Givnish et al. (2015) 5 18 22 39/39 75 plastid genes
Freudenstein and Chase (2015) 5 16 26 312/312 2 nuclear markers, 5 plastid markers, and 3 mitochondrial markers
Givnish et al. (2018) 5 14 27 54/43 77 plastid genes
Li et al. (2019b) 5 19 18 76/66 76 plastid genes and 38 mitochondrial genes
Kim et al. (2020) 5 15 13 124/61 79 plastid genes
Serna-Sanchez et al. (2021) 5 18 28 264/117 78 plastid genes
Perez-Escobar et al. (2021) 5 16 28 75/68 292 low-copy nuclear genes and 78 plastid genes
Wong and Peakall (2022) 5 13 21 69/48 633 nuclear genes
Zhang et al. (2023a) 5 19 42 437/297 1450 low-copy nuclear genes
Perez-Escobar et al. (2024) 5 17 40 448/285 610 to 1195 nuclear genes

Fig. 2. A ‘classification summary’ tree for subfamilies, tribes, and subtribes of
Orchidaceae. Dashed lines denote taxa with ambiguous phylogenetic positions. Con-
flicts of phylogenetic position in different datasets are marked in red color.
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orchids genera and species numbers for referring the species
number provided by POWO (2024; Appendix A).
2.1. Phylogeny within subfamily Orchidoideae

Orchidoideae comprises four tribes: Codonorchideae, Cranichi-
deae, Diurideae, and Orchideae (Chase et al., 2015). Although few
studies have been able to adequately sample Codonorchideae
427
(Codonorchis as the only constituent genus), we tentatively place
the tribe as a sister group to the remaining tribes (Fig. 2) (Singer
et al., 2018; Serna-Sanchez et al., 2021; Zhang et al., 2023).

The tribe Orchideae has been divided into four sub-tribes:
Brownleeinae, Disinae, Coryciinae, and Orchidinae (Fig. 2).
Brownleeinae is recognized as the first-diverging group, however,
the relationships among Disinae, Coryciinae, and Orchidinae
remain unclear due to limited sampling of Coryciinae (Serna-
Sanchez et al., 2021; Zhang et al., 2023). In their phylogenetic
analysis of the subtribe Orchidinae, Jin et al. (2017) recognized five
genera in the Ponerorhchis alliance d Hemipilia, Ponerorchis s.l.,
Sirindhornia, Shizhenia and Tsaiorchis d and proposed conserving
one, Satyrium. Here, we recognize Ponerorchis s.l. and Hemipilia.
Herminium as currently delimited is expanded to include Andro-
corys, Bhutanthera, Frigidorchis and Porolabium (Raskoti et al., 2016;
Raskoti, 2017). The generic delimitation of Habenaria, one of the
largest genera in the Orchidaceae, remains intensely debated
(Kurzweil and Weber, 1992; Batista et al., 2013; Chase et al., 2015;
Jin et al., 2017; Ngugi et al., 2020). Limited sampling has stymied
efforts to resolve this issue.

In tribe Cranichideae, subtribes Chloraeinae, Pterostylidinae
and Goodyerinae have been confidently placed as successive sister
groups to the branch consisting of the remaining Cranichideae
(Zhang et al., 2023; Perez-Escobar et al., 2024). All genera within
subtribe Goodyerinae have been proposed to be monophyletic (Tu
et al., 2021), except for Goodyera and Hetaeria (Chen et al., 2019;
Smidt et al., 2021). Kim and Kim (2022) used 79 plastid-coding
genes to determine the phylogenetic relationships of 18 Good-
yera species. However, the phylogenetic relationships of Goodyera
and Hetaeria remain unresolved (Chase et al., 2015; Hu et al.,
2016; Chen et al., 2019; Smidt et al., 2021; Tu et al., 2021; Kim
and Kim, 2022). Other subtribes within Cranichideae have also
been limited by inadequate sampling, e.g., Galeottiellinae, Man-
niellinae, and Discyphinae. This lack of sampling has made it
challenging to verify the precise phylogenetic positions of these
subtribes and has caused ambiguity in understanding Spi-
ranthinae, Cranichidinae and Discyphinae (Zhang et al., 2023;
Perez-Escobar et al., 2024).

In tribe Diurideae, the branches of subtribes Caladeniinae and
Acianthinae have been confidently identified as sister groups to
each other. Prasophyllinae is the sister group to the clade
comprising Caladeniinae and Acianthinae (Perez-Escobar et al.,
2021; Zhang et al., 2023). The previously undetermined positions
of Megastylidinae, Thelymitrinae, and Drakaeinae have been
resolved, and Thelymitrinae was revealed as sister to
(Megastylidinae þ Drakaeinae) (Perez-Escobar et al., 2021; Serna-
Sanchez et al., 2021; Zhang et al., 2023). Diuridinae and Cryptos-
tylidinae are successive sisters to the branch of
Thelymitrinae þ (Megastylidinae þ Drakaeinae) (Wong and
Peakall, 2022; Zhang et al., 2023). To date, subtribe Rhizanthelli-
nae has been inadequately sampled.
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2.2. Phylogeny within subfamily Epidendroideae

There are 16 tribes in subfamily Epidendroideae: Neottieae,
Sobralieae, Triphoreae, Xerorchideae, Wullschlaegelieae, Gastro-
dieae, Nervilieae, Tropidieae, Thaieae, Arethuseae, Malaxideae,
Podochileae, Collabieae, Vandeae, Cymbidieae and Epidendreae.
Neottieae, Sobralieaeþ Triphoreae, and Nervilieaeþ Tropidieae are
successive sisters to the remaining Epidendroideae (Givnish et al.,
2015; Zhang et al., 2023). Freudenstein and Chase (2015) sug-
gested that Tropidieae is the sister group of
Wullschlaegelieae þ Xerorchideae, and the Neottieae, Sobralieae,
Tropidieae þ (Wullschlaegelieae þ Xerorchideae), Triphoreae, and
Nervilieae are successive sisters to the higher epidendroids. Givnish
et al. (2018) placed Neottieae, Sobralieae, and
Nervilieaeþ Tropidieae as successive sister groups of the remaining
Epidendroideae. With the same placements of Neottieae and
Sobralieae, Li et al. (2019b) positioned Nervilieae as the sister group
to Gastrodieae usingmitochondrial genes. Neottieae and Sobralieae
are successive sisters to the remaining Epidendroideae (Kim et al.,
2020; Perez-Escobar et al., 2024; Zhang et al., 2023), Gastrodieae
and Nervilieae stably placed as sister groups to each other (Kim
et al., 2020; Wong and Peakall, 2022; Perez-Escobar et al., 2024;
Zhang et al., 2023), hence the interrelationships of these tribes are
stable. The positions of Triphoreae, Tropidieae, and Thaieae have
been debated due to sampling and datasets. It seems that Tri-
phoreae, Gastrodieae þ Nervilieae, Tropidieae, and Thaieae suc-
cessively diverged along the backbone of Orchidaceae (Kim et al.,
2020; Wong and Peakall, 2022; Zhang et al., 2023; Perez-Escobar
et al., 2024). The phylogenetic positions of Xerorchideae and
Wullschlaegelieae, which both consist of difficult-to-sample single
genera, are highly controversial (Freudenstein and Chase, 2015;
Perez-Escobar et al., 2021, 2024; Zhang et al., 2023).

In the higher epidendroids, the relative phylogenetic positions
of Arethuseae, Malaxideae, Podochileae, and Collabieae have been
resolved (Givnish et al., 2015; Li et al., 2019b; Zhang et al., 2023;
Perez-Escobar et al., 2024), although two alternative topologies
for Vandeae, Epidendreae, and Cymbidieae have emerged, even
between similar datasets. One topology, based on mitochondrial
and nuclear data, is Vandeae þ (Epidendreae þ Cymbidieae)
(Freudenstein and Chase, 2015; Li et al., 2019b; Perez-Escobar
et al., 2021; Perez-Escobar et al., 2024; Zhang et al., 2023). An
alternative topology based on transcriptome data or plastid
genome data, and nuclear markers is Epidendreae þ
(Vandeae þ Cymbidieae) (Givnish et al., 2015, 2018; Serna-
Sanchez et al., 2021; Wong and Peakall, 2022). Both topologies
are strongly supported. In this paper, we adopt the
Epidendreae þ (Vandeae þ Cymbidieae) topology (Chase et al.,
2015; Fig. 2). One reason why the relationships between these
three tribes have been contentious is the complexity of phylo-
genetic relationships between subtribes within each tribe (Li
et al., 2019b; Zhang et al., 2023; Perez-Escobar et al., 2024).

Generic delimitation has varied considerably in the tribe Are-
thuseae. Studies have determined that Arethuseae is a polyphyletic
group (Goldman et al., 2001; Gravendeel et al., 2001; Chase et al.,
2015, 2021; Huang et al., 2022a). Chase et al. (2021) combined 14
genera within the tribe (e.g., Dendrochilum, Pholidota and Bulleyia
and others) into Coelogyne. Huang et al. (2022a) proposed a new
genus,Mengzia to accommodate Bletilla sinensis based onmolecular
systematics and morphological characters. Nevertheless, owing to
the low bootstrap values of some phylogenetic studies, relation-
ships of the subtribe Coelogyninae require further investigation
(Huang et al., 2022a).

The tribe Malaxideae consists of a large number of species and
complex diversity of taxa. Although the phylogenetic relationships
within the tribe have yet to be completely determined (Cameron,
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2005; Chase et al., 2015), recent studies have made critical re-
visions. For example, Geiger (2023) placed the Hippeophyllum as
the synonym of Oberonia. In addition, Li et al. (2020) proposed a
new genus Blepharoglossum, subdivided from Liparis, based on
morphological characters and molecular analysis.

In tribe Podochileae, Eria s.l. has been subdivided into 21 genera,
including two newly recognized genera (Chase et al., 2015; Ng et al.,
2018). In tribe Collabieae, morphological evidence and phyloge-
netic relationships within Calanthe have been used to expand Cal-
anthe to include the species of Cephalantheropsis, Gastrorchis,
Phaius, Cyanorkis and Gastorkis (Chase et al., 2020a, 2020b). This
expansion has subsequently been supported by Zhou et al. (2023).

The relative positions of most of subtribes in Cymbidieae,
such as Catasetinae, Cyrtopodiinae, Eulophiinae, Zygopetalinae,
Eriopsidinae, and Maxillariinae, remain ambiguous.
Freudenstein and Chase (2015) indicated that Eulophiinae is not
monophyletic and that Catasetinae is nested within Eulophiinae.
Givnish et al. (2015) suggested that Eulophiinae is sister to
group containing Catasetinae and Cyrtopodiinae (Perez-Escobar
et al., 2021; Zhang et al., 2023), whereas Serna-Sanchez et al.
(2021) proposed that Cyrtopodiinae diverged earlier than
Eulophiinae and Cyrtopodiinae was embedded within Cata-
setinae with low support. Molecular data support the placement
of Eulophiinae as the common sister group of
Catasetinae þ Cyrtopodiinae (Perez-Escobar et al., 2024).

Previous studies suggested that subtribes Zygopetalinae,
Eriopsidinae, and Maxillariinae diverged successively, and Max-
illariinae diverged early in the Cymbidieae (Freudenstein and
Chase, 2015; Givnish et al., 2015; Zhang et al., 2023). However,
other studies suggested Zygopetalinae diverged early in the Cym-
bidieae (Perez-Escobar et al., 2021), and that Eriopsidinae is a
younger group (Perez-Escobar et al., 2024). The phylogenetic
placements of Cymbidiinae, Stanhopeinae, Coeliopsidinae, and
Oncidiinae are not in dispute (Fig. 2).

Angraecinae and Aeridinae are monophyletic in Vandeae,
respectively, but the delimitation of Adrorhizinae and Poly-
stachyinae is currently speculative (Chase et al., 2015; Perez-
Escobar et al., 2021; Serna-Sanchez et al., 2021; Zhang et al.,
2023). Perez-Escobar et al. (2021) showed Polystachyinae
diverged earlier, followed by Adrorhizinae (Freudenstein and
Chase, 2015; Perez-Escobar et al., 2024). Zhang et al. (2023)
showed that the Adrorhizinae diverged earlier, followed by Poly-
stachyinae. In subtribe Aeridinae, Liu et al. (2020) proposed to
combine Vandopsis, Diploprora, Cleisostoma and Schoenorchis into
the Cleisostoma, and combine Trichoglottis into the Gastrochilus, and
establish a new genus, Cymbilabia. In subtribe Angraecinae,
Andriananjamanantsoa et al. (2016) suggested that Oeoniella and
Sobennikoffia are nested within Angraecum, however, there are
many structural differences among them; therefore, we followed
the earlier classification.

For tribe Epidendreae, the phylogenetic placements are less
disputed, with the exception of Ponerinae, Laeliinae, and Pleuro-
thallidinae. Pleurothallidinae is sister group to Laeliinae and
Ponerinae with high support (Zhang et al., 2023; Perez-Escobar
et al., 2024). Agrostophyllinae, Calypsoinae, and Bletiinae succes-
sively diverged in Epidendreae with high support (Fig. 2) (Perez-
Escobar et al., 2021, 2024; Serna-Sanchez et al., 2021; Zhang
et al., 2023). Chysis is temporarily treated as a member of Bletii-
nae, and Coelia was incorporated into Calypsoinae (Chase et al.,
2015). However, more recently, Coelia and Chysis were recognized
as distinct clades with relatively strong support (Zhang et al., 2023).
Risleya falls within Calypsoinae on the basis of ptCDS and mtCDS,
instead of within Collabieae (Li et al., 2019b). We recommend
broader sampling in the future to providemore robust phylogenetic
outcomes.
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3. Historical biogeography and molecular dating

The earliest divergence of monocots occurred between 185 and
139Mya (million years ago, hereafter Mya; Kumar et al., 2017, 2022;
Givnish et al., 2018; Li et al., 2019a; Shi et al., 2022). The Order
Asparagales originated between 140 and 125 Mya (Givnish et al.,
2018; Li et al., 2019a; Kumar et al., 2022). One early-diverging
group within Asparagales included the Orchidaceae (Kumar et al.,
2022). However, macrofossils of orchids remain scarce. Four fos-
sils have been discovered, including two pollen fossils of Epiden-
droideae and subtribe Goodyerinae, as well as two leaf fossils of
Earina and Dendrobium (Ramirez et al., 2007; Conran et al., 2009;
Poinar and Rasmussen, 2017). The paucity of orchid fossils poses a
further challenge to the study of temporal orchid evolution
following the reconstruction of a phylogenetic framework (Givnish
et al., 2016; Li et al., 2019b; Zhang et al., 2023).

Ramirez et al. (2007) inferred orchids originated during the
Early Cretaceous between 76 and 84 Mya. More recent studies es-
timate that Orchidaceae originated between 76 and 132 Mya
(Givnish et al., 2018; Li et al., 2019a; Shi et al., 2022; Zhang et al.,
2023; Perez-Escobar et al., 2024). Although estimates of the age
of Orchidaceae vary, these studies all suggest that orchids origi-
nated in the Cretaceous period and first diverged in the Late
Cretaceous (Givnish et al., 2015, 2018; Serna-Sanchez et al., 2021),
which supports the “ancient origin” of orchids. Some researchers
have suggested that rapid diversification of orchids did not occur
until the Cenozoic era (Givnish et al., 2015, 2018; Li et al., 2019b;
Zhang et al., 2023). For example, the higher epidendroids have been
shown to have diverged rapidly between 37.9 Mya and 30.8 Mya
(Givnish et al., 2015). Zhang et al. (2023) indicated that most genera
and species of orchids had recent origins less than 20 Mya. An
additional study indicated that the majority of present-day orchid
species diversity originated over the last 5 million years (Perez-
Escobar et al., 2024).

Givnish et al. (2016) has proposed that the ancestor of extant
orchids appeared in Australia ca. 120e102 Mya, and that repeated
long- and short-distance dispersals have occurred throughout
orchid history. Specifically, from Australia, Orchids spread to the
Neotropics via Antarctica ca. 90 Mya, when vanilloid orchids
diverged from themost recent common ancestor of orchids. Within
vanilloids, both the Pogonieae and Vanilleae underwent long-
distance dispersals, crossing the Pacific Ocean to New Caledonia
between 64 and 59 Mya (Givnish et al., 2016). This hypothesis
proposes that ancestors of Epidendroideae arose in the Neotropics
ca. 64 Mya and the lower epidendroids then spread to Eurasia and
Southeast Asia (Givnish et al., 2016).

An alternative biogeographical history of Orchidaceae proposes
that Orchidaceae originated in Laurasia (Perez-Escobar et al., 2024).
This proposal suggests that the most rapidly speciating lineages of
Orchidaceae occurred in south-eastern Central America, e.g.,
Epidendrum and Maxillaria. In this scenario, Orchidoideae origi-
nated between 55 and 40 Mya as these plants dispersed from the
Neotropics þ Nearctic þ Antarctic. Epidendroids were present in
the Palearctic around 55e50 Mya, suggesting their earlier origin
(Perez-Escobar et al., 2024).

The discrepancies between these two hypotheses can be
attributed to two primary factors. One factor is that these studies
used different datasets to construct phylogenetic frameworks of
Orchidaceae. The phylogenetic framework of Australian origin of
orchids is based on chloroplast genes (Givnish et al. (2016), whereas
the phylogenetic framework of the Laurasia origin is based on a
nuclear dataset (Perez-Escobar et al., 2024). Evolutionary rates
between organellar data and nuclear data are known to differ,
potentially introducing biases into phylogenetic frameworks
(Cheon et al., 2020; Guo et al., 2023). Another factor is the scope
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and density of the sampling, which affects the accuracy of
geographical history estimations (Givnish et al., 2016; Perez-
Escobar et al., 2024).

Despite discrepancies between these two potential theories,
both agree that the Neotropics (e.g., the Andes) have had profound
effects on the spread and diversification of orchids (Givnish et al.,
2016; Zizka, 2019; Perez-Escobar et al., 2022, 2024). Studies have
shown that the Andes serve as both a key source and sink of
Neotropical plant diversity (Perez-Escobar et al., 2022) and that the
diversification of numerous Neotropical lineages has been signifi-
cantly influenced by Andean uplift events (Perez-Escobar et al.,
2017, 2022; Vitt et al., 2023). These uplift events rapidly alter
topography within tropical climates, typically creating multiple
microhabitats, potentially enhancing speciation rates and allowing
islands within tropical mainland regions to foster higher evolu-
tionary distinctness (Perez-Escobar et al., 2024; Vitt et al., 2023).

Phylogenetic studies of Orchidaceae genera have focused on
biodiversity hotspots, elucidating orchid dispersal patterns and
addressing challenges posed by species-rich taxa, e.g., Bulbo-
phyllum, Dendrobium, and Paphiopedilum (Micheneau et al., 2008;
Guo et al., 2012; Xiang et al., 2016; Perez-Escobar et al., 2017;
Fernandez et al., 2019; Gamisch et al., 2021; Lai et al., 2021; Liu
et al., 2023; Zhang et al., 2024). Xiang et al. (2016) indicated that
Asian Dendrobium has been present in mainland Asia since the
Oligocene and then spread to Malesia. Gamisch et al. (2021) pro-
posed that Bulbophyllum dispersed from the Asian-Pacific region
into Madagascar via a single long-distance dispersal event at ca.
12.9e7.0 Mya, or probably originated from similar habitats in the
Asian-Pacific region. Tsai et al. (2020) explained that the taxa of
Paphiopedilum in the Sundaland andWallacea underwent repeated
migration and isolation events between mainland south-eastern
Asia and the Sunda Super Islands.

Several studies have examined how the biogeography of orchids
in biodiversity hotspots is affected by mountain uplift events, e.g.,
Calochilus (Nargar et al., 2018), Cymbidium (Chen et al., 2024),
Cypripedium (Liu et al., 2021; Szlachetko et al., 2021), Holcoglossum
(Zhao et al., 2020), Ornithocephalus (Smidt et al., 2018), Pabstiella
(Morales et al., 2021), Pleione (Wu et al., 2023). These studies have
demonstrated that orchids have undergone multiple diversification
and dispersal events (Lai et al., 2021; Thompson et al., 2023).

4. Diversification of Orchidaceae

Orchidaceae species, particularly their flowers and habitats,
exhibit highly idiosyncratic features that appear to drive diversity.
These features, which are either unique to this family or seldom
found in other angiosperms, include epiphytism, CAM photosyn-
thesis, and pollinia (Givnish et al., 2015; Zhang et al., 2023).

Epiphytic plants are integral components of numerous ecosys-
tems, contributing greatly to global plant diversity (Ricogray and
Thien, 1989; Spicer and Woods, 2022). Epiphytic orchid genera
have been shown to contain more species than terrestrial genera
(Gravendeel et al., 2004), and have higher speciation and extinction
rates than do terrestrial orchids (Givnish et al., 2016; Zhang et al.,
2023). The evolution of epiphytism in orchids coincides with
rapid expansions of modern rainforests, posing the possibility that
rainforests facilitated the transition from terrestrial to epiphytic
habits (Zhang et al., 2023). Closed-canopy rainforest ecosystems
provide ample ecological niches, e.g., trunks and branches of trees,
with varying levels of sunlight andmoisture (Nakamura et al., 2017;
Spicer and Woods, 2022) that likely fostered epiphyte diversifica-
tion. In addition, the higher fungal abundance and diversity that
often characterize such habitats may have further contributed to
high rates of epiphytic orchid diversity (Vance and Nadkarni, 1990;
Cardelus et al., 2009).
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More than 95% of epiphytic orchids descended from a single
ancestor that became epiphytic at approximately 48.1e55.8 Mya,
near the Paleocene-Eocene Thermal Maximum (Zhang et al., 2023).
However, epiphytism may have evolved independently across
several genera of Orchidaceae, underscoring its intricate evolu-
tionary trajectory (Givnish et al., 2016; Zhang et al., 2023). Notably,
epiphytic species are rare in Cypripedioideae and Orchidoideae.
Epiphytes are entirely absent in Apostasioideae, and true epiphytes
are absent in Vanilloideae, although there is debate regarding
whether climbers such as most Vanilla species (Vanilloideae)
should be considered epiphytes or hemiepiphytic (Chen et al.,
2009; De Lima and Franco Pinheiro Moreira, 2022). Epiphytism
was acquired no later than 35 Mya in Epidendroideae, but was
subsequently lost at least three times (Givnish et al., 2015; Zhang
et al., 2023). In Arethuseae, there were at least two independent
acquisitions of epiphytism in Coelogyninae (Zhang et al., 2023).

Crassulacean acid metabolism (CAM) is a photosynthetic
pathway that has evolved convergently in multiple plant lineages,
especially in species inhabiting water-limited environments, such
as hot semi-arid areas and tropical forests (Winter et al., 2021; Xue
et al., 2023). Recent studies have indicated that the majority of
epiphyte plants use the CAM pathway (Holtum et al., 2007),
including bromeliads (Hermida-Carrera et al., 2020), pteridophytes
(Silvera et al., 2010), and orchid species (Givnish et al., 2015; Zou
et al., 2018; Gamisch et al., 2021; Hu et al., 2022; Zhang et al.,
2022b). CAM photosynthesis, which has evolved at least four
times within Orchidaceae, is thought to be a key innovation that
has driven orchid diversity. Specifically, CAM photosynthesis has
been linked to increased speciation and extinction in the higher
epidendroids (Givnish et al., 2015, 2016).

Even in high-rainfall forests, CAM photosynthesis may confer
selective advantages to tropical epiphytes without significantly
affecting species diversity or diversification rates (Pierce et al.,
2002; Gravendeel et al., 2004; Bone et al., 2015; Gamisch et al.,
2021). Some researchers have argued CAM photosynthesis may
lead to evolutionary dead-ends, noting that in certain lineages CAM
photosynthesis may initially provide a short-term evolutionary
advantage via speciation, but subsequently decrease net diversifi-
cation rates (Igic and Busch, 2013; Gamisch et al., 2015; Hu et al.,
2022). Although support for this hypothesis remains ambiguous,
it challenges our prevailing assumption that CAM photosynthesis is
a key innovation that drives diversity in tropical orchids.

Another innovation that has driven orchid diversity is pollinia.
Pollinia is a single, cohesive mass of pollen, typically contained in a
waxy body or other discrete compact unit found in members of
Orchidaceae and Asclepiadaceae (Newton, 1984; Dressler, 1993;
Johnson and Edwards, 2000). Pollinia evolved at least 64 Mya in
Orchidoideae and Epidendroideae, transitioning from powdery to
waxy. Research indicates that the evolution of pollinia significantly
accelerated both speciation rates and extinction rates in Orchid-
aceae (Givnish et al., 2016).

The rate of diversification and morphological evolution varies in
different groups of orchids. For example, previous research has
identified increased rates of diversification in the orchidoids,
including a second increase in the higher epidendroids, a further
nested increase in Laeliinae þ Pleurothallidinae þ Ponerinae, and
decreased rates of diversification in Agrostophyllinae þ
Calypsoinae (Givnish et al., 2015). An additional study has detected
five increases and one decrease in diversification rate within Epi-
dendroideae (Zhang et al., 2023). Although one increase in diver-
sification is consistent between these studies, they differ on
whether higher epidendroid diversification decreases at the node.
Inconsistencies between these studies may be related to sampling
sizes and the results of divergence time estimations (Zhang et al.,
2023).
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It is crucial to acknowledge that shifts in net diversification are
scale-dependent. Taxon sampling in these studies is well suited to
detect diversification shifts at tribal or subtribal levels within or-
chids, but may fail to identify such shifts within genera (Givnish
et al., 2016; Zhang et al., 2023). A similar situation can be
observed in families such as Asteraceae, Poaceae, and other families
with a large number of species (Soreng et al., 2017; Zhang et al.,
2021a; Huang et al., 2022b). Increased sampling density with a
greater number of species is essential for a deeper understanding of
the parallel evolution of life habits of orchids, notably at the species
level (Givnish et al., 2016; Xiang et al., 2016; Guo et al., 2023). Given
the challenges associated with sampling, it is critical to separately
list species enrichment groups and hotspots for discussions on the
mechanisms of orchid diversity. In recent years, numerous studies
have contributed valuable information at the genus level, such as
Angraecum (Andriananjamanantsoa et al., 2016), Bulbophyllum
(Gamisch and Comes, 2019), Cymbidium (Chen et al., 2024), Hol-
coglossum (Zhao et al., 2020), Pleione (Wu et al., 2023), which to
some extent support conclusions regarding the diversification of
Orchidaceae.

5. Phylogenetic discrepancies between different datasets

Mounting genomic data has empowered scientists with an un-
precedented ability to unravel the phylogenetic relationships be-
tween orchids and examine the mechanisms underlying their
massive diversity. Each study consistently supports a similar
backbone phylogeny for Orchidaceae, although some notable “hard
conflicts” regarding specific groups persist. These topological dis-
crepancies may arise from factors such as taxon sampling, idio-
syncratic rates of evolution in some groups, or characteristics
inherent to the datasets, such as variations in substitution rate. The
major contributing factor to these conflicts in topologies lies in the
conflicting sequencing techniques employed, comprising nuclear
data, chloroplast data, and mitochondrial data (Niu et al., 2017; Li
et al., 2019b; Serna-Sanchez et al., 2021; Zhang et al., 2023). Sig-
nificant conflicts between plastid and mitochondrial trees can be
attributed to several factors. These include the different substitu-
tion rates of these two genomes, intragenomic substitution rate
heterogeneity of plastid substitution rate, and RNA editing in
mitochondrial genomes (Petersen et al., 2006; Wicke et al., 2016;
Edera et al., 2018; Dong et al., 2023). While RNA editing in mito-
chondrial genes is a common occurrence and has been considered a
potential issue in phylogenetic reconstructions, extensive studies
have concluded that it has no direct effect on reconstructions of
phylogeny. Instead, RNA editing may increase variability at edited
sites (Petersen et al., 2006; Qiu et al., 2010; Liu et al., 2014; Bell
et al., 2020; Dong et al., 2023). Incongruities can also arise from
sampling paralogous sequences and highly divergent substitution
rates, which can result in long-branch attraction and biased results
(Petersen et al., 2006; Edera et al., 2018).

Compared to plastid genes, mitochondrial genes are character-
ized by lower substitution rates and homoplasy levels, which
render them particularly valuable for reconstructing relationships
of fast-evolving or ancient groups (e.g., Nymphaeales; Qiu et al.,
2010; Richardson et al., 2013; Zhu et al., 2014; Qu et al., 2022).

Transcriptome and plastid sequences produce fewer conflicts,
with strong support across trees with multiple species and super-
matrix analyses (Givnish et al., 2015; Kim et al., 2020; Perez-
Escobar et al., 2024; Zhang et al., 2023). Discordances between
plastid and nuclear gene trees at a few nodes highlight the
complexity of plant genome evolution, including events such as
hybridization, polyploidization, impulses of rapid speciation, and
extinction (Guo et al., 2023). Importantly, transcriptomes are
mainly a collection of coding gene sequences, therefore, the
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informativeness of these sequences may be limited in rapidly
differentiating species (Cheon et al., 2020; Guo et al., 2023;
Leebens-Mack et al., 2019).

To date, 16 different complete orchid genomes have been pub-
lished (Zhang et al., 2017, 2022a; Xu et al., 2021). These genomes
indicate the orchids have undergone two whole-genome duplica-
tion (WGD) events, the most recent of which was shared by all
orchids, whereas the older event was shared by most monocots
(Van de Peer et al., 2017; Zhang et al., 2017). Changes within MADS-
box gene classes, identified through these genomes, might have
contributed to variations in labellum and pollinium morphology
and accessory structures (Chao et al., 2018; Ai et al., 2021; Sun et al.,
2021; Zhang et al., 2021b, 2021c).

These studies have elaborated on the evolutionary trajectory
and divergence of orchids, leading to applications in various fields.
For instance, they have facilitated the use of orchids in traditional
Chinese medicine, and explored the heterotrophy of mycohetero-
trophy and parasitic plants, or provided molecular evidence for
partial endoreplication (Yuan et al., 2018; Hu et al., 2022; Jiang
et al., 2022a, 2022b; Li et al., 2022).

6. Prospects

Genomic data and technological advances have profoundly
enhanced our understanding of the phylogenetic relationships of
orchids and facilitated more robust and reliable reconstructions of
phylogenies. The phylogenetic relationships within taxa such as
Xerorchideae and Wullschlaegelieae are expected to be resolved
soon through comprehensive sampling. Furthermore, the applica-
tion of single-molecular sequencing and other advanced method-
ologies promise to unlock additional layers of complexity and
refinement, albeit with accompanying challenges, thus propelling
Orchidaceae phylogenetic reconstructions to unprecedented sci-
entific rigor and depth.

Important challenges need to be addressed before a clearer view
of orchid phylogeny emerges. Several groups exhibit discordant
positions across different datasets (e.g., Epidendreae, Vandeae, and
Cymbidieae). Discrepancies in the phylogenetic positions of these
groups will not be resolved by updating sequencing methods.
Instead, the particularity of these taxa requires a more suitable
approach and consideration of alternative interpretations of
evolutionary relationships. Furthermore, despite notable progress,
challenges still persist in topological analyses of clades where
generic delimitation remains speculative (Aeridinae, Angraecinae,
Arethuseae, Bletiinae, Goodyerinae, Malaxideae, Orchidinae, and
Podochileae). The uneven sampling of biodiversity hotspots within
Orchidaceae can be attributed to the extreme diversity and global
distribution, coupled with practical limitations. This imbalance in
sampling has led to gaps in the phylogenetic framework of
Orchidaceae, particularly in regions with rich plant diversification.
However, this scenario also underscores the immense potential
value of orchids, highlighting the importance of further exploration
and study, to better understand and harness the diverse and
valuable traits within this botanical treasure trove.

The current state of phylogenomic inferences in Orchidaceae
reveals a notable bias towards regions such as Europe, North
America, and East Asia, with limited results from regions such as
tropical Asia, Africa, and Latin America (Guo et al., 2023). This
deficiency is particularly pronounced in narrow-ranged species in
tropical countries, despite high species richness (Rudbeck et al.,
2022). Additionally, many studies exhibit a restricted geographic
and taxonomic scope, which can lead to excessive imbalanced
sampling. Perez-Escobar et al. (2024) presented a novel hypothesis
of biogeography of orchid plants, proving that taxon sampling
depth and outgroups influence results. There is thus an urgent need
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for global collaboration to undertake large-scale phylogenomic
work in other plant lineages, as in the case of Fabaceae (Azani et al.,
2017), Lamiaceae (Boachon et al., 2018), and Poaceae (Soreng et al.,
2017, 2022); and Carex (Roalson et al., 2021). Achieving large-scale
sampling efforts are vital to enhance scientific comprehension of
lineage diversification with a large number of species, leveraging
existing genomic data and increasing the scope of cooperation in
research (Givnish et al., 2016; Hendriks et al., 2023; Thompson
et al., 2023).
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