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Psychophysical approaches that allow us to estimate
how perceived stimulus intensity is linked to physical
intensity are import tools for studying nonlinear
transformations of visual signals within different visual
pathways. Here, we investigated how stimulus contrast
is encoded in achromatic and chromatic pathways using
simple grating stimuli. We compared two experimental
approaches to this question: contrast discrimination
(increment detection thresholds measured on contrast
pedestals) and the maximum likelihood difference
scaling (MLDS) approach introduced by Maloney and
Yang (2003). The results of both experiments are
expressed using simple models that include a transducer
function mapping physical contrast to an internal signal
the observer uses in making judgments, and an estimate
of the variability of this representation (internal
“noise”). We found that the transducers derived from
both experiments have a similar form, but occupy
different ranges of physical contrast in different stimulus
conditions, reflecting difference in contrast sensitivity.
This is consistent with past discrimination results, and in
the difference-scaling case provides new evidence
supporting the idea that suprathreshold chromatic and
achromatic contrast are processed similarly, once
differences in contrast sensitivity are taken into account.
Model estimates of internal noise were higher in the
difference-scaling experiment than the discrimination
experiment, a finding we attribute to a difference in task
complexity. Finally, we fit an alternative version of the
MLDS model in which internal noise increased with
response level. This alternative was no better at
predicting holdout data in a cross-validation analysis
than the original constant-variance model.

Introduction

How the perceived intensity of a physical stimulus
relates to its physical intensity is a foundational question

in psychophysics that remains incompletely answered.
This study aimed to compare two experimental
approaches that have been applied to this problem:
contrast discrimination and contrast difference
scaling. The fact that physical and perceived intensity
are not related by a simple linear correspondence
follows from Weber’s law: as intensity increases, larger
differences in intensity are required for two stimuli to
be perceptually discriminable. Fechner pointed out
that this pattern would be expected if a compressive
nonlinear transformation existed between the physical
and perceptual: when higher-intensity inputs are
compressed to a smaller range of outputs, the same
physical increment has smaller perceptual consequence
(Fechner et al., 1860/1966).

Many subsequent works in the domain of contrast
discrimination have expanded on this idea. (Foley,
1994; Georgeson & Meese, 2004; Georgeson & Meese,
2006; Goris, Wagemans, & Wichmann, 2008; Goris,
Putzeys, Wagemans, & Wichmann, 2013; Klein, 2006;
Kontsevich, Chen, & Tyler, 2002; Legge & Foley,
1980; Meese, 2004; Olzak & Thomas, 2003; Pelli,
1985) Several of these studies developed full models
of contrast processing to explain observed threshold-
versus-contrast functions. The central feature of such
models is a nonlinear transducer: a mapping from
physical stimulus intensity to an internal signal that the
observer uses in making discrimination judgments. To
link these models quantitatively to behavioral data (e.g.,
proportion correct in a forced-choice discrimination
task) an additional model component is required
which describes the variability of the internal contrast
representation. This variability or “noise” is often
modeled as a normally-distributed stochastic signal
added to the transducer output. In this case standard
signal-detection theory methods can be used to predict
the probability of an observer giving one response over
another.
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The “compressive transducer plus noise” model
can be applied to any discrimination data showing a
steady increase in threshold with contrast. It leaves
open the question, however, of how well a transducer
modeled on threshold-level performance matches our
subjective percept of stimulus intensity. This question
is complicated by the fact that the form of the modeled
transducer depends on the model’s assumptions
regarding internal variability. As pointed out by
multiple studies, because performance depends on a
signal-to-noise ratio, it is impossible in most cases to use
a simple discrimination experiment to jointly constrain
the form of a transducer (the signal) and the form of
the noise (but see Solomon, 2007; see Georgeson &
Meese, 2006 for review and discussion) (Georgeson &
Meese, 2006; Kingdom, 2016; Klein, 2006; Kontsevich
et al., 2002). If instead of assuming constant-variance
noise, noise is modeled as level-dependent, increasing
with stimulus contrast as single neurons in visual cortex
are known to do (Goris, Movshon, J. A., & Simoncelli,
2014), an equally good model fit could be obtained with
a transducer having a very different shape (Kingdom,
2016; Kontsevich et al., 2002).

Perceptual scaling experiments treat the question
of linking perceived to physical contrast with a
different approach (Aguilar, Wichmann, & Maertens,
2017; Brown, Lindsey, & Guckes, 2011; Maloney &
Yang, 2003; Whittle, 1992). In a contrast-difference
scaling experiment, observers are presented with
pairs of stimuli differing in contrast and judge how
different the two appear from each other (Knoblauch,
Marsh-Armstrong, & Werner, 2020; Kulikowski,
1976; Whittle, 1992). Unlike contrast discrimination,
this is a subjective judgement comparing stimuli
with very different intensity that are therefore highly
discriminable. This judgment can be framed in a
two-alternative forced-choice experiment by presenting
two contrast intervals and asking the observer which
pair creates a larger difference in apparent contrast.
The maximum-likelihood difference scaling (MLDS)
framework introduced by Maloney and Yang (2003)
pairs this experimental approach with a model of how
observers judge these differences. Like the models
described above, this includes a transducer that maps
physical contrast to perceived contrast, and an estimate
of the variability in the transducer output. Again using
a signal-detection model, this offers a prediction of the
probability that the observer will judge one interval
larger than the other. Comparing this prediction to
observed responses allows a maximum-likelihood
fitting procedure to find the best model transducer and
modeled internal noise to match the observed responses
(Knoblauch & Maloney, 2008; Maloney & Knoblauch,
2020; Maloney & Yang, 2003). The MLDS approach
is not limited to the contrast dimension and has also
been used successfully to derive perceptual scales of hue
(Maloney & Yang, 2003), test theories of categorical
color judgement (Brown et al., 2011), evaluate perceived

surface gloss (Obein, Knoblauch, & Viéot, 2004), as
well as other uses (Aguilar et al., 2017; Knoblauch et
al., 2020).

The discrimination and difference-scaling approaches
use very different experimental methods but offer
models of the same form: a nonlinear mapping
from physical contrast to an internal contrast
representation, and an estimate of the variability of
that representation. Here, we ask how well the results
of the two methods agree if they are tested in parallel
under the same conditions. With a similar goal, Devinck
and Knoblauch (2012) reported good agreement
between discrimination and MLDS results in their
study of the watercolor effect. Aguilar, Wichmann,
and Maertens (2017) also investigated this relationship
for selected stimulus conditions, measuring perceived
tilt from texture, and found good agreement between
directly-measured tilt-discrimination thresholds and
those derived from an MLDS approach. A more
detailed description of the MLDS method can be
found in Maloney and Knoblauch (2020), together
with a review of its applications and a discussion of its
relationship to previous scaling methods.

In this study we investigated the nonlinear
mapping from physical to perceptual using a more
low-level stimulus attribute: the contrast of simple
grating stimuli. We measured contrast discrimination
thresholds over a range of “pedestal” contrasts. With
the same stimuli we performed a difference-scaling
task and fit the results with the MLDS model. We
used five different grating stimuli to determine whether
this mapping differs across different conditions and
to determine whether the agreement between the two
methods depends on the stimuli selected. Stimuli were
designed to bias the responses toward different neural
pathways and included both chromatic and achromatic
contrast. The two chromatic stimuli activated both
the L/M and S cone opponent pathways, respectively
(Mullen & Losada, 1994). Three achromatic stimuli
were chosen with spatiotemporal parameters designed
to span the range of preferential activation between
magnocellular and parvocellular visual pathways.
For all stimulus types, the modeled transducers
derived from both experiments showed the expected
compressive shape, but the modeled internal noise level
was significantly higher in the MLDS experiment,
across all observers, revealing an important difference
between the approaches.

Methods

Participants

Four participants (three female) served as observers:
one author and three individuals unaware of the
hypothesis being tested. All procedures were approved
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Figure 1. (A) Two gratings were shown to the left and right of
fixation for one second with constant spatial phase. The
observer reported the left or right grating as higher in contrast.
(deg: degree, SF: spatial frequency.) (B) Three gratings, identical
to those used in the first experiment, were presented at the
same eccentricity. The observer reported which test (left or
right) differed more from the reference (top) in apparent
contrast.

by McGill University’s Institutional Review Board and
conformed to the Declaration of Helsinki.

Visual stimuli

Horizontal sinusoidal gratings were presented in
4° circular apertures, the outer 1° smoothed with a
raised-cosine profile. In the discrimination experiment,
two stimuli were presented 3° to the left and right of
a central fixation point. In the scaling experiment,
three stimuli were presented at 3° eccentricity with
polar-angle spacing of 120°, the reference stimulus
above fixation and the two test stimuli in the lower
left and right fields (see Figure 1). Spatial phase was
constant, identical for all stimuli within a trial, and

randomized across trials. Stimuli were presented for one
second with contrast ramped up and down over the first
and last 200 ms by a raised cosine. In one achromatic
condition and both chromatic conditions, gratings
had a spatial frequency of 1 cycle/degree (c/deg) with
no temporal modulation. Two additional achromatic
conditions were tested with more extreme temporal or
spatial frequencies in order to activate magnocellular
and parvocellular pathways preferentially. The
“M-biased” stimulus was lower in spatial frequency
(SF = 0.5 c/deg) and contrast modulated at 8 Hz. The
“P-biased” stimulus was higher in SF (8 c/deg) with no
contrast modulation.

Stimulus chromaticity was defined within a cone
contrast space as a modulation through the origin in a
direction defined by a triplet { l, m, s }, representing the
fractional change in excitation of the long-, medium-,
and short-wavelength-sensitive cones. Stimulus contrast
was defined as the depth of this modulation, expressed
as a vector length c = √

l2 + m2 + s2. This definition
differs from Michleson contrast; a full-contrast
achromatic grating modulates each cone by 100%
(lms = [1,1,1]) and so has a total cone contrast of√
3 ∼= 173%. Isoluminant chromatic stimuli were

designed to isolate post-receptoral L/M and S/L+M
cone opponent responses, referred to as red-green and
blue-yellow, respectively. For the blue-yellow, this is
simply an S-cone-isolating stimulus, as S cones are not
thought to contribute significantly to luminance or
red-green mechanisms (Mullen & Losada, 1994). The
red-green (RG) stimuli were defined as lms = [1, −a,
(1−a)/2], with the value of a chosen separately for each
observer to make the stimulus isoluminant, based on
a preliminary minimum-motion experiment (Anstis &
Cavanagh, 1983). The S-cone component ensured that
S − (L+M)/2 = 0, nominally eliminating any
blue-yellow signal from this stimulus.

Contrast discrimination

We measured thresholds for detecting contrast
increments added to a range of baseline “pedestal”
contrasts. Two gratings were displayed to the left and
right of fixation, one at the pedestal contrast level, the
other with a variable contrast increment added to the
pedestal (Figure 1). The observer’s task was to report
the higher contrast in a forced-choice procedure via
a button press. Increment size was varied using an
adaptive staircase. A block of trials tested one stimulus
type and one pedestal contrast. Within a block, two
independent staircases (2-down/1-up) were randomly
interleaved. The block terminated after five reversals
of both staircases. Each condition was repeated in six
to ten blocks and the resulting 200 to 500 trials were
pooled and fit with a Weibull psychometric function
to extract a threshold, defined as the contrast yielding
75% correct responses. In a bootstrap procedure we fit
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each threshold 100 times to different randomly-sampled
subsets containing 90% of the trials. We report the
median of these bootstrap distributions. Pedestal
contrasts were defined as multiples of detection
threshold, separately for each observer. We tested 10
to 12 pedestal levels with octave spacing, ranging from
0.125× threshold to the highest contrast possible,
which varied across conditions (typically 32× or 64×
threshold). In some cases, half-octave spacing was used
to give greater precision.

Descriptive model of discrimination data

We fit each dipper function with a descriptive model,
in which threshold is constant at low contrast ( t = t0),
follows a power law at high contrast (t = αcp), and
smoothly transitions between these regimes following a
sigmoidal weighting function:

t = (1 − w) t0 + (w)αcp

w = cβ

c0β + cβ

This transition is not meant to describe a visual
mechanism but allows us to isolate the suprathreshold
range of interest by defining a “transition contrast” (ct)
where the shift to power-law behavior is 95% complete
(w = 0.95).

Contrast-difference scaling

Our second experiment used the MLDS framework
introduced by Maloney & Yang (2003), in which a
model is used to derive a perceptual scale representing
a physical stimulus attribute. The experiment itself did
not require observers to scale stimuli. A two-alternative
forced-choice procedure was used to measure perceived
differences in contrast between pairs of gratings.
Observers were presented with three stimuli: a reference
and two tests, one lower in contrast than the reference
and the other higher (Figure 1). Observers were asked
to compare both tests to the reference in terms of
apparent contrast and report which contrast difference
was larger, test 1 versus the reference or test 2 versus
the reference. Reference and test contrasts were chosen
from a fixed set of six to ten values, which had a spacing
of approximately four threshold units as determined
from our discrimination experiment (detailed in
Results). Referring to contrasts by their place in this
series, we constructed a list of all possible ordered
triplets for which the contrast differences of the two
tests from the reference differed by no more than one
contrast step. For example, the third, fifth, and eighth
contrasts comprised a valid triplet, {3,5,8}, but {3,5,9}
was excluded, because the size of the first interval was
two contrast steps, and the second interval was four.

This led to 14 triplets in the minimum case of six
tested contrasts, and 52 triplets when 10 contrasts were
tested. As quantified below, this set included triplets
that presented the subject with both easy and difficult
judgments. Within a block, all triplets were presented in
random order, with the position of the lower-contrast
test (left or right) also randomized. The observer’s task
was to report the left or right interval as the larger
contrast difference. Each triplet was presented 20 times
or more across multiple blocks. Thus between 280 and
1040 trials contributed each model fit described below,
depending on the number of contrasts that could be
tested.

MLDS fit to scaling data

We fit our contrast scaling data with the signal
detection model introduced by Maloney and Yang
(2003). Details of the model and fitting procedure have
been presented elsewhere (Knoblauch & Maloney,
2008; Maloney & Knoblauch, 2020; Maloney & Yang,
2003). The model describes a transducer, ψ(c), which
maps a physical stimulus property (in this case contrast,
c) to an internal representation that the observer uses
in making judgments, commonly referred to as a
perceptual scale. In the case of our triplet experiment,
we assume that each of the three grating contrasts c1,
c2, c3, elicit internal responses ψ(c1), ψ(c2), ψ(c3),
and the observer selects the second contrast interval as
larger if ψ(c3) − ψ(c2) is greater than ψ(c2) − ψ(c1).
These internal responses are assumed to be stochastic,
and the resulting uncertainty in the decision is modeled
by assuming constant-variance Gaussian noise added
to each value. The probability that the second interval is
chosen is then derived from the signal detection model
described by Maloney and Yang (2003). The model
is parameterized by assigning a discrete ψ value to
each of the contrasts tested. We normalize the scale
by assigning ψ values of 0 and 1 to the lowest and
highest tested contrasts, and fit an estimate of internal
noise (σ ) as an additional parameter, leading to n-1
free parameters for n tested contrasts. Parameters
were adjusted in an optimization routine (fmincon in
MATLAB) to maximize the total likelihood of the data
set over all trials. In a bootstrap procedure we repeated
the fit 100 times in each condition using a randomly
sampled 90% of trials. We report the median ψ and σ
values obtained from bootstrap distributions.

Apparatus

Stimuli were generated in MATLAB (The
MathWorks, Natick, MA, USA) using the
Psychophysics Toolbox (Brainard, 1997; Kleiner,
Brainard, & Pelli, 2007; Pelli & Vision, 1997) and
displayed on a CRT monitor (DiamondPro 2070;
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Mitsubishi Electric Corporation, Tokyo, Japan) with
a mean luminance of 50 cd/m2 and chromaticity xy
= {0.31, 0.33}. Observers viewed the screen from a
distance of 80 cm, at which it subtended 22° × 27°
of visual angle. A Bits# visual stimulus generator
(Cambridge Research Systems, Kent, UK) was used
to control the amplitude of each color channel with
14-bit precision. Nonlinearity in the output of each
color channel was characterized using a SpectroCAL
spectroradiometer (Cambridge Research Systems)
and corrected in software. The measured emission
spectra of the monitor phosphors were integrated with
psychophysically derived cone fundamentals (Smith
& Pokorny, 1975) to create a linear transformation
specifying the RGB values required to elicit any target
triplet of cone excitation levels.

Results

Contrast discrimination

Contrast-increment thresholds measured over a
range of pedestal contrast levels showed a typical
“dipper” shape (Legge & Foley, 1980), as shown
in Figure 2 for one subject and one condition
(achromatic). Thresholds were reduced on low-contrast
pedestals and at higher contrast increased steadily
with pedestal level. The high-contrast arm of the
dipper, linear on this double-logarithmic plot, suggests
a compressive power-law relationship: thresholds
increased proportionally to pedestal contrast raised
to an exponent less than 1 (0.64 in this case). We
used a descriptive model (see Methods) to define this
power-law range of contrasts and estimate the exponent
(slope) separately for each dipper function.

In this study we are interested only in suprathreshold
contrast processing so we restrict further analysis
to this power-law range of contrasts. In this range,
discrimination can be described with a simple
transducer model: a mapping from physical contrast
to an internal response the observer uses in making
judgments (Foley, 1994). We assume a pair of stimuli
are discriminable when they elicit responses differing
by some criterion amount. A compressive transducer
such as that in Figure 2A has shallower slope at high
contrasts, and a larger difference in physical contrast
is required to achieve the same difference in output
(threshold is higher). This can be formalized using
signal detection theory by assuming that responses are
stochastic. When constant-variance Gaussian noise is
added to the transducer output, the criterion difference
in responses is defined as one standard deviation of the
noise (dʹ = 1).

The transducer output is expressed in units of
noise standard deviations (σ ). The slope of this curve

Figure 2. (A) For one subject and condition (achromatic),
increment detection thresholds are plotted with respect to
pedestal contrast, both in units of total cone contrast (see
Methods). Michelson contrast values are given in parentheses.
The thin curve shows a descriptive model fit which includes a
straight-line section at high contrast, capturing a power-law
relationship (thick line). The vertical tick represents threshold
for detecting the stimulus with no pedestal. (B) A model of a
saturating transducer is derived from the power-law portion of
the dipper function (and valid only in that range). For two
example pedestal levels (blue arrows in A and blue dots in B)
the gray inset panels show that a larger increment is required at
the higher pedestal level to achieve outputs separated by 1
standard deviation of constant-variance noise (dʹ= 1).

is then in units of dʹ per unit contrast, equivalent
to contrast sensitivity (1/threshold). We obtain the
transducer by integrating the inverse of our power-law
model describing threshold, which leads to another
power-law description for the transducer: r = a*cb. For
comparison with our next experiment, it is important
to note that observers are quite good at fine contrast
discrimination. For example, at a pedestal level of 80%
cone contrast (46% Michelson contrast; see Methods),
the increment threshold was 3.6% in this example case,
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Figure 3. Threshold-versus-contrast (dipper) functions are shown for one subject in five different conditions differing in chromaticity
and spatial and temporal frequency. Despite large differences in sensitivity across conditions, dipper functions showed a similar form.
Vertical tick marks on the horizontal axis represent detection thresholds. Thin curves show fits of a descriptive model described in
Methods. Thick black lines highlight the portion of the dipper exhibiting a power-law relationship. The slopes of these lines
(exponents of the power law) are shown in the lower right of each panel.

less than a 0.5% relative increment. This is reflected in
the model as a high signal-to-noise ratio, seen in Figure
2B where the transducer spans a range of 70 σ units.

We repeated the discrimination experiment using
achromatic stimuli with high temporal frequency (TF)
or spatial frequency (SF) content, as well as isoluminant
chromatic stimuli (red-green and blue-yellow; see
Methods for definition). The high-TF stimulus was
presented with low spatial frequency (0.5 c/deg) and
a sinusoidal contrast reversal (flicker) at 8 Hz. The
high-SF stimulus was 8 c/deg with no flicker. Chromatic
stimuli were presented with the same spatiotemporal
structure as our baseline achromatic condition
described first. The high-TF and high-SF conditions
were designed to bias internal responses more
toward magnocellular and parvocellular pathways,
respectively. Figure 3 shows contrast discrimination

results for these five conditions for one observer.
These dipper functions occupy different ranges of
absolute contrast, as expected from known differences
in contrast sensitivity across conditions: Thresholds for
high-spatial-frequency stimuli were elevated; thresholds
for red-green stimuli were significantly lower than all
others (Bird, Henning, & Wichmann, 2002; Mullen,
1985; Mullen & Losada, 1994). The form of the dipper
functions was similar, however, with a “dip” near
detection threshold (marked by a vertical tick in each
plot), and a power-law increase in threshold at higher
contrast, with similar slope across stimuli.

Figure 4 shows dipper functions for all observers
and all conditions, on absolute cone-contrast axes
(top row) and threshold-normalized axes (bottom
row). Normalizing by detection threshold brought
most dipper functions into good alignment, consistent

Figure 4. Threshold versus pedestal contrast is plotted for four observers (columns) with all conditions overlaid. The top row expresses
this in units of absolute cone contrast. In the bottom row both axes are in normalized units derived by dividing contrast by detection
threshold, separately for each condition.
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Figure 5. Power-law exponents derived from discrimination
results (slope of dipper functions) are shown for all stimuli and
all observers. (A) Exponents grouped by stimulus with one point
per observer. (B) The same data as in A but grouped by
observer. Error bars represent 95% confidence intervals from a
bootstrap procedure.

with previous findings (Switkes, Bradley, & DeValois,
1988).

Power-law exponents ranged from 0.5 to 1, but
did not show a clear dependence on stimulus type or
observer, with the possible exception of steeper slopes
for Observer 2 (see Figure 5).

Maximum-likelihood difference scaling (MLDS)

We used the results of our discrimination experiment
to choose a series of suprathreshold contrasts for use
in the MLDS experiment, separately for each subject
and condition. These were approximately equally
spaced perceptually in the range where discrimination
showed power-law behavior. Specifically, starting at
the transition contrast (ct) defined above, we used the
power-law model to estimate the increment threshold at
this pedestal level. We added four times this value to ct
to obtain the second contrast in the series. Using a new
threshold value estimated at this second contrast we

obtained a third value in the same way and repeated this
until we obtained 10 contrasts or reached the maximum
possible contrast. Thus, any two adjacent contrasts
were approximately four threshold units apart. The
spacing of contrasts is an important design question for
MLDS, as it influences how confidently the observer
can make the required judgments. At one extreme, very
difficult judgments would lead to chance performance
across all triplets and provide no information. At the
other extreme, if all judgments were trivially easy, the
model would not be able to estimate internal variability.
To confirm that we fell between these extremes we
computed for each triplet the fraction of trials in which
an observer reported the second interval as larger.
Grouping across all observers and conditions, we
found the distribution of this empirical probability (not
shown) to be quite flat, with 58% of conditions falling
in the bottom and top quartiles (p < .25 or > .75).
Thus there was adequate variability overall, with many
conditions led to highly consistent responses.

The results of the MLDS fit are shown in Figure 6
for Observer 1 in the achromatic condition (as in Figure
2). The free parameters of the model include a scale
value for each tested contrast, with the first and last
fixed at 0 and 1. An additional parameter, σ describes
the standard deviation of constant-variance Gaussian
noise added to each output. For three example
contrasts, Figure 6 shows the modeled distributions
of internal responses, and diagrams how these are
compared to derive a decision variable estimating which
contrast difference is larger.

The model transducer obtained from MDLS in
this case had a compressive shape similar to that
obtained from the discrimination experiment. We
found, however, that the modeled internal noise was
larger for MLDS than for discrimination. To compare
the two experiments, we scaled the discrimination
model to span the same range as the MLDS model. The
first transducer predicts discriminability based on the
difference between two responses, relative to the noise
level σ . It is therefore not affected by an additive offset,
and can also be scaled arbitrarily given that response
amplitude and noise level are scaled identically. We
shifted and scaled the transducer curve to have values
of 0 and 1 at the lowest and highest contrast tested in
the MLDS experiment. The results are shown in Figure
7 for the same example condition as Figure 6. After
scaling, the discrimination model had a σ less than
half that of the MLDS model. Note that the σ values
we report represent the variability of the transducer
output and not that of the decision variable. Given
the noise model used here, differencing two response
variables leads to a distribution with twice the variance
of the inputs. As MLDS relies on a difference of
differences, the decision variable has four times this
variance (see Figure 6), or a standard deviation of 2σ .
For discrimination (comparing just two stimuli) this
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Figure 6. The MLDS model: each contrast level is mapped to an
internal scale value (psi) which is stochastic and normally
distributed with standard deviation sigma. Distributions of psi
elicited by three example contrasts are shown in red green and
blue. Psi values are compared to estimate the sizes of the
contrast intervals A-B and B-C. These intervals are compared to
give a noisy decision variable, with positive values indicating
B-C is larger than A-B. The portion of the distribution above
zero represents the probability that the second interval is
chosen. Psi and sigma values are adjusted to maximize the
likelihood of observed reports given this model prediction.

would be
√
2σ . This difference is potentially related to

a difference between the tasks, as discussed later, but
mathematically it does not affect our fitted σ values,
given the model assumptions.

Transducers derived from both experiments are
shown in Figure 8 for all observers and conditions, in
the same format as Figure 7. Independent of modeled
noise level, we also compared the shape of transducers
using a “compression index,” defined as the level of the

Figure 7. Transducer models derived from contrast
discrimination (gray) and MLDS (black). The discrimination
model was shifted and scaled to match the range of MLDS (0-1).
The internal noise level (sigma) for discrimination, initially fixed
at 1 (see Figure 2) was scaled down by the same factor as the
transducer. The resulting sigma was less than half that derived
from the MLDS model.

normalized curve at the halfway point between lowest
and highest contrast. For a linear curve this would
be 0.5; values greater than 0.5 indicate compressive
nonlinearity. Where the MLDS experiment used an
even number of contrast levels (and so lacked one at
the halfway point) we used linear interpolation for
this analysis. Figure 9 compares the sigma values and
compression indexes between the two experiments, for
each observer and condition.

Modeled internal noise was higher for MLDS
than discrimination in all cases. We did not find a
systematic difference across stimulus conditions in
terms of noise level, transducer shape, or the degree of
agreement between the two experiments. An exception
is found in the high spatial frequency case, where for
two observers the MLDS results show a more linear
transducer compared to that from discrimination
and compared to other conditions. Observer 2 also
showed this effect but to a much smaller extent,
and unfortunately Observer 1 did not complete this
condition. So while this suggests a possibly interesting
effect, we do not have the power to draw a strong
conclusion. In some cases, transducers were more
compressive in the achromatic than chromatic cases,
especially in the low-spatial-frequency flicker condition,
but this was not found consistently across observers.
We did find several clear differences between observers,
independent of stimulus type. While noise estimates
from discrimination were highly consistent across
observers and conditions, those from MLDS were
higher for Observer 4 than other observers across all
stimulus types. The shape of the transducers from
MLDS were consistently more linear for Observer 3
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Figure 8. Model transducers for all observers and conditions, in the same format as Figure 5. Both transducers had a compressive
shape across all stimuli. Modeled internal noise was larger for MLDS than discrimination in all cases. See Figure 9 for comparison
across conditions. Note that Observer 1 did not perform the high-spatial-frequency condition due to high detection threshold.

compared to other observers, and in comparison to that
observer’s transducers from discrimination. Overall,
we found the results of the contrast discrimination
experiment to be more consistent across observers and
stimulus conditions, while MLDS results were more
variable (see rightmost panels of Figure 9).

The range of physical contrasts tested in the scaling
experiment varied widely across stimulus condition,
as each contrast series was tailored to the stimulus
based on discrimination results. To further compare
the shape of model transducers, we expressed them
on a contrast axis normalized to sensitivity, defined
as multiples of detection threshold. Figure 10 replots
the MLDS results both on absolute and normalized
axes. For the first three observers, this normalization
brings the results from all stimuli into alignment,

and highlights the finding that Observer 3 showed
a more linear curve across all stimuli. Observer 4’s
results do not align on normalized axes. The cause of
these individual differences is unclear, but it is possible
that observers adopted different strategies in making
subjective contrast comparisons, and that Observer 4’s
strategy even varied across conditions. This is consistent
with the fact that model estimates of internal noise were
higher and more variable for Observer 4 than others.

Alternative MLDS model with level-dependent
noise

The models used thus far to describe both our
experiments assume constant-variance Gaussian
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Figure 9. Each transducer was described by an internal noise parameter sigma and a compression index, defined as the value of the
curve midway between lowest and highest contrast (0.5: linear, >0.5: compressive). Noise estimates (top row) were higher for MLDS
than discrimination in all cases, with no clear dependence on stimulus type. Values were consistent across subjects and conditions
with the exception of Observer 3, who showed larger sigma values only in the MLDS experiment. Values of the compression index
(bottom row) also showed no clear stimulus dependence but systematic individual differences, with Observer 2 showing more linear
MLDS results compared to discrimination and compared to other observers. The rightmost panels show all observers together to
highlight that discrimination is more consistent than MLDS by both measures. Error bars represent 95% confidence intervals from a
bootstrap procedure.

variability; the noise level does not vary with contrast or
response. There is debate as to whether this noise model
is appropriate for describing perceptual variability
(Georgeson & Meese, 2006; Kingdom, 2016; Klein,
2006; Kontsevich et al., 2002; Solomon, 2007), fueled
in part by the noise properties of visual neurons,
which show level-dependent variability with response
variance increasing with mean response level (Goris et
al., 2014). To address this in the MLDS case, we fit an
alternative model, in which variance increased linearly
with scale value (ψ). This noise model, v = v0 + αψ ,
has two free parameters: the variance at the lowest
contrast tested (v0) and a proportionality constant (α)
controlling the increase in variance with mean level.
These replace the single σ parameter of the original
model, and otherwise the model structure and fitting
procedure are unchanged. We compared this model
to the original using a cross-validation procedure.
Randomly selecting 10% of trials as “holdout” data,
we fit both models to the remaining 90% of the data,
and evaluated the models’ ability to predict the holdout
data by computing the likelihood of the data given
the model parameters. We found that both versions of
the MLDS model predicted holdout data equally well,
as shown in Figure 11. Moreover, the fitted values of
the parameter α were very small (<0.1), compared to
typical Fano factor values of 1 or greater. This was a

consistent result, found even when starting parameters
given to the fitting algorithm were greater than 2, and
suggests that the optimization routine tended toward
the constant-variance case.

Discussion

This study addressed two important questions about
how perceived contrast is linked to physical contrast.
First, we asked whether the internal representation
of contrast differs across the distinct visual pathways
that are found in the human visual system. Second,
when these representations of perceived contrast are
estimated using two different approaches, contrast
discrimination and MLDS, how well do the outcomes
agree?

We performed both the discrimination and
difference-scaling experiments using a range of grating
stimuli designed to activate different visual pathways.
Color vision is thought to rely on three separate
mechanisms that differently combine signals from the
three cone types (Cole, Hine, & McIlhagga, 1993;
Sankeralli & Mullen, 1996; Sankeralli & Mullen, 1997).
The first of these represents luminance by summing
cone inputs; two cone-opponent mechanisms compare
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Figure 10. MLDS results are plotted for each observer and condition, both on absolute contrast axes (left column) and a normalized
axis defined as multiples of detection threshold. For three observers, normalizing by threshold brought MLDS results into alignment.
See Figure 5 for the color code defining stimulus conditions.

inputs from different cone types to signal red versus
green (L-M) and blue versus yellow (S-(L+M)).
When characterized using detection thresholds, these
mechanisms appear to be independent, showing a lack
of subthreshold summation (Mullen & Sankeralli,
1998). Above threshold, these pathways interact in
a variety of ways, including the enhancement of
luminance sensitivity by chromatic contrast, and
masking effects between color channels (Chen, Foley,
& Brainard, 2000; Cole, Stromeyer, & Kronauer,
1990; DeValois & Switkes, 1983; Mullen, Kim, &
Gheiratmand, 2014; Shooner & Mullen, 2020; Switkes
et al., 1988). With these interactions not yet fully

understood, it is of interest to search for any differences
in how chromatic and achromatic contrast are processed
above threshold. In our discrimination experiment we
found that dipper functions for all stimuli had a similar
form, differing only in the range of physical contrast
they occupied. This is consistent with previous studies
that showed chromatic and achromatic dippers to
overlap when plotted on axes normalized to detection
threshold (Switkes et al., 1988). For this type of task,
the processing of luminance and color contrast seem to
differ only by a scale factor that applies at all contrasts.

For our second experiment (difference-scaling),
comparing chromatic to achromatic results requires
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Figure 11. We compared the original MLDS model, with
constant-variance noise, to an alternative in which noise
variance increased with mean response level. We fit both
models to 90% of our data and evaluated the resulting fit’s
ability to predict the remaining 10% (holdout) data. We
repeated this 100 times with different data subsets. Plotted are
the median and 95% confidence intervals of the likelihood of
the holdout data given the model fit.

consideration of the contrasts chosen for testing.
For each condition and observer, we selected a series
of contrasts in the range where the discrimination
experiment showed a power-law relationship. Each
series began above detection threshold and went up
in steps of 4 discrimination thresholds. In this sense,
the contrast sets were matched perceptually, though in
units of absolute contrast they differed both in spacing
and range. With test contrast customized in this way,
the transducer models resulting from MLDS analysis
were similar in form across all stimulus types. When
contrast axes were normalized to represent multiples of
detection threshold, transducers were highly overlapped
for most observers. This allows for a conclusion similar
to that of the first experiment: The processing of
luminance and color contrast above threshold appear
similar, when the very different sensitivity of the
separate pathways is taken into account. A similar
conclusion applies to the contrast-matching results of
Switkes and Crognale (1999), in which observers were
asked to compare chromatic to achromatic gratings in
terms of apparent contrast. Mapping out the set of
contrast pairs that matched perceptually, they revealed
a remarkably simple linear relationship in which
perceived color and luminance contrast were related
by a constant ratio, which was also consistent with
ratios of detection thresholds (Switkes, 2008; Switkes &
Crognale, 1999).

We also compared stimuli designed to preferentially
activate separate achromatic pathways. The spatial

and temporal selectivity of magnocellular (M) and
parvocellular (P) neurons of the LGN are highly
overlapped, and all our achromatic stimuli would
be expected to drive responses in both populations.
However, as Magnocellular pathways show preference
for higher temporal frequencies and lower spatial
frequencies, compared with Parvocellular pathways
(Lynch, Silveira, Perry, & Merigan, 1992; Merigan,
Katz, & Maunsell, 1991), we might expect our
high-temporal-frequency flicker stimulus to bias overall
neural response toward the M pathway. Similarly,
our high-spatial-frequency might be described as
“P-biased.” These pathways differ substantially in
their contrast-response properties: M cells show higher
sensitivity to low contrast, but strong saturation at
high contrast. P-cells are less sensitive but show a more
linear contrast dependence (Benardete & Kaplan, 1999;
Kaplan, 2004; Kaplan & Benardete, 2001; Kaplan
& Shapley, 1986). To the extent that M cells and
their cortical targets contribute to perceived contrast,
one might expect our experiments to yield more
nonlinear transducer models in the flicker condition.
We did not observe this consistently across observers.
Similarly, if P cell input dominated in the high spatial
frequency condition, we might expect transducers to
be more linear in this case. Our results are equivocal
on this point. Our discrimination results do not show
a stimulus-based difference in the shape of dipper
functions that is consistent across observers. Focusing
on the high-SF case, the slopes of dipper functions
were actually higher than all other conditions in three
of four observers, implying a stronger saturation.
In the MLDS case, only three observers completed
the high-SF condition. In two of these the modeled
transducers were in fact more linear (Figures 7 and 8).
The small number of subjects does not support a
strong conclusion, but motivates further study of the
spatial-frequency dependence of apparent contrast as
measured with MLDS.

Comparing discrimination and MLDS

The second aim of this study was to compare our
two experiments as methods of estimating internal
representations of contrast. The two experiments
involved very different tasks. Unlike fine discrimination,
the difference-scaling task required the observer to
make subjective comparisons between stimuli that were
clearly different in appearance. Nonetheless, nearly
identical models can be used to describe both cases.
Both models can be described in terms of an “encoding’
stage, where an internal response is assumed to serve
as an analog of stimulus contrast, and a “decoding’
stage, where responses to multiple stimuli are compared
to derive a decision variable. The mean and variance
of this variable determine the probability of a given
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response via signal-detection methods. A crucial
element linking the modeled sensory representation to
predicted behavior is an estimate of internal variability,
the noise parameter σ in our models.

It is tempting to equate the modeled internal contrast
representation with a low-level neural response, such
as the summed activity of neurons in V1. We must
keep in mind, however, that between the stimulus
and the decision-making stage there may be multiple
representations of contrast at different levels of the
visual hierarchy. The modeled transducer represents
the summed contribution of all these stages. This is
even more important when interpreting the modeled
internal noise, as each stage of processing may
contribute to the variability of the final decision
variable. We found acceptable agreement in the shape
of transducer functions modeled on discrimination
and difference-scaling data, but consistently found the
scaling experiment to yield higher estimates of internal
noise. This result is consistent with the idea that both
tasks rely on a common representation of stimulus
contrast, but, due to very different task requirements,
the scaling experiment is influenced by more levels
of uncertainty, up to the level of subjective decision
making regarding stimulus appearance.

Several previous studies have compared scaling
results to measured discrimination thresholds, but using
stimuli and tasks very different from ours. Devinck and
Knoblauch (2012) used MLDS to measure perceptual
scaling of the watercolor effect. Aguilar et al. (2017)
measured perceived tilt from texture. Both studies asked
how well MLDS results could predict discrimination
thresholds for their respective tasks and found good
agreement between the two methods. Our results
differ from theirs; the larger internal noise we find
in our scaling experiment would lead to a prediction
of larger discrimination thresholds than those we
measured directly. This difference suggests that MLDS
results must be interpreted in the context of the
task under study. Lower-level tasks such as contrast
discrimination may be influenced by fewer sources of
internal variability than more cognitively demanding
tasks such as those mentioned above, leading to a
greater discrepancy between thresholds and subjective
reports on appearance.

Fixed versus variable internal noise

Psychophysical data are most always stochastic:
the conditions of interest are those in which the
observer gives different responses to the same stimuli
on repeated trials, so we measure the probability of
a given response. To completely describe a visual
process, psychophysical models should account for the
source of this variance. Moreover, maximum-likelihood
fitting procedures like those used here require models

to predict the probability of a given outcome, not
just the mean response. Most often this problem is
addressed by introducing a random “noise” variable
to the model, and most often this noise is assumed
to be normally distributed with constant variance.
This approach has been successful in many studies of
discrimination (Foley, 1994; Georgeson & Meese, 2004;
Meese, 2004) and in previous studies using the MLDS
approach (Brown et al., 2011; Devinck & Knoblauch,
2012; Knoblauch et al., 2020; Maloney & Yang, 2003).
Seemingly at odds with this assumption is the fact that
the responses of visual neurons (i.e., spike counts) show
variability that increases with mean response (Goris
et al., 2014). Variable-noise models can also be used
to describe discrimination experiments (Kontsevich et
al., 2002); it remains an open question whether fixed
or variable noise is most appropriate for describing
these results. (Georgeson & Meese, 2006; Kingdom,
2016; Solomon, 2007). The reason for this is that a
change in modeled noise can be compensated for by a
change in the shape of the model transducer to yield
the same predictions. This hinges on the fact that, in
any one condition, the two stimuli being discriminated
have very similar contrast, and will drive responses with
similar variance under either model. Solomon (2007)
performed an alternative discrimination experiment
designed to isolate internal variability and found
support for only a weak dependence of variability on
response level. Difference scaling experiments also have
the potential to shed light on this problem, as the stimuli
within a trial vary more in contrast and would lead to
different response variance under a level-dependent
noise model.

Single-neuron noise properties provide motivation
to test for level-dependent noise psychophysically.
However, physiological measurements and
computational models suggest that at the level of large
populations of neurons, response variability differs
in form from that of single units, and shows less
dependence on mean response level (Chen, Geisler, &
Seidemann, 2006; May & Solomon, 2015). Assuming
psychophysical judgements reply on large numbers of
neurons, this suggests that there is less of a conflict
between constant-variance psychophysical models and
neural physiology.

When introducing the MLDS method, Maloney and
Yang (2003) tested their assumption of fixed noise using
a simulation. They showed that scale values obtained
with a fixed-noise model were identical whether the true
(simulated) noise was fixed or variable. This is expected
given the model structure, where scale values determine
the mean of the final decision variable, and modeled
noise influences only its variability. They did not detail
how the modeled σ behaved in this simulation. Aguilar
et al. (2017) performed a similar simulation with a
similar result, but also found that agreement between
scaling and discrimination results was worse when the
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fixed-noise assumption was applied to data generated
with variable noise.

We addressed this issue by fitting our data with a
modified form of the MLDS model in which variance
increased in proportion to mean scale value. Compared
to the original fixed-noise model, this alternative was
no better or worse at predicted holdout data not
used in the fit. However, the parameter of this model
that determined the variance-to-mean relationship
was consistently found to be quite small, implying a
very weak dependence of variance on response level.
Although the formal model comparison did not find
a winner, the optimization routine appeared to favor
the fixed-noise option, on which we based our main
findings.

Conclusions

We compared the results of contrast discrimination
and contrast difference scaling experiments using
a range of simple grating stimuli designed to
activate separate visual pathways. Both experiments
independently yielded similar estimates of perceived
contrast across stimulus conditions, supporting the
theory that suprathreshold color and luminance
contrast are processed similarly, when the differing
sensitivities of these pathways are taken into account
(Switkes, 2008; Switkes et al., 1988; Switkes & Crognale,
1999). The results of the two experiments agreed in
the shape of the modeled transducer relating physical
to perceived contrast, but differed consistently in
estimating internal noise, which was higher in the
scaling experiment. We conclude that both tasks may
rely on a common internal representation of stimulus
intensity, but the cognitive demand of the scaling
task leads to greater uncertainty than the simpler
discrimination task.

Keywords: contrast, color, detection/discrimination,
scaling, MLDS
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