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Objective: To investigate the brain functional organization induced by sleep deprivation

(SD) using functional connectivity density (FCD) analysis.

Methods: Twenty healthy subjects (12 female, 8 male; mean age, 20.6 ± 1.9 years)

participated a 24 h sleep deprivation (SD) design. All subjects underwent the MRI scan

and attention network test twice, once during rested wakefulness (RW) status, and

the other was after 24 h acute SD. FCD was divided into the shortFCD and longFCD.

Receiver operating characteristic (ROC) curve was used to evaluate the discriminating

ability of those FCD differences in brain areas during the SD status from the RW

status, while Pearson correlations was used to evaluate the relationships between those

differences and behavioral performances.

Results: Subjects at SD status exhibited lower accuracy rate and longer reaction time

relative to RW status. Compared with RW, SD had a significant decreased shortFCD in

the left cerebellum posterior lobe, right cerebellum anterior lobe, and right orbitofrontal

cortex, and increased shortFCD in the left occipital gyrus, bilateral thalamus, right

paracentral lobule, bilateral precentral gyrus, and bilateral postcentral gyrus. Compared

with RW, SD had a significant increased longFCD in the right precentral gyrus, bilateral

postcentral gyrus, and right visuospatial network, and decreased longFCD in the default

mode network. The area under the curve values of those specific FCD differences in brain

areas were (mean ± std, 0.933 ± 0.035; 0.863∼0.977). Further ROC curve analysis

demonstrated that the FCD differences in those brain areas alone discriminated the SD

status from the RW status with high degree of sensitivities (89.19± 6%; 81.3∼100%) and

specificities (89.15 ± 6.87%; 75∼100%). Reaction time showed a negative correlation

with the right orbitofrontal cortex (r=−0.48, p= 0.032), and accuracy rate demonstrated

a positive correlation with the right default mode network (r = 0.573, p = 0.008).
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Conclusions: The longFCD and shortFCD analysis might be potential indicator

biomarkers to locate the underlying altered intrinsic brain functional organization

disturbed by SD. SD sustains the cognitive performance by the decreased high-order

cognition related areas and the arousal and sensorimotor related areas.

Keywords: sleep deprivation, functional connectivity density, receiver operating characteristic, sensorimotor,

short-range, long-range

INTRODUCTION

Sleep deprivation, widespread in current society, can be caused by
environmental factors or personal reasons. It generally has a
deleterious effect on emotional regulation, memory, attention,
and executive control function (1–5), and even metabolic,
physiological, psychological, and/or behavioral reactivity with a
greater risk of being multiorgan and multisystem dysfunction
(6–9). Recently, several studies have demonstrated structural
and functional changes in the frontal cortex, parietal cortex,
and temporal cortex in individuals after acute SD (1, 6, 10–21);
however, the neurologic mechanism of acute SD has not been
fully studied.

Resting-state functional MRI (rfMRI) can combine the
functional images and structural images without exposure
to radioactive tracers, which makes the rfMRI suitable for
mechanism and pathophysiology exploration in several diseases
(1). The advance of rfMRI can help us non-invasively explore
the functional organization in the human brain thus better
characterize the changes of regional neuronal spontaneous brain
activity and intrinsic connectivity patterns to understand the
underlying neural basis of neuropsychiatric disorders.

Seed-based functional connectivity studies have revealed
abnormal connectivity patterns in individuals with insufficient
sleep in brain regions related to emotion and cognition (13, 18,
21–26); however, the seed-based functional connectivity analysis
provides limited information about the relationships between
the time series of a given seed point area and the time series
of other areas in a whole brain network (27, 28). Voxel-based
functional connectivity density (FCD) was used to identify the
distribution of hubs in the human brain (29). In contrast to the
seed-based functional connectivity analysis, the FCD analysis,
similar to the degree centrality analysis, provides an opportunity
for unbiased searches abnormalities within the whole brain
without the need for a prior definition of regions of interest
(27). The FCD can be divided into the short-range FCD and
long-range FCD on the basis of the neighboring relationships
between brain voxels (30). Recently, the FCD analysis has been
widely applied to the exploration of the neurophysiological basis
of several diseases (31–34), and reveals extra information which
cannot be provided by the seed-based functional connectivity
analysis. In this framework, in the present study we utilized
the potential indicators of shortFCD and longFCD approaches
to characterize the changes of intrinsic functional connectivity
strength after acute SD status relative to rested wakefulness
(RW) status, and further explore the potential neurobiological
mechanisms of SD.

MATERIALS AND METHODS

Subjects
Twenty healthy subjects (12 female, 8 male; mean age, 20.6± 1.9
years; mean education, 14.5 ± 1.19 years) participated in a 24 h
SD design experiment. All subjects met the following criteria, as
in previous studies (1, 6):

• Right-handed
• Good sleep habits without any symptoms of sleep disorders

[such as difficulties in sleep onset (> 30min) and/or
maintaining sleep]

• Pittsburgh sleep quality index score < 5
• No consumption of any nicotine, hypnotic, or psychoactive

medications, diet pills, alcohol, and caffeine for ≥ 3 months
prior and during to the current study

• Regular dietary habit with moderate weight and body shape
• No foreign implants, inborn, and acquired diseases

Each of the subjects underwent the MRI scan twice; once
during RW status, and the other after 24 h’ acute SD. The
acute SD process started at 19:00 on the first day and lasted
until 07:00 in the second day. The food and water were provided
during the SD procedure. The temperature of the room was
maintained between 23◦C and 27◦C. The team took turns to
monitor and make sure that the participants did not fall asleep
using video monitors. This study was approved by the Medical
Research Ethical Committee of The Affiliated Huai’an No. 1
People’s Hospital of Nanjing Medical University in accordance
with the Declaration of Helsinki. All volunteers participated
voluntarily and were informed of the purposes, methods, and
potential risks of this study, and signed an informed consent
form.

MRI
The MRI examination was performed, via acquisition, on a
clinical 3T MRI scanner (SIEMENS Trio, Erlangen, Siemens,
Germany) with a standard eight-channel head coil using a 12-
channel array coil. First, we acquired a high-resolution 3D
anatomical images with 176 T1-weighted images in a sagittal
orientation: repetition time = 1950ms, gap = 0mm, echo time
= 2.3ms, thickness = 1mm, acquisition matrix = 248 × 256,
flip angle = 9◦, field of view = 244 × 252mm. Second, we also
acquired 240 functional images using a single-shot Gradient-
Recalled Echo-Planar Imaging pulse sequence (repetition time=
3000ms, gap= 0.5mm, echo time= 25ms, thickness= 5.0mm,
flip angle = 90◦, acquisition matrix = 32 × 32, field of view =

210× 210mm).
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FIGURE 1 | Behavioral findings of ANT. The accuracy rate and reaction time of RW group (A) and SD group (B), respectively. Data is presented as mean ± standard

error. ANT, Attention network test; SD, Sleep deprivation; RW, Rested wakefulness.

FIGURE 2 | One sample t-test differences of SD and RW in Binarized shortFCD. The Binarized shortFCD maps in the SD group (A) and the RW group (B),

respectively. These maps are the results of the within-groups using one-sample t-tests, corrected by FDR. L, left; R, right; SD, sleep deprivation; RW, rested

wakefulness; shortFCD, short-range functional connectivity density; FDR, false discovery rate.

FIGURE 3 | One sample t-test differences of SD and RW in Binarized longFCD. The Binarized longFCD maps in the SD group (A) and the RW group (B), respectively.

These maps are the results of the within-groups using one-sample t-tests, corrected by FDR. L, left; R, right; SD, sleep deprivation; RW, rested wakefulness; longFCD,

long-range functional connectivity density; FDR, false discovery rate.
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FIGURE 4 | Binarized shortFCD differences between SD and RW. The color in the map represents the differences. The blue signifies decreased binarized shortFCD in

brain areas (A), and the red color signifies increased binarized shortFCD in brain areas (B). shortFCD, short-range functional connectivity density; SD, Sleep

deprivation; RW, Rested wakefulness; L, left; R, right.

TABLE 1 | The binarized shortFCD differences between SD and RW.

Brain regions of peak

coordinates

R/L BA Voxel

size

t-score

of peak

voxel

MNI

coordinates

X, Y, Z

Cerebellum Posterior

Lobe

L N/A 75 −4.7451 −30−69−27

Cerebellum Anterior

Lobe

R N/A 62 −3.8821 51 −48 −36

Cerebellum Posterior

Lobe

L N/A 54 −4.7238 −3 −75 −18

Inferior Frontal Gyrus R 11 87 −4.0611 18 24 −15

Lingual Gyrus, Middle

Occipital Gyrus

L 18, 19 216 5.3825 −15−93−12

Thalamus L, R N/A 82 5.7899 9 −18 9

Precentral Gyrus,

Postcentral Gyrus

R 3, 4, 6 157 4.6467 54 −12 57

Postcentral Gyrus L 2, 3 72 3.5485 −30 −36 45

Postcentral Gyrus,

Paracentral Lobule

R 3, 4 200 4.5221 9 −33 75

Precentral Gyrus L 6 93 4.2005 −24 −6 63

Postcentral Gyrus L 3, 5 68 4.7094 −18 −42 57

Between-group differences in binarized shortFCD thresholded at r = 0.3. The statistical

threshold was set at corrected significance level of individual two-tailed voxel-wise p <

0.05 using an AlphaSim corrected threshold of cluster p < 0.05.

shortFCD, short-range functional connectivity density; SD, sleep deprivation; RW, rested

wakefulness; R, right; L, left; BA, Brodmann’s area; MNI, Montreal Neurological Institute;

N/A, Not applicable.

Attention Network Test (ANT)
Before the MRI scan, all volunteers underwent an attention
network test (ANT) (1, 12, 35, 36). The ANT contained three
cue conditions (no cue, center cue, spatial cue) and two target

TABLE 2 | The binarized longFCD differences between SD and RW.

Brain regions of peak

coordinates

R/L BA Voxel

size

t-score

of peak

voxel

MNI

coordinates

X, Y, Z

Postcentral Gyrus,

Precentral Gyrus

R 3, 4 108 5.1923 51 −24 51

Superior Parietal

Lobule

R 7, 40 52 3.8173 33 −42 42

Postcentral Gyrus L 3, 4 40 4.0239 −42 −27 63

Supramarginal Gyrus R 39 42 −3.6057 51 −66 27

Between-group differences in binarized shortFCD thresholded at r = 0.3. The statistical

threshold was set at corrected significance level of individual two-tailed voxel-wise p <

0.05 using an AlphaSim corrected threshold of cluster p < 0.05.

longFCD, long-range functional connectivity density; R, right; L, left; BA, Brodmann’s area;

MNI, Montreal Neurological Institute; N/A, Not applicable.

conditions (congruent and incongruent). The visual stimuli
consisted of a row of five horizontal black arrows pointing
leftward or rightward with the target arrow in the center. The
participants responded to the direction of the central arrow by
pressing the left or right buttons of the computer mouse. The task
measured alerting, orienting, and conflict effects by calculating
the difference between the response time and the presentation
time under three different cue conditions. The accuracy rate
using corrected recognition, reaction time using only trials with
correct responses, and lapse rate using missing recognition, were
calculated.

Data Analysis
First, the first 10 time points of the functional images were
deleted, due to the possible instability of the initial MRI signal.
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The remaining data was analyzed by Data Processing & Analysis
for Brain Imaging (DPABI 2.1, http://rfmri.org/DPABI) toolbox
based on MATLAB2010a (Mathworks, Natick, MA, USA). The
data preprocessing contained the following steps: including the
format transformation, slice timing, head motion correction
spatial normalization to the Montreal Neurological Institute
(MNI) space, and smooth. The data of participants with >

1.5mm maximum translation in x, y, or z directions and >1.5◦

degree of motion rotation were removed. Based on the recent
work showing that higher-order models benefit from the removal
of head motion effects (37, 38), after the head motion correction,
The functional images were re-sampled at a resolution of 3× 3×
3 mm3 during the spatial normalization. Linear regression was
applied to remove the effects of spurious covariates, including
the Friston 24 headmotion parameters, global mean signal, white
matter and cerebrospinal fluid signal. Next, the functional images
were entered into temporally bandpass filtered (0.01–0.1Hz) and
linearly detrended.

Calculation of Long FCD and ShortFCD
Calculation Maps
The local and global FCD maps for each individual were
calculated in a gray matter (GM)mask. The number of functional
connections of a given voxel was considered as a degree of a node
in a binary graph. First, we defined the functional connectivity
between a given voxel with each of other voxels in the whole brain
with a correlation threshold of r > 0.25 (39). In the present study,
we adopted the threshold of r = 0.3 to calculate the FCD maps.
Second, the longFCD and shortFCD were defined based on the
neighborhood strategy. We defined the voxels with a correlation
threshold of r > 0.25 inside their neighborhood (radius sphere
≤6mm) as shortFCD, and defined the voxels with a correlation

FIGURE 5 | Binarized longFCD differences between SD and RW. The color in

the map represents the differences. The red color signifies increased binarized

longFCD in brain areas, and the blue signifies decreased binarized longFCD in

brain areas. longFCD, long-range functional connectivity density; SD, Sleep

deprivation; RW, Rested wakefulness; L, left; R, right.

threshold of r > 0.25 outside their neighborhood (radius sphere
> 6mm) as long FCD. Next, the shortFCD and longFCD maps
of each subject were divided by the mean value so as to convert
to Z scores to improve the normality. Finally, the shortFCD and
longFCD maps underwent spatial smoothing with a Gaussian
kernel of 6 × 6 × 6 mm3 full-width at half-maximum using
SPM8. The detailed procedure of the shortFCD and longFCD is
given in a previous study (29).

Statistical Analysis
Data was presented as mean ± standard deviation (mean ±

std). Pair t-tests were used for demographic factors (age, years
of education, and ANT findings). p < 0.05 was considered as
significant.

Pair t-tests were used to investigate the FCD differences in
regional brain areas of the subjects during the acute SD status
relative to the RW status. AlphaSim correction (threshold of
individual voxel of p < 0.05 and cluster level of p < 0.05) was
used to determine the statistical differences.

We used the receiver operating characteristic (ROC) curve
to investigate the ability of those binarized FCD differences
in regional brain areas to distinguish the SD status from the
RW status, and we used Pearson correlations to evaluate the
relationships between those binarized FCD differences in brain
areas and ANT during the SD status. The statistical threshold was
set at P < 0.05.

RESULTS

Ant Findings
Individuals at acute SD status showed a lower accuracy rate (acute
SD = 96.25 ± 2.32%, RW = 97.85 ± 1.77%; t = −2.482, p
= 0.023; Figure 1A) and a longer reaction time (acute SD =

635.27ms ± 82.68ms; RW = 540.01 ± 48.37ms; t = 5.013, p
< 0.001; Figure 1B) during the ANT relative to the individuals at
RW status.

FCD Differences Between-Groups
First, we performed one-sample t-test to explore the FCD
differences at within-group level for each group. Figure 2 shows
the shortFCD maps in the SD group (Figure 2A) and RW
group (Figure 2B), respectively. Figure 3 shows the longFCD
maps in the SD group (Figure 3A) and RW group (Figure 3B),
respectively. The covered differences in brain areas both in
binarized shortFCD and in binarized longFCD were larger in the
SD group than that of RW group.

Second, we performed pair t-tests to explore the FCD
differences between-groups. Compared with RW, acute SD
had significant decreased binarized shortFCD areas in the
left cerebellum posterior lobe, right cerebellum anterior lobe
(Figure 4A) and right inferior frontal gyrus (orbitofrontal
cortex), and increased binarized shortFCD areas in the left
occipital gyrus, bilateral thalamus, right paracentral lobule,
bilateral precentral gyrus, and bilateral postcentral gyrus
(Table 1, Figure 4B). Compared with RW, acute SD had
significant increased binarized longFCD areas in the right
precentral gyrus, bilateral postcentral gyrus, and right superior
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TABLE 3 | ROC curve for the binarized shortFCD differences in brain areas

between SD and RW.

Brain area AUC Sensitivity (%) Specificity (%) Cut off Point*

L _Cerebellum

Posterior Lobe

0.906 81.3 93.7 0.242

R_Cerebellum Anterior

Lobe

0.922 87.5 87.5 −0.0365

L_Cerebellum Posterior

Lobe

0.863 87.5 81.2 0.5555

R_Inferior Frontal Gyrus 0.977 87.5 100 −0.2065

L_Lingual Gyrus,

Middle Occipital Gyrus

0.91 93.8 81.2 0.3715

L, R_Thalamus 0.922 81.3 93.7 0.5005

R_Precentral Gyrus,

Postcentral Gyrus

0.922 87.5 87.5 0.16

L_Postcentral Gyrus 0.887 87.5 87.5 0.006

R_Postcentral Gyrus,

Paracentral Lobule

0.977 100 87.5 0.2995

L_Precentral Gyrus 0.961 87.5 93.7 −0.166

L_Postcentral Gyrus 0.914 93.8 75 0.1635

*Cut off point of mean shortFCD signal value.

ROC, Receiver operating characteristic; shortFCD, short-range functional connectivity

density; SD, Sleep deprivation; RW, Rested wakefulness; AUC, Area under the curve;

R, Right; L, Left.

parietal lobule in the visuospatial network, and decreased
binarized longFCD areas in the right supramarginal gyrus in the
default mode network (Table 2, Figure 5).

ROC Curve
The mean beta value of binarized shortFCD (Figure 6A) and
binarized longFCD (Figure 6B) differences in those altered brain
areas were extracted. These different binarized FCD differences
in brain areas were further used for the ROC curve to evaluate
their ability to distinguish the acute SD status from the RW
status. The area under the curve (AUC) values of those specific
binarized FCD differences in brain areas were (mean± std, 0.933
± 0.035; 0.863∼0.977). Further ROC curve demonstrated that
the binarized FCD differences in those regional brain areas alone
discriminated the acute SD status from the RW status with high
degree of sensitivities (mean± std, 89.19± 6%; 81.3∼100%) and
specificities (mean± std, 89.15± 6.87%; 75∼100%) (Tables 3–4,
Figure 7).

Pearson Correlation Analysis
The reaction time showed negative correlation with the mean
beta value of binarized shortFCD in the right inferior frontal
gyrus (r = −0.48, p = 0.032; Figure 8A), and the accuracy rate
demonstrated a positive correlation with the mean beta value of
binarized longFCD in the right supramarginal gyrus (r= 0.573, p
= 0.008; Figure 8B). None of the other correlations between the
mean beta value of binarized FCD in other different areas and the
ANT during the acute SD status were found (p > 0.05).

TABLE 4 | ROC curve for the binarized longFCD differences in brain areas

between SD and RW.

Brain area AUC Sensitivity (%) Specificity (%) Cut off

Point*

R_Postcentral

Gyrus, Precentral

Gyrus

0.965 81.3 100 0.2845

R_Superior

Parietal Lobule

0.973 100 87.5 0.0165

L_Postcentral

Gyrus

0.949 93.8 87.5 0.1275

R_Supramarginal

Gyrus

0.949 87.5 93.7 −0.048

*Cut off point of mean longFCD signal value.

ROC, Receiver operating characteristic; longFCD, long-range functional connectivity

density; SD, Sleep deprivation; RW, Rested wakefulness; AUC, Area under the curve;

R, Right; L, Left.

DISCUSSION

In the present study, we utilized shortFCD and longFCD
analysis to characterize the differences of intrinsic functional
connectivity induced by acute SD, and their correlations with
the ANT. Specifically, we found that acute SD was associated
with binarized shortFCD alterations in more regional brain
areas than that of binarized longFCD. Acute SD was associated
with a significant decrease in binarized shortFCD areas in the
cerebellum posterior/anterior lobe and orbitofrontal cortex, and
significant increase in the occipital gyrus, thalamus, paracentral
lobule, and precentral/postcentral gyrus. Using the binarized
longFCD method, only the supramarginal gyrus in the default
mode network with decreased binarized longFCD were observed
after acute SD relative to RW, and significantly increased
binarized longFCD in the precentral/postcentral gyrus and
visuospatial network were found. Furthermore, the ANT showed
correlations with the beta value of FCD differences in those brain
areas during the SD status. Recently, the ROC curve was widely
used to applied into the exploration of the reliability of one
neuroimaging approach as a potential indicator in distinguishing
one group from the other group (1, 40, 41). In general, an
AUC value between 0.9 and 1 is considered as excellent, while
a value between 0.8 and 0.9 is considered as good. In the present
study, the ROC curve demonstrated that the AUC values of the
binarized FCD differences in those brain areas showed good
discriminating abilities with extremely high AUC values (0.933
± 0.035; 0.863∼0.977). Further diagnostic analysis revealed that
the binarized FCD differences in those regional brain areas alone
discriminated the acute SD status from the RW status with
extremely high degree of sensitivity (89.19 ± 6%; 81.3∼100%)
and specificities (89.15± 6.87%; 75∼100%).

The default-mode network is thought to be associated
with self-referential mental activity (42), extraction of episodic
memory (43), sleep and daydreaming (1, 44), and social cognitive
processes related to decision making and self-regulation (45,
46). The orbitofrontal cortex, connected with prefrontal, and
deep structures known to mediate sensorimotor processing,
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FIGURE 6 | Binarized shortFCD value (A) and longFCD value (B) of between-group differences in brain areas. Data are mean ± standard error values. L, left; R, right;

shortFCD, short-range functional connectivity density; longFCD, long-range functional connectivity density; CPL, Cerebellum posterior lobe; CAL, Cerebellum anterior

lobe; IFG, Inferior frontal gyrus; LG, Lingual gyrus; PrG, precentral gyrus; PG, Postcentral gyrus; PL, Paracentral lobule; SPL, Superior parietal lobule; SG,

Supramarginal gyrus; SD, Sleep deprivation; RW, Rested wakefulness.

motivation, and self-evaluation, is thought to be responsible
for mediating the interactions between emotional processes
and cognitive functions (47, 48), and play a significant role
in fatigue, executive functions, attention, and motivation (49–
51). This area is particularly vulnerable to subjects with sleep
loss (40, 41, 52, 53). The decreased gray matter volume in the
orbitofrontal cortex has previously been reported in patients with
daytime sleepiness and chronic insomnia (54, 55). In the present
study, we found that acute SD was associated with a significant
decreased binarized longFCD within the default mode network
node and decreased binarized shortFCD in the right orbitofrontal
cortex, which showed an extremely high degree of sensitivity and
specificity in distinguishing the acute SD status from the RW
status. In addition, the accuracy rate of the ANT demonstrated
a positive correlation with the mean beta value of binarized
longFCD in the default mode network node, and the reaction
time of the ANT showed negative correlation with the mean
beta value of binarized shortFCD in the orbitofrontal cortex.
We speculated that the decreased long-/shortFCD in the default
mode network and orbitofrontal cortex implicated the brain’s
exertion of voluntary control to remain awake and perform,
which might be sensitive biomarkers for advanced cognitive
function.

Higher level visual brain areas are divided into two distinct
visual pathways: the object properties processing pathway and
the spatial properties processing pathway (56–58). The spatial
properties processing pathway runs from the occipital lobe up to
the posterior parietal lobe and has been called the dorsal system.
This system processes object localization and spatial attributes,
and is also essential for guidingmovements. Damage to the dorsal
pathway disrupts the ability to visualize locations or perceive
space. The postcentral gyrus is the main receptive region for
external stimuli as the location of the primary somatosensory
cortex. Recently the postcentral gyrus was implicated with the

default mode network (59), which are functional brain hubs
showing coupled slow signal fluctuations in the absence of
external stimuli during restful waking and sleep (60). The
thalamus is a vital region in integrating neural activity from
widespread neocortical inputs and outputs, and is thought to play
an important role in regulating state of sleep and wakefulness.
Previous PET studies have revealed that SD could increase the
metabolic rate of glucose in the visual cortex, somatosensory
cortex, and fusiform gyrus, which were much higher after 48 h
and 72 h than after 24 h SD (61, 62). Previous neuroimaging
studies observed disturbed regional spontaneous neural activities
in brain areas of the two visual pathways in insomnia patients
and individuals after SD (6, 15, 25, 40, 63). In the present study
we observed acute SD was associated with altered FCD areas in
the thalamus and dorsal system, including significant increased
binarized shortFCD areas in the occipital gyrus, thalamus and
postcentral gyrus, and increased binarized longFCD areas in the
postcentral gyrus and visuospatial network. The increased FCD
in these regions in the visual pathway could be considered a
compensatory effect to sustain the cognitive performance despite
a continuing decline of activity in the higher cognition related
areas. This may generate an excessive hyperarousal status, which
leads to increased sensory information processing (64).

There are extensive round-trip nerve interactive fibers
between the cerebellum posterior lobe(s) and the cerebral
cortex. The cerebellum posterior lobe(s) has been widely
used for adjusting nerve function, adjusting the start,
and planning and coordinating movement. It also works
together with the cerebrum to complete functions; such
as cognition, language, and emotion; and to initiate, plan,
and coordinate movement (65–67). In light of mounting
evidence for cerebellar involvement in various neurologic
and psychiatric conditions, including obstructive sleep apnea
(53), depression (68), primary insomnia (40, 63), mood
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FIGURE 7 | ROC curve of binarized FCD differences in regional brain areas. ROC curve of regional brain areas with decreased binarized shortFCD (A), increased

binarized shortFCD (B), increased binarized longFCD (C), and decreased binarized longFCD (D). ROC, Receiver operating characteristic; R, right; L, left; CPL,

Cerebellum posterior lobe; CAL, Cerebellum anterior lobe; IFG, Inferior frontal gyrus; LG, Lingual gyrus; PrG, precentral gyrus; PG, Postcentral gyrus; PL, Paracentral

lobule; SPL, Superior parietal lobule; SG, Supramarginal gyrus; SD, Sleep deprivation; RW, Rested wakefulness; shortFCD, short-range functional connectivity

density; longFCD, long-range functional connectivity density.

disorders (69) and sleep deprivation (6); this is crucial. In the
present study we found acute SD showed decreased shortFCD
in the cerebellum, which may indicate functional deficits
associated with decreased ability in adjusting coordinate
movement.

CONCLUSIONS

In summary, the longFCD and shortFCD analysis might
be sensitive biomarkers to locate the underlying altered

intrinsic brain functional organization in individuals
during SD status relative to RW status with high degree
of sensitivities and specificities. Specifically, the shortFCD
analysis is more sensitive to locating the functional
organization with more alterations in regional brain
areas than that of longFCD. In the present study, we
found that the longFCD and short FCDs in the high-
order cognition related areas decreased while the arousal
and sensorimotor related areas increased to sustain
the cognitive performance. These findings expand our
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FIGURE 8 | Pearson correlation between beta value of FCD differences in brain areas and ANT. ShortFCD, short-range functional connectivity density; longFCD,

long-range functional connectivity density.

knowledge and may help give us insight into a deeper
understanding of the neurobiological mechanisms of how
the functional organization was altered in the sleep-deprived
brain.

There are several limitations that should be noted. First,

our study has a relatively small sample size and future
studies with a larger sample size is necessary to corroborate

our findings. Second, the electronystagmogram has not
been used to dynamically monitor the sleep in the SD

procedure.
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