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Abstract
Background Bronchoalveolar lavage (BAL) is an underutilised tool in the search for pulmonary disease
biomarkers. While leukocytes with effector and suppressor function play important roles in airway
immunity and tumours, it remains unclear if frequencies and phenotypes of BAL leukocytes can be useful
parameters in lung cancer studies and clinical trials. We therefore explored the utility of BAL leukocytes as
a source of biomarkers interrogating the impact of smoking, a major lung cancer risk determinant, on
pulmonary immunity.
Methods In this “test case” observational study, BAL samples from 119 donors undergoing lung cancer
screening and biopsy procedures were evaluated by conventional and spectral flow cytometry to exemplify
the comprehensive immune analyses possible with this biospecimen. Proportions of major leukocyte
populations and phenotypic markers levels were found. Multivariate linear rank sum analysis considering
age, sex, cancer diagnosis and smoking status was performed.
Results Significantly increased frequencies of myeloid-derived suppressor cells and PD-L1-expressing
macrophages were found in current and former smokers compared to never-smokers. While cytotoxic CD8
T-cells and conventional CD4 helper T-cell frequencies were significantly reduced in current and former
smokers, expression of immune checkpoints PD-1 and LAG-3 as well as Tregs proportions were increased.
Lastly, the cellularity, viability and stability of several immune readouts under cryostorage suggested BAL
samples are useful for correlative end-points in clinical trials.
Conclusions Smoking is associated with heightened markers of immune dysfunction, readily assayable in
BAL, that may reflect a permissive environment for cancer development and progression in the airway.

Introduction
Carcinogens found in cigarette smoke induce oncogenic mutations responsible for most lung cancers
[1, 2]. Smoking affects the immune landscape of the lung and is generally associated with chronic airway
inflammation [3–6]. This in turn can lead to tissue damage and immune dysfunction resulting from T-cell
exhaustion and compensatory engagement of immune suppression mechanisms [7] as seen in COPD [8],
sarcoidosis [9] and COVID-19 [10]. Smoking’s detrimental effects on the immune defences are also
implicated in the development and progression of diverse malignancies including lung cancers [11–16].

In the airway, as in other tissues, specialised leukocyte populations including regulatory T-cells (Tregs)
and myeloid-derived suppressor cells (MDSCs) are a key mechanism protecting healthy tissue from
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autoimmunity and collateral inflammatory damage. Tregs expressing the transcription factor FOXP3
characteristically suppress the activity of cytotoxic CD8 T-cells and non-regulatory (or conventional) CD4
helper cells (Tcon) through several mechanisms [17–19]. MDSCs similarly exert suppressive function
through inhibitory receptor signalling, suppressive cytokines (transforming growth factor-β, vascular
endothelial growth factor-A, interleukin-10), nitric oxide production, and metabolite depletion via arginase
(ARG1) and indoleamine 2,3-dioxygenase (IDO) [20, 21]. Immune control in the airway can also be
enforced through broad upregulation of checkpoint receptors (e.g., PD-1 and LAG3) as seen in many
inflammatory and infectious diseases and malignancies [22–27]. While the role of these suppressive
mechanisms in limiting tumour eradication is well appreciated, the factors influencing their presence in the
airway and their relationship to meaningful clinical variables remain incompletely defined.

Bronchoalveolar lavage (BAL), which was introduced in the 1960s, can provide a unique snapshot of
the cellular and biological processes in the airway, more accurate than blood-based approaches [28–31]
and more robust than low-cellular-yield sputum assessments, without resorting to invasive biopsies [32, 33].
Additionally, as cell suspensions, BAL samples readily lend themselves to flow cytometric analysis with
minimal processing. Despite this, BAL remains an underutilised tool in the study of airway immunity in
clinically relevant patient populations. While studies of smoking’s impact on the airway abound [4, 34–37],
few have explored effects on the immune landscape using BAL.

In the present study, we used standard and spectral flow cytometry to gain biological insights into the
effect of smoking on airway leukocyte populations using patient BAL-derived leukocytes. Elevated
suppressor cell frequencies and activation markers were seen in smokers as were significant reductions in
T-cell populations. Upregulated PD-1 and LAG3 were also seen across T-cell subsets in smokers. These
findings associate smoking with dysfunctional airway immunity, which may provide a niche conducive for
developing and progressing tumours. These findings also demonstrate the utility of BAL cells as a source
of immune biomarkers relevant to lung cancer that are reliably assayable in cryopreserved samples and
thus a useful tool in conducting multicentre clinical trials.

Materials and methods
BAL samples
BAL samples were collected with written consent from 119 patients undergoing bronchoscopy for lung
cancer screening and biopsy procedures at Roswell Park Comprehensive Cancer Center from August 2020
to January 2021 under institutional review board-approved protocols. Relevant patient data (summarised in
table 1) were managed by an honest broker. COPD diagnosis was established according to the definition
supplied by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines [38]. BAL was
obtained from non-tumour-bearing middle lobes or the lingular bronchus (to avoid middle lobe tumour).
Cellular fractions from ∼30 mL/patient were washed, pelleted (350 g, 5 min) and resuspended in either
staining buffer (2% fetal bovine serum (FBS) and 2 mM EDTA in saline) for immunostaining or cryogenic
media (90% FBS and 10% DMSO) for storage at −80°C.

Flow cytometry
3–10×106 BAL-recovered cells were resuspended in staining buffer (1×106 cells/20 μL) containing
antibodies for T-cell (supplementary table S1A), MDSC (supplementary table S1B) or myeloid cell surface
markers (supplementary table S1C) after the labelling of non-viable cells with LD-Aqua (Molecular
Probes, Eugene, OR, USA). After surface marker staining, cells were fixed/permeabilised using a FOXP3/
transcription factor staining kit (eBiosciences) as per manufacturer’s protocol for intracellular staining.
Data (1–3×106 events) were collected on an LSR II cytometer using FACS-DIVA software (BD

TABLE 1 Patient numbers and pertinent clinical data for never-, former and current smokers

Never Former Current

Age years, mean±SD 59±11 68±6 65±10
Female sex n 22 24 22
Male sex n 14 26 11
Cancer at the time of sampling, n/N (%) 19/36 (53) 36/50 (72) 22/33 (66)
Pack-years (range) NA 41.2 (1–100) 72 (12–140)
COPD/emphysema % 6.2 40 50

NA: not applicable.
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Biosciences, Franklin Lakes, NJ, USA). Results were analysed using Flowjo (V10.8) software, and gating
was performed as described in supplementary figures S1–S3 to find population frequencies and mean
fluorescent intensity (MFI) of phenotypic markers.

For spectral flow cytometry, BAL cells from a subset of never-smokers and current smokers (n=6 each)
without cancer or COVID-19 diagnoses were stained as above with a more extensive antibody panel
(supplementary table S2). Data collected using a 5-laser Aurora (Cytek, Fremont, CA, USA) instrument
was analysed as described elsewhere [39, 40]. Briefly, after gating as shown in supplementary figures S1–
S3, samples were equally concatenated (500K events/sample), and tSNE (t-distributed stochastic neighbor
embedding) plots were generated using a single file down-sampled to 120K events with 4000 iterations
and a perplexity of 40 and fast Fourier transform-accelerated interpolation-based t-SNE (FIt-SNE)
interpolation (Flt-SNE) [41]. Population-defining gates [39] were manually applied to determine leukocyte
subset frequencies in each group. Phenotypic marker MFIs in each population were expressed by heat map.

Analysis and statistics
Population frequencies and phenotypic marker MFIs were analysed in Graphpad PRISM (V8). Multivariate
linear regression analysis was performed in R studio (v1.2). The chi-square test of independence was used to
determine significant relationships between age, sex, active cancer in the lungs, COPD and smoking status in
R version 1.4.1. This analysis revealed a statistically significant relationship between COPD/emphysema
status and smoking status, and this information was used to conduct a multivariate linear rank order
regression analysis, as a means of assessing interactions of smoking status, sex, age and cancer diagnosis.
Multivariate linear rank sum analysis considering age, sex, cancer diagnosis and smoking status was
performed with post hoc (Tukey’s) assessment. Statistically significant differences were found using one-way
ANOVA and multiple comparisons test (Tukey’s test with p<0.05 being significant). Error bars depict SEM.

Results
BAL-derived cells from 119 patients undergoing lung cancer screening or biopsy procedures were assessed
by flow cytometry. Patient demographic and medical history information (see table 1) revealed that
33 (27.7%) were current smokers, 50 (42.0%) self-identified as former smokers and 36 (30.3%) were
nonsmokers. COPD diagnosis was present in 50% of current, 40% of former and 6.3% of never-smokers.
Cancer was diagnosed in 53% of never-, 72% of former and 66% of current smokers. Chi-squared analysis
revealed a statistically significant relationship between COPD/emphysema status and smoking status, and
therefore this variable was excluded in further analysis. Multivariate linear rank order regression analysis
assessing interactions of smoking status, sex, age and cancer diagnosis at the time of sampling revealed
limited interactions among variables that could not be excluded. Ultimately, linear rank sum analysis
considering age, sex, cancer diagnosis and smoking status was performed with post hoc (Tukey’s)
assessment.

Cryopreservation of BAL leukocytes did not significantly alter their properties as fresh and frozen/thawed
cells of the same sample displayed similar viability, frequencies of bulk leukocytes, select lymphocyte
populations (CD4+, Tregs), and both the frequency of PD-1+ cells and the MFI of PD-1 among
Tregs (supplementary figure S4A–F). BAL cellularity varied considerably among patients (figure 1a), and
flow cytometric analysis revealed a mean (±SEM) viability of 84±14% for leukocytes (CD45+ cells) which,
on average, comprised 38±28.4% of total BAL cells (figure 1b–c). No significant differences were
observed in total leukocytes between current, former and never-smokers (figure 1c). However, the cells
comprising the CD45+ pool differed markedly by smoking status. CD4+ and CD8+ T-cell frequencies were
drastically reduced in current smokers compared with never-smokers. Current smokers displayed lower
CD4+ T-cell proportions (p<0.0001) relative to never-smokers, and a marginal decrease was seen between
former and never-smokers (figure 1d). Current smokers also harboured fewer CD8 T-cells compared to
never-smokers (p=0.0008) (figure 1d). The viability of CD4 and CD8 T-cell populations was comparable
between groups (data not shown).

CD4+ T-cells include both suppressive (Tregs) and effector (Tcon) subpopulations. Within the CD4+ pool,
Tcon were significantly reduced in both current and former compared to never-smokers (figure 2a). Tcon
with a surface marker profile indicating an activated, effector phenotype or “effector Tcon” (CD44+/
CD45RA−) were significantly enhanced in never-smoker BAL compared to both former (p=0.0199) and
current smokers (p=0.0285) (figure 2b). Though no difference was observed in total CD4+ and Tcon
viability (data not shown), that of effector Tcon was reduced in current and former smokers (figure 2c).

Immune checkpoint factor expression by T-cells is linked to immune suppression and dysfunction
associated with exhaustion or anergy [42, 43]. Never-smokers had significantly lower frequencies of
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LAG3+ effector Tcon than both former and current smokers (p<0.0001) (figure 2d). BAL samples of
never-smokers contained fewer PD-1+ effector Tcon than that of both former and current smokers
(p<0.0001, both) (figure 2e). PD-1 expression levels (MFI) were also significantly lower in never- and
former than current smokers (figure 2e).

Tregs are important mediators of both immune homeostasis and tumour-associated immune suppression.
Yet the impact of smoking on these cells remains unclear [17, 44, 45]. While some prior studies have
assessed BAL Tregs in diseases such as sarcoidosis and pulmonary fibrosis, and another explored the
impact of smoking on BAL Tregs in the context of COPD, data on BAL Tregs and smoking are relatively
scant [46–49]. Like Tcon, the Tregs of current smokers comprised a smaller fraction of CD45+ cells
compared to both former (p=0.004) and never-smokers (p=0.002) (figure 3a), and no marked difference in
Treg:CD8 was seen between the groups (supplementary figure S5A). However, Tregs were enriched in
CD4+ pools of current versus never-smokers (p=0.008) and modestly relative to former smokers (figure
3b). Increased Treg viability was also linked to smoking, as significant enhancements were seen between
current and former versus never-smokers (p<0.0001, both) (figure 3c). Smoking history was also
associated with elevated expression of LAG3 and PD-1 by Tregs. Specifically, PD-1 MFI on Tregs (figure
3d) and the frequencies of LAG3+ Tregs (figure 3e) were markedly elevated for current smokers compared
to both never-smokers and current smokers.

Activated effector-like Tregs (eTregs) [50, 51] are a subpopulation with high suppressive potency that
accumulate in peripheral tissues, including tumours, expressing high levels of checkpoint factors such as
PD-1 and LAG3 [52–54]. As with other T-cells, eTregs were reduced as a fraction of the total BAL
leukocytes in current compared to both former (p=0.002) and never-smokers (p<0.0001) (figure 3f), and
moderately lower eTreg:CD8 was noted in current smokers as well (supplementary figure S5B). However,
as with bulk Tregs, eTreg frequencies within the CD4+ compartment were higher (but not significantly
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so) in current than never-smokers (p=0.06) (figure 3g). Further, both eTreg viability (figure 3h) and the
LAG3 and PD-1 expression observed in these cells were similarly augmented with smoking (figure 3i,j).
Thus, smoking was linked to a higher relative presence of Tregs and immune suppression in the airway.

While proportions of effector CD4 Tcon and bulk CD8 T-cells were lower in the BAL leukocytes of
smokers, effector frequencies within the CD8 compartment were unchanged by active smoking status
(figure 4a). However, as a fraction of CD45+ leukocytes, current smokers had significantly less effector
CD8 T-cells than never-smokers (figure 4b). As in other T-cell types, PD-1 expression among these cells
was more prevalent in current than never- and former smokers, with that in former smokers being still
markedly higher than in never-smokers (p<0.0001) (figure 4c). These results may indicate prevalent
exhaustion in the airway CD8 T-cells of smokers.

While smoking negatively impacts the T-cell presence in the airway, we observed a reciprocal
accumulation of myeloid cells with suppressive potential including MDSC of the monocytic CD14+

(M-MDSC) and granulocytic CD15+/CD66b+ (PMN-MDSC) subsets. In current smokers, M-MDSC
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FIGURE 4 Smoking-associated effects on markers of CD8 T-cell dysfunction in bronchoalveolar lavage (BAL).
a) The fraction of the CD8+ T-cell pool and b) total BAL leukocyte (CD45+) population displaying an activated,
effector phenotype (CD4−/CD8+/CD44+ CD45RA−) were found by flow cytometry, as were c) the percentage of
these cells expressing PD-1, for current (green), former (red), never- (blue) smokers. Values are shown as mean
±SEM. Panel c (left) is a representative histogram (FMO control in black). ***p<0.001; ****p<0.0001 using one-way
ANOVA and post hoc Tukey’s multiple comparisons test. FMO: fluorescence minus one.
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represented a significantly larger proportion of all BAL cells than in both former and never-smokers
(p<0.0001, both) (figure 5a). While expression of the suppressive mediator ARG1 was significantly
higher on the M-MDSCs of only former compared to never- (p=0.012) and current smokers (p=0.006)
(figure 5b), PD-L1 (another well-known mediator of immune suppression) was significantly upregulated in
the M-MDSCs of current compared to both former (p=0.02) and never-smokers (p=0.004) (figure 5c).
PMN-MDSCs followed a similar trend as M-MDSCs, except these cells were also elevated in former
compared to never-smokers (p=0.048) (figure 5d) and ARG1 MFIs were generally more enhanced by
smoking (figure 5e). Additionally, the relationship between PD-L1 expression and smoking mirrored that
seen in M-MDSCs (figure 5f). Collectively, these findings suggest that smoking enhances MDSC presence
and potentially their function in the airway.

In addition to MDSCs, macrophages infiltrate the lungs of smokers [32, 36, 55]. Aside from alveolar
macrophages, the cells can be generalised into traditionally activated (M1) or alternatively activated (M2)
macrophages and are loosely defined as CD68+ and CD23+ CD163− or CD23+/− CD163+, respectively
[56, 57]. As expected, M1s were more frequent among the current smokers than both former (p=0.002)
and never-smokers (p<0.0001). Former smoker BAL samples contained higher M1 numbers than
never-smokers (p=0.036) (figure 6a). Interestingly, M1 cells of current smokers upregulated PD-L1
(29.5±6.4%) beyond both former (8±2.3%; p<0.0001) and never-smokers (7.9±0.95%; p<0.0001) (figure 6b),
suggesting the potential subversion of a proinflammatory cell type in the airways of smokers. Like their
M1 counterparts, M2 cells were significantly increased in current (p<0.0001) and former smoker BAL
samples (p=0.002) compared to never-smokers (figure 6c). As in other myeloid cells, M2s expressed
significantly more PD-L1 in current than both former (p=0.017) and never-smokers (p=0.006) (figure 6d).
Despite important roles for PD-L1 on immune cells in oesophageal [58] and lung cancers [59–61], such an
association between macrophage PD-L1 levels and smoking status, independent of cancer diagnosis, has
yet to be reported. Antigen-presenting dendritic cells (DCs) are crucial for priming T-cell responses and
effective anti-tumour immune surveillance. BAL DCs were enriched in the lungs of current and former
smokers (p=0.003) compared to never-smokers (p=0.002) (figure 6e). However, their viability was
substantially compromised in both smoking groups compared to never-smokers (p<0.0001) (figure 6e).

To validate and expand upon these findings, BAL from a subset of never- and current smokers (n=6 each)
were stained with an expansive (46 parameters) immunophenotyping antibody panel and subjected to spectral
flow cytometry and high dimensional analysis [39, 40]. tSNE plots were constructed using collective data
(figure 7a) and samples grouped according to smoking status (figure 7b). Overlaying grouped data highlighted
differences in cell population frequencies of CD45+ leukocytes between the groups (figure 7b) that were
quantified and depicted in figure 7c. Validating our earlier results, bulk CD4+ Tcon and CD8 frequencies
were significantly lower in current compared to never-smokers while Treg proportions were elevated. Myeloid
populations also mirrored the results described above. Alveolar macrophages (distinguishable here by CD169
expression) and M1s were more frequent in the airways of current smokers. However, M2s were reduced,
suggesting major recruitment or expansion of non-resident, inflammation-inducing macrophages in the airway
of active smokers. Smoking also enriched potential MDSC subtypes further suggesting an enhancement in
this suppressive cell type in current versus never-smokers (figure 7c).

We further revealed elevated frequencies of B-cells, plasma cells, natural killer (NK) cells and both
plasmacytoid DCs and circulating DCs in current smokers. Conversely, these patients displayed lower
frequencies of NK T-cells (CD3+ CD56+), monocytes, endothelial progenitor cells, neutrophils and
eosinophils (figure 7c). Few differences were observed in basophils. In addition to PD-1, LAG3, ARG1
and PD-L1, we evaluated a number of additional functional markers associated with immune activation
(Ki67, pSTAT5, pMTOR, STUB1, etc.) and suppressor cell function (NRP1, HELIOS, NRN1, pSMAD2/
3, PD-L2, ICOS, iNOS, IDO, etc.) as depicted in supplementary figure S6 and quantified in figure 7d. The
resultant heatmap demonstrated the considerable effects of smoking on these markers over an array of
cells. As in conventional flow analysis, LAG3, PD-1, PD-L1 and HLA-DR were significantly elevated in
current smokers on T-cells and various myeloid cells (figure 7d). These findings illustrate the considerable
depth of immune biomarker analysis possible using BAL and high-parameter flow.

Discussion
For decades, BAL has been a tool available for evaluating the lung immune milieu and the leukocytes
residing within the airway [62–64]. While used in recent studies of interstitial lung diseases [29, 30, 65]
and allergies [66] (most evaluating the effects of COPD) [44, 49, 55, 67–72], the potential value of using
BAL-derived biomarkers to advance the study, prevention and treatment of lung cancer has gone largely
overlooked. Presently, we explored BAL as a source of immunological biomarkers responsive to clinical
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FIGURE 5 The impact of smoking status on myeloid-derived suppressor cell (MDSC) (lineage marker-/HLA-DR-/
CD11b+/CD33+) frequencies and function in bronchoalveolar lavage (BAL). a) The frequency of distinct MDSC
subsets among the total BAL leukocyte pool, as well as the fraction of cells expressing b) Arg1 and c) PD-L1,
and their levels in the CD14+ M-MDSC (a–c) and the CD15+/CD66b+ PMN-MDSC (d–f ) populations were found by
flow cytometry. Values are shown as mean±SEM. Panels on left-hand side are representative histogram overlays
depicting current (green), former (red), never- (blue) smoker BAL samples with FMO (fluorescence minus one)
controls shown in black. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001 using one-way ANOVA and post hoc
Tukey’s multiple comparisons test. FMO: fluorescence minus one.
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FIGURE 7 Deep immunoprofiling of bronchoalveolar lavage (BAL) leukocytes with spectral flow cytometry reveals extensive smoking-associated
immune dysfunction. A subset of BAL samples from never- and current smokers (n=6 each) were stained with a 46-parameter immunophenotyping
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covariates. Our findings provide important proof-of-concept that BAL leukocyte readouts can be related to
patient smoking history – a major lung cancer risk determinant.

The disposition of the lung immune system can help or hinder lung cancer development [28, 60, 73–75].
As such, the impact of smoking on systemic and airway immune landscapes has been studied previously
through collection of sputum [32, 76–78], peripheral blood [79–81] and tissue biopsies [76]. These studies
generally link smoking to extensive immune dysfunction, airway inflammation and tissue damage.
However, few utilise BAL and many predate recent advances that shape our grasp of the functionally
diverse leukocyte subpopulations found in normal and diseased airways [28, 30, 79, 82, 83].

Our characterisation of BAL leukocytes indicated no significant difference in overall leukocyte frequencies
in current, former and never-smokers; however, the composition of this population shifts dramatically with
smoking. We observed reduced lymphocytes in current and former smokers accompanied by increased
myeloid populations. In agreement with earlier studies [28, 79, 83], we found lower BAL CD4+ T-cell
frequencies in active and former smokers. Proportions of CD8+ T-cells were also sharply reduced among
BAL leukocytes – an observation contrasting with the increased cytotoxic CD8 T-cell frequencies
associated with smoking in a previous study with a limited number of patients [83].

Tregs are key regulators of the immune response that characteristically inhibit leukocyte activation and limit
inflammatory damage. However, these cells also permit immune evasion by tumours, and in many cancers
(including lung) Treg frequency in peripheral blood and biopsied lesions is negatively related to patient
survival [84, 85]. Tregs expressing activation markers and the checkpoint factor PD-1 accumulate in both
mouse and human tumours [84, 86]. Interestingly, we show that Treg PD-1 expression is significantly higher
in smokers. While the negative association between patient survival and the immune checkpoint factors
PD-1/PD-L1 is well known [60, 61, 87, 88], the importance of PD-1 expression on Tregs in determining
immunotherapy outcomes in lung and other cancers was just recently brought to light [86, 89–91].

Few prior reports have associated smoking with Treg-mediated immune suppression with differing results
[46, 49, 71]. Others have shown Tregs from the blood of COPD patients to be enhanced in frequency and
in vitro suppressive capacity [44]. One study demonstrated an imbalance of BAL Treg subpopulations with
smokers having a higher frequency of activated CD45RA− “eTregs” compared to both nonsmokers and
COPD patients [49]. In our study smoking was positively correlated with COPD diagnosis, which was
present in 40–50% of former and current smokers and as such did not differentiate these patients. Despite
including COPD patients, we also show that Tregs constitute a larger fraction of smoker airway CD4+

compartment. Furthermore, we demonstrate that the Tregs of smokers express significantly more PD-1,
LAG3, Ki67, PD-L1 and ICOS than in nonsmokers. These findings link smoking to an activated Treg
phenotype associated with accumulation and suppression in tumours. This is aligned with the decreased
frequencies, elevated PD-1 and LAG3, and reduced Ki67 expression on effector CD4 and CD8 T-cells in
smoker BAL suggesting exhaustion and suppression among the cells responsible for affecting surveillance
and elimination of malignant threats. Additional studies that include ex vivo assays of Treg function are
needed, however, to definitively establish the effects of smoking on the suppressive potency of airway
Tregs.

Accumulation of MDSCs, another important mediator of immune suppression, within the lung is
associated with tumour development in mice [73, 92], and these cells are elevated in nonsmall cell lung
cancer patients and negatively related to survival [93]. Further, smoking is associated with enhanced
differentiation of MDSCs to tumour-associated macrophages and tolerogenic DCs, both of which
contribute to tumour progression [66]. Yet, MDSC populations in BAL remain relatively unexplored
regarding smoking-relevant biomarkers. Similar to prior observations in peripheral blood [85, 92, 94], we
find MDSCs are significantly elevated in smoker BAL. MDSC suppressive capacity has been attributed to
several mechanisms including the activities of the enzymes iNOS, ARG1, IDO and immune checkpoint
PD-L1 [73]. In our spectral flow analysis, BAL MDSCs from smokers express more iNOS, IDO

antibody panel (see supplementary Table S2) and subjected to spectral flow cytometry and high dimensional analysis. a) tSNE (t-distributed
stochastic neighbor embedding) plots (down-sampled to 120K events with 4000 iterations and a perplexity of 40 and FFT interpolation (Flt-SNE))
were constructed using collective data. b) Overlaying grouped data (blue: never-smokers; and green: current smokers) highlighted differences in
cell population frequencies of CD45+ leukocytes between the groups, and c) were quantified. d) Functional marker mean fluorescent intensities
(MFIs) on major immune cell populations were quantified and visualised as a heatmap with red indicating high expression and blue indicating low
expression. Each heatmap table is independent for colour scale per marker. N: never-smoker; C: current smoker.
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and PD-L1. Though MDSCs in the blood of smokers reportedly express more ARG1 than those in
nonsmokers [69], we saw no difference in this enzyme between current and never-smokers, suggesting
effects on its regulation may be tissue-specific.

Smoking-associated myeloid cell accumulation in the lungs is well supported by existing studies [28, 32,
62, 95], and concordantly, we show BAL of smokers to contain significantly elevated macrophages and
DCs. Most lung macrophages are alveolar (CD169+), with smaller fractions consisting of both
proinflammatory (M1) and anti-inflammatory (M2) macrophages. Future studies aimed specifically at
characterising airway macrophages may reveal additional subsets of these populations.

Here we demonstrate that immune biomarkers in BALF from patients are both responsive to clinical
variables relevant to lung cancer (smoking history) and readily assayable with high-parameter flow-based
approaches. Additionally, several novel observations relating smoking to immune-suppressing cells and
pathways in the airway are presented. Few studies have explored smoking’s impact on airway immune
suppression; however, such an association was implicated by non-BAL biopsy studies in head and neck
cancer wherein cytotoxic T-cell infiltration in smokers was reduced [11]. Moreover, in lung epithelium
gene analysis, an immune-suppressive signature was found in current smokers [96]. Such dysfunction may
lead to enhanced immune evasion by tumours and compromised defence against infection in the airway.

Limitations of our study include its observational nature and the fact that immune cell phenotypes were
inferred based on marker profiles rather than functional assays. Also, our findings reflect the impact of
smoking without interaction of other variables (e.g., cancer diagnosis or COPD).

To address the potential effects of COPD on the smoking-associated immune changes identified by our
analysis, we compared them across patients with and without a COPD diagnosis. While some trends
observed between +COPD and −COPD groups were superficially reminiscent of current smokers versus
former and never-smoker comparisons, the magnitude of the effect due to COPD independent of smoking
on these readouts was generally muted and not statistically significant (supplementary Figure S7A). These
results suggest that despite the overlap between COPD and smoking, a COPD diagnosis alone is not likely
to account for effects on the changes in BAL linked to smoking history in this study.

Interestingly, we did not see an increase in CD8 frequencies in the BAL of patients with COPD in this
study that others have reported in blood and sputum as well as BAL. While the reason for the discrepancy
is not clear, it may stem from differences in how the CD8 T-cell pool is presented (i.e., as a fraction of all
CD45+ immune cells or a fraction of the T-cell compartment); varying representation of COPD subtypes
and symptom severities, which may alter the frequency and disposition of immune cells like CD4+ and
CD8+ T-cells in patient tissues [97, 98]; or additional, subtle differences in patient age and duration of
smoking experience across patient pools.

We also compared several of the immune readouts responsive to smoking status across patients with and
without a general cancer diagnosis at sampling. Independent of smoking status, cancer was not associated with
discernible changes in any marker examined (supplementary Figure S7B). Also, in our multivariate analysis,
while several immune readouts did present significant interactions with clinical variables, cancer was not
among them, further suggesting that a cancer diagnosis at the time of BAL sampling is not a major driver of
the leukocyte populations and phenotypes we find readily influenced by smoking. Ongoing studies are aimed
at uncovering BAL-derived biomarkers associated with cancer and other clinically important variables.

Additional limitations of this study include the fact that scrutiny of potentially useful biomarkers on BAL
cellular components beyond immune cells (e.g., epithelial cells) fell outside the scope of our study. Future
studies may well apply an approach similar to ours to achieve such an aim. Despite these limitations, our
findings provide proof-of-concept that BAL-derived leukocytes offer stable sources of biomarkers for
preclinical and clinical studies such as NCT04931017, a recently initiated study using BAL to monitor
treatment-associated changes in airway immunity. Results of this trial and our present efforts may inform
the design of future lung cancer prevention, development and treatment studies.
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