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Abstract

Expansion of CAG/CTG trinucleotide repeats is associated with certain familial neurological 

disorders, including Huntington's disease. Increasing evidence suggests that formation of a stable 

DNA hairpin within CAG/CTG repeats during DNA metabolism contributes to their expansion. 

However, the molecular mechanism(s) by which cells remove CAG/CTG hairpins remain 

unknown. Here, we demonstrate that human cell extracts can catalyze error-free repair of 

CAG/CTG hairpins in a nick-directed manner. The repair system specifically targets CAG/CTG 

tracts for incisions in the nicked DNA strand, followed by DNA resynthesis using the continuous 

strand as a template, thereby ensuring CAG/CTG stability. PCNA is required for the incision step 

of the hairpin removal, which utilizes distinct endonuclease activities for individual CAG/CTG 

hairpins depending on their strand locations and/or secondary structures. The implication of these 

data for understanding the etiology of neurological diseases and trinucleotide repeat instability is 

discussed.

Keywords

Trinucleotide repeat; DNA hairpin repair; incision; PCNA; Huntington's disease

Introduction

Expansion of trinucleotide repeats (TNRs) is tightly associated with at least 15 human 

familial neurological, neurodegenerative and neuromuscular disorders, including CAG 

repeat expansion-caused Huntington's disease (HD) and CTG repeat expansion-caused 

myotonic dystrophy 1,2. Each of these diseases is clinically distinct, and involves expansion 
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of a TNR at a unique site in the human genome. TNR expansion appears to share a similar 

biochemical/genetic mechanism, in which the expansion alters the function or expression of 

the gene in which it lies. For each disease, pathological symptoms are triggered and become 

progressively more severe when the number of repeats reaches and then exceeds a critical 

threshold. At the HD locus, CAG repeat lengths from 11 to 34 are not associated with 

disease pathology, while repeat lengths ≥35 result in clinical symptoms of HD. A particular 

mystery in the field is that TNR instability is associated with post-mitotic non-dividing cells 

(e.g., neurons) in an age-dependent and tract-length heterogeneous manner. At present, the 

mechanism by which TNR instability occurs has remained conjectural.

Since DNA expansions require DNA synthesis, TNR expansions must be associated with 

DNA replication and/or repair 1,2. One model suggests that TNR sequences, e.g., CAG and 

CTG repeats, tend to form hairpins via strand slippage in the newly synthesized or nicked 

strand during DNA replication or repair, leading to TNR expansion 1-6. This model is 

consistent with the observations that CAG and CTG repeats form very stable hairpins with a 

melting temperature higher than physiological temperature in mammalian cells 7-9. 

Therefore, TNR hairpins are expected to persist in vivo once they form, and to require an 

active mechanism for dissolution or removal, if TNR expansion is to be prevented. Indeed, 

human cells possess a hairpin repair (HPR) system to remove CAG and CTG hairpins in a 

nick-dependent manner 10. However, how the novel activity removes CAG/CTG hairpins is 

unknown.

To determine the molecular basis of this HPR system, we performed CAG/CTG HPR in 

human nuclear extracts using an in vitro assay that directly monitors repair intermediates 

and products. We show here that human cells conduct error-free repair of CAG/CTG 

hairpins in a strand-specific and PCNA-dependent manner. The repair is initiated by 

endonucleolytic incisions that specifically target the repeat tracts in the nicked strand, 

followed by DNA resynthesis using the continuous strand as a template. Our results support 

a notion that the HPR pathway is a primary system that ensures TNR stability in human cells 

and that defects in this system could lead to TNR instability and human diseases.

Results

CAG or CTG HPR in Human Cells is Error-Free

We developed an in vitro assay to study TNR HPR using nicked circular heteroduplex DNA 

substrates derived from the M13mp18 phage series (Fig. 1a). These heteroduplexes contain 

a (CAG)25 or (CTG)25 hairpin in the viral (V) or complementary (C) strand and a nick 5’ to 

the hairpin in the C strand. Since repair of loop-containing heteroduplexes, including CAG 

or CTG hairpins, is targeted to the nicked DNA strand 10-12, (CAG)25- or (CTG)25-HPR in 

this study was scored by monitoring repeat length changes in the nicked strand using a 

strand-specific 32P-labeled oligonucleotide as described 13,14.

HeLa nuclear extracts were incubated with the individual DNA substrates shown in Fig. 1a, 

and the repair results are shown in Fig. 1b. All four DNA substrates were efficiently 

repaired. For substrates with a hairpin on the V strand, i.e., V-(CAG)25 and V-(CTG)25, a 

slower migrating species was detected in reactions containing active HeLa extract (lanes 2 
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and 5, red squares), but not in reactions containing heat-inactivated (x) HeLa extract (lanes 1 

and 4). This species is 75-nt longer than the original substrate, indicating that the continuous 

strand was used as a template for repair DNA synthesis. For substrates having an extruded 

CAG or CTG hairpin on the C strand, i.e., C-(CAG)25 and C-(CTG)25, the repair product is 

75-nt shorter than the original substrate (lanes 8 and 11, red squares). However, a 32P-

labeled oligonucleotide specifically annealing to the V strand near the BglI site failed to 

detect any repeat number changes regardless of the presence of a hairpin in the non-nicked 

strand (data not shown); and repair assays performed with a covalently-closed circular 

substrate also showed little repair (data not shown). These results indicate that CAG/CTG 

HPR is indeed nick-directed 10. No repair products were detected in the presence of 

aphidicolin, a potent inhibitor of DNA polymerases α, δ, and ε (Fig. 1b). These 

observations are consistent with a repair mechanism involving excision/incision in the 

nicked strand followed by DNA re-synthesis using the continuous strand as a template. 

Therefore, the human CAG/CTG HPR mechanism is an error-free repair system.

A previous study reported that human cell extracts carry out error-prone repair when a CAG 

or CTG hairpin is in the nicked strand 10. The error-prone repair products, referred to as 

slipped intermediate heteroduplex DNAs (SI-DNAs), included CAG or CTG repeats of 

variable length. In contrast, the SI-DNAs were not detected in this study (Fig. 1b, lanes 

7-12). A possible explanation for this discrepancy is given in Discussion.

It is interesting to note that there is essentially no difference in total repair when a CTG- or a 

CAG-hairpin is present in the nicked strand (Fig. 1b, lanes 8 and 11); however, a CTG-

hairpin is repaired much less efficiently than a CAG-hairpin when it is located in the V 

strand (compare lane 5 with lane 2). This may be because a CTG hairpin is more stable 15 

and more resistant to unwinding than a CAG hairpin when acting as a template for repair. 

This result supports involvement of a DNA helicase in the processing a CTG/CAG hairpin in 

non-nicked strand 16.

Dual Incisions Remove CTG Hairpin in Nicked Strand

We examined the mechanism of TNR HPR in HeLa extracts by characterizing repair 

intermediates generated under reaction conditions that support DNA excision/incision, but 

not DNA synthesis, e.g., in the absence of dNTPs or in the presence of ddNTPs and 

aphidicolin. After incubation with HeLa nuclear extract, reaction products were cleaved with 

BsmBI and Bsu36I, and analyzed by Southern blot using a probe that anneals to the C strand 

near the BsmBI site (red bar, designated BsmBI probe hereafter) or near the BglI site (blue 

bar, designated BglI probe hereafter). Results of this analysis with C-(CTG)25 are shown in 

Fig. 2. When the BsmBI probe was used for Southern analysis, unrepaired DNA molecules, 

i.e., unreacted and nick-ligated substrates, appear as a heavy doublet at the top of the blot 

(bracket, Fig. 2a, lanes 1-5). Two putative reaction intermediates, corresponding to bands I 

and II, were detected, and they are smaller than the BsmBI-HindIII fragment, but larger than 

the BsmBI-EcoRI fragment (Fig. 2a, lanes 3-5). Since (CTG)35 repeats were cloned within 

HindIII and EcoRI sites (see Fig. 1a) and since bands I and II are discrete products, our 

results suggest that the intermediates are likely produced by incisions targeting the repeats 

(see Fig. 2c, diagrams 1 and 2), rather than by excision as previously proposed10. In fact, we 
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could not detect intermediates shorter than the intact substrate but longer than band I - which 

would correspond to products of excision starting at the nick - during the course of the 

reaction.

The same blot was also probed with the BglI probe (Fig. 2b, blue bar), which anneals to the 

C-strand near the BglI site, i.e., the nick site. If the reaction proceeded via nick-directed 

excision, the target of this probe would have been degraded. Besides identifying unrepaired/

unreacted DNA molecules (bracketed), the BglI probe also detected four putative reaction 

intermediates (Fig. 2b, bands a-d), indicating that incisions but not excisions must have 

occurred. Proposed structures for these four incision intermediates are shown in Fig. 2c 
(diagrams 3-6). We believe that intermediates c and d are derived from intermediates a and 

b, respectively, by ligation to the 78-nt Bsu36I-BglI fragment. Consistent with this 

prediction, intermediates a and b were the only bands detected when reaction products were 

digested with BsmBI and BglI (Fig. 2d). Furthermore, products c and d migrated between 

fragments Bsu36I-HindIII and Bsu36I-EcoRI (Supplementary Fig. 1 on line), and were 

detected by a probe for the Bsu36I-BglI fragment (data not shown). Because products c and 

d are more abundant than products a and b (Fig. 2b), and because the nick is required for 

CAG/CTG HPR (data not shown, and 10), it appears that the nick is rapidly ligated after 

incisions occur.

Based on the above results, we propose that HeLa cell extracts introduce dual incisions on 

either side of the CTG hairpin (Fig. 2c), resulting in release of the hairpin from the DNA 

substrate. We tested this possibility by performing C-(CTG)25 hairpin repair in a time 

course, and the repair products/intermediates were analyzed with a 32P-labeled (CAG)10 

probe (purple line in Fig. 2e). As expected, this probe identified CTG repeat-containing final 

repair product (red rectangle) and intermediate b, but not intermediate a, which contains 

little CTG repeats (Fig. 2e). In addition, the (CAG)10 probe also detected a product (purple 

oval, Fig. 2e) that migrates faster than the (CTG)35-containing BsrBI-HindIII fragment. The 

size and the CTG repeat-containing nature of the product suggest that it is likely the dual 

incision-released CTG hairpin. This notion is also supported by the fact that the product was 

undetectable by the BglI probe (Fig. 2f). Therefore, HeLa cell extracts remove CTG hairpins 

in the nicked strand by incisions on either side of the hairpin.

We estimated the lengths of the incision intermediates, using the migration distances of the 

molecular markers in Fig. 2 (e and f) as standards, as described 17. The estimated nucleotide 

lengths for products a and b are 168 nt and 230 nt, respectively (see Supplementary Fig. 2), 

suggesting that the 5’ incision (generating products I and a) is ~ 20 nt 3’ to the HindIII 

cleavage site (see black-boxed G in Fig. 1a), while the 3’ incision (generating products II 

and b) is ~ 29 nt 5’ to the EcoRI cleavage site (see black box near the 3’ base of the CTG 

hairpin in Fig. 1a). These data provide further support for dual incisions of C-(CTG)25 

hairpin.

It is also noted that the incision to generate product a or I occurred initially, as early as 1 

min, followed by the incision to generate product b or II (Fig. 2a,b). These incision 

intermediates were gradually converted to the final repair products (Fig. 2e,f), and 

eventually disappeared after 45-min incubation (data not shown).
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Formation of a 5’ Flap During Nicked Strand CAG HPR

The repair intermediates of substrate C-(CAG)25 were also examined using a similar 

approach. When the BsmBI probe was used in the Southern hybridization (Fig. 3a), three 

putative reaction intermediates (bands I, II, and III) were detected, as well as a smeared 

region between the unreacted DNA substrate (see small bracket) and band I. Band I is 

slightly smaller than the HindIII-BsmBI fragment; band II appears to be in the middle of the 

HindIII-EcoRI fragment, i.e., the loop of the hairpin; band III has a similar size as the 

EcoRI-BsmBI fragment (Fig. 3a). Minor products smaller than band III were also seen 

(larger bracket). These DNA molecules could be produced by excision, multiple incisions, or 

both. When the same blot was hybridized with the BglI probe (Fig. 3b), two slightly 

smeared bands were observed, corresponding to bands a and b. The size of band a suggests 

incision between the HindIII and EcoRI sites (see markers in lane 1), and band b could be 

generated from band a by ligation to the 78 nt Bsu36I-BglI fragment (Fig. 3c, diagrams 4 

and 5). Indeed, band b migrates between the HindIII-Bsu36I and EcoRI-Bsu36I fragments 

(Fig. 3b, lane 7). Because product II (Fig. 3a) and product a or b (Fig. 3b) correspond to 

cleavage sites between the HindIII and EcoRI sites, they are likely to result from incision at 

or near the loop of the CAG hairpin, with product a or b representing the 5’ portion and 

product II representing the 3’ portion of the same molecule (Fig. 3c, diagrams 2, 4, and 5).

In Fig. 3a, band I is abundant and is likely generated by cleavage at a site closer to the nick 

(the BglI site) than bands II and III. However, a product corresponding to band I was not 

detected when the same blot was probed with the BglI probe (Fig. 3b). Furthermore, there is 

a smear on the blot between the unrepaired DNA substrate and band I (Fig. 3a), 

corresponding to multiple incision or excision events between the nick (BglI) site and the 5'-

end of the CAG hairpin (Fig. 3a, also dashed line in c). These observations suggest that band 

I may be generated by excision that is terminated at or near the 5' base of the CAG hairpin, 

leaving the hairpin unremoved. However, whether the excision is terminated by the physical 

structure of the CAG hairpin or a protein-DNA complex at the 5’ base of the hairpin is 

unknown. Band II may be produced by cleavage at the loop of the CAG hairpin, such that 

band II would include approximately half of the CAG repeat units. We propose that bands I 

and II would require further processing to ensure error-free HPR, and that the remaining 

CAG repeats in these molecules might form a 5’ flap.

Band III in Fig. 3a appeared after incubation for 15 to 30 min, and its size corresponds to 

incision near the EcoRI site. We therefore hypothesize that band III could be derived from 

bands I and II via removing the CAG repeat-containing flap structure by a 5’ flap 

endonuclease. We tested this idea by incubating repair intermediates generated in HeLa 

extracts with purified recombinant FEN-1. As shown in Fig. 3d, incubation of C-(CAG)25 

intermediates with FEN-1 produces a DNA molecule similar in size to the EcoR1-BsmBI 

fragment (left panel, lane 5). Interestingly, when the same blot was probed with a 32P-

labeled (CTG)10 probe, a series of small fragments were identified in the reaction containing 

FEN-1 (right panel, lane 5) but not in reactions lacking FEN-1 (right panel, lane 4). These 

observations strongly suggest that a CAG flap forms during repair of the C-(CAG)25 hairpin 

in HeLa nuclear extracts, which can be further processed by a flap endonuclease.
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It is worth mentioning that although product II and band a/b were derived from the same 

incision (Fig. 3c, diagrams 2, 4, and 5), the signals for band a/b (Fig. 3b) are much weaker 

than for band II (Fig. 3a). We believe that the major reason is that some of the CAG 

substrate undergo 5’→3’ excision from the strand break toward to the HindIII site (see 

dashed lines in Fig. 3c), which generates band I (Fig. 3a,c). As described above, the incision 

product for band I was not identifiable by the BglI probe (Fig. 3b), as the probe target was 

destroyed by the excision activity. Likewise, the excision activity may have removed the 

BglI probe target sequence of band a before and/or after the incision to generate band a is 

made (Fig. 3c, diagram 4), leading to its reduced detection. This is supported by the fact that 

band a consists of a series of smeared species (Fig. 3b). Because of the excision, less band a 

can be converted to band b by ligations, resulting in reduced formation of band b.

Repair of Continuous Strand Hairpins via Incisions

The intermediates that form during repair of (CAG)25 and (CTG)25 hairpins in the 

continuous V strand were also examined (Fig. 4). When the Southern blots were analyzed 

with the BsmBI probe (Fig. 4a), two major putative reaction intermediates was detected 

within the HindIII-EcoRI region for both substrates, indicative of incision or incision/

excision opposite the hairpin. When the same membrane was probed for incisions with the 

BglI probe, both substrates showed putative intermediates between the HindIII and EcoRI 

markers (Fig. 4b), suggesting targeted incision(s) within repeat sequences opposite the 

hairpin, with or without ligation of the nick at the BglI site. However, the abundance of 

reaction intermediates appeared to be higher for the (CAG)25 DNA substrate, consistent with 

the fact that V-(CAG)25 is repaired more efficiently than V-(CTG)25 (see Fig. 1b).

We noted some subtle differences in reaction intermediates detected by the BsmBI probe 

(Fig. 4a) and the BglI probe (Fig. 4b). For substrate V-(CAG)25, both probes identified two 

major repair intermediates, indicating that two incisions occur during repair of V-(CAG)25 

heteroduplex. However, for substrate V-(CTG)25, a putative intermediate near the HindIII 

site (asterisk, lanes 8-10 in Fig. 4a), which represents ~ 15% of the partially repaired DNA 

molecules, was identified by the BsmBI probe, but the corresponding intermediate was not 

detected in Fig. 4b (lanes 8-10). This discrepancy suggests that this intermediate is 

generated by excision, because excision removes the target sequence for the BglI probe used 

in Fig. 4b. Furthermore, minor faster-migrating bands (see brackets) detected in Fig. 4a may 

be produced by non-specific DNA degradation, which occurs when reactions do not support 

DNA repair synthesis. Taken together, the results shown here suggest that repair of V-

(CAG)25 and V-(CTG)25 occurs predominantly via incisions in the nicked strand opposite 

the hairpin.

Requirement for PCNA in CAG/CTG HPR

Proliferating cellular nuclear antigen (PCNA) is required at the initiation stage of nick-

directed mismatch repair 18. Therefore, we tested whether PCNA might play a role in 

CAG/CTG HPR in vitro. Repair assays were performed in the presence of a purified p21 C-

terminal peptide (p21C), which strongly inhibits PCNA functions in DNA replication and 

repair 18-20. As shown in Fig. 5a, p21C almost completely inhibited repair of (CTG)25 and 

(CAG)25 hairpins by HeLa nuclear extracts (lanes 3, 7, 11, and 15); and the inhibition was 
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reversed by adding purified PCNA to the in vitro repair assay (lanes 4, 8, 12, and 16). 

Furthermore, in the presence of aphidicolin, p21C strongly inhibited incisions between the 

HindIII and EcoRI sites (Fig. 5b, lanes 3 and 7 and Fig. 5c, lanes 3 and 7), and this 

inhibition was reversed by addition of purified PCNA to the reaction (Fig. 5b, lanes 4 and 8 

and Fig. 5c, lanes 4 and 8). These observations strongly suggest that PCNA is required at or 

prior to the incision step for repair of all CAG/CTG hairpins in human cell extracts.

Discussion

We demonstrate here that human cell extracts catalyze error-free nick-directed removal of 

CAG/CTG hairpins in a manner dependent on PCNA and endonucleolytic incisions. The 

repair mechanism by which the CAG/CTG hairpin is incised is greatly influenced by the 

strand location, sequence specificity and secondary structure of the hairpin. These 

observations suggest that TNR HPR is a complex process, which may involve subtly 

different enzymes in different biological contexts. Thus, it may be inappropriate to propose a 

single general model to explain expansion of different TNR sequences associated with 

human neurological diseases.

Mechanisms of CAG/CTG Hairpin Removal

A previous study proposed that CAG/CTG hairpin is removed by exonuclease activities 10. 

However, evidence presented in our study strongly suggests that incisions, rather than 

excisions, are primarily responsible for CAG/CTG hairpin removal. A model for 5’ nick-

directed CAG/CTG HPR via incisions in human cells is presented in Fig. 6.

For heteroduplexes with a CTG hairpin in the nicked strand (Fig. 6a), an incision at each 

side of the hairpin releases the heterology (Fig. 2). The resulting small gap is filled by an 

aphidicolin-sensitive polymerase, followed by strand ligation. For heteroduplexes containing 

a CTG hairpin in the continuous strand (Fig. 6b), a single incision occurs opposite the 

hairpin in the nicked strand (Fig. 4a,b, right panels). The incision-generated strand break 

may facilitate helicase-mediated unwinding of the CTG hairpin. A minor product (~15%), 

likely derived from excision (see asterisk in Fig. 4a), could also undergo unwinding to 

removal the CTG hairpin. Previous studies in yeast suggest that Srs2 helicase may promote 

CAG/CTG stability, presumably by unwinding CAG/CTG hairpins 16. A similar mechanism 

is also used for repair of CAG hairpins in the continuous strand (Fig. 6c), although two 

incisions appear to occur opposite the hairpin (Fig. 4a,b, left panels). For a CAG hairpin in 

the nicked strand (Fig. 6d), an incision in the hairpin loop and an excision from the nick to 

the 5’ base of the hairpin appear to occur simultaneously (Fig. 3). The coordination of these 

activities is essential for error-free repair of the CAG hairpin. In this case, a 5’ flap 

containing CAG repeats may form, and can be removed by a flap endonuclease such as 

FEN-1 (Fig. 3c-e) before gap-filling and ligation. PCNA is required at or prior to incisions 

for all CAG/CTG hairpin substrates tested in this study (Fig. 5).

Consistent with our finding here that TNR HPR involves incisions, FEN-1 and the nuclear 

excision repair (NER) pathway, where DNA lesions are removed via endonucleases 21-23, 

have been implicated in TNR stability 1,2. However, the published results are quite 

controversial. Whereas a lack of the NER function dramatically increases the instability of 
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TNR sequences in E. coli 24,25, a depletion of NER genes (including ERCC1 and XPG) in 

human cells stabilizes TNR sequences 26. A recent study suggests that NER proteins play no 

roles in CAG/CTG HPR in human cell extracts 10. Whether or not these discrepancies are 

related to organism- or species-specificity and/or TNR sequence-specificity remains to be 

determined. Our results in this study suggest that if NER is involved in TNR HPR, it may 

participate in repair of TNR hairpins located in the nicked DNA strand. This is because the 

dual incisions observed in repair of the CTG hairpin in the nicked strand (Fig. 2) resemble 

endonuclease cleavages of DNA lesions by NER 21-23. Further investigations are needed to 

clarify this issue. Controversies also exist concerning the involvement of FEN-1 in TNR 

stability. Genetic studies in yeast indicate that deletion of Rad27 (yeast FEN-1 homolog) 

destabilizes CAG/CTG tracts and other simple repeats 27-29, but cells from FEN-1 knockout 

mice do not display TNR instability 30. Studies using purified FEN-1 protein to process 

TNR hairpins also gave distinct results 31-33. Our data suggests that FEN-1, if involved, may 

only play a role in processing CAG hairpins formed in the nicked strand (Fig. 3), and this 

substrate specificity may explain discrepancies observed in previous studies.

HPR ensures replication fidelity of TNRs

A recent study reported that CAG/CTG HPR occurs in either an error-free and or error-prone 

manner in human cells 10. Interestingly, the error-free repair is always observed in DNA 

substrates with a CAG/CTG hairpin in the continuous strand, and the error-prone repair is 

always associated with substrates with a hairpin in the nicked strand. The error-prone repair 

is believed to result from incomplete excision of CAG/CTG hairpins, followed by gap-filling 

and ligation 10. These products were referred to as SI-DNAs. However, the SI-DNAs were 

not observed in our study (Fig. 1b, lanes 8 and 11). This discrepancy is likely due to 

differences in the assay systems used in these two studies. In our study, repair products and 

intermediates were analyzed by Southern blot and detected using highly specific 32P-labeled 

DNA probes that recognize repair products and intermediates. In contrast, HPR in the 

previous study was scored by incorporations of [α-32P]-dNTPs 10. Although we cannot rule 

out the possibility that the [α-32P]-dNTP incorporation assay is more sensitive than 

Southern blot analysis to pick up minor intermediates/products, previous cell-free studies 

have documented that the 32P-incorporation approach results in substantial products 

unrelated to heteroduplex repair 34,35. Therefore, the SI-DNAs could be non-specific minor 

products and/or intermediates of TNR repair. In particular, they may be derived from primer 

extensions using incision-generated (CTG)n fragments (Fig. 2f) or (CAG)n fragments (Fig. 
3d) as primers in the presence of [α-32P]-dNTPs, side products that would not be detected in 

our assay.

The nick-directed strand-specific HPR resembles the nature of DNA mismatch repair 

(MMR), which ensures replication fidelity by targeting repair in the newly synthesized 

(nicked) strand in a nick-directed manner 36. Coincidently, PCNA is required for the 

initiation step of both MMR 18,19 and TNR HPR (Fig. 5). It is likely that PCNA, an 

important factor in DNA replication, may act to direct the strand-specificity for both repair 

reactions. We therefore conclude that like MMR, the HPR activity described here promotes 

replication fidelity of TNR tracts in human cells. Therefore, it is expected that defects in this 

repair pathway will cause TNR instability and human diseases.
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It is worth mentioning that despite its role in removing replication-associated insertion/

deletion mispairs, mismatch recognition protein MutSβ (MSH2-MSH3) has been shown to 

promote CAG repeat instability in transgenic animals 37,38. It is proposed that binding to 

(CAG)n-hairpins alters MutSβ biochemical and biophysical activities required for MMR, 

leading to hijacking the MMR process and inhibiting CAG hairpin removal 39. However, our 

recent studies reveal that MutSβ exhibits identical properties during its interaction with a 

mismatch and a CAG hairpin and that MutSβ binding does not interfere with CAG/CTG 

HPR in human cells extracts 40. Therefore, if MutSβ is indeed involved in promoting CAG 

repeat expansions in human cells, it may not be through inhibition of HPR. A recently study 

suggests that MutSβ may influence CAG/CTG repeat instability by a mechanism involving 

transcription 41. Further investigations are required to evaluate the role of MutSβ in TNR 

stability.

Methods

Preparation of CAG/CTG Hairpin Substrates

We cloned oligonucleotide 111-mer duplexes containing (5’-CAG-3’)35/(3’-GTC-5’)35 or 

(5’-CTG-3’)35/(3’-GAC-5’)35 and oligonucleotide 36-mer duplexes containing (5’-

CAG-3’)10/(3’-GTC-5’)10, or (5’-CTG-3’)10/(3’-GAC-5’)10 into HindIII and EcoRI sites of 

bacterial phage M13mp18 replication form (RF) DNA (Fig. 1a) to create M13mp18 

derivatives M13mp18-(CAG)35, M13mp18-(CTG)35, M13mp18-(CAG)10, or M13mp18-

(CTG)10, respectively. We confirmed the individual derivatives by DNA sequencing. 

Nicked-heteroduplex containing a (CAG)25 or (CTG)25 hairpin either in the nicked or 

continuous strand was constructed essentially as described for mismatched 

heteroduplexes 19. For example, to generate a heteroduplex containing a (CAG)25 hairpin in 

the complementary (C) strand, M13mp18-(CTG)35 RF DNA (containing 35 repeats of CAG 

in C strand) was first linearized with BglI and then hybridized with M13mp18-(CTG)10 

single-stranded phage DNA. This hybridization forms a heteroduplex containing (CAG)35 in 

the C strand and (CTG)10 in the viral (V) strand, resulting in a (CAG)25 hairpin in the C 

strand. This substrate was designated 5’ C-(CAG)25 (see Fig. 1a), meaning that it has a 

(CAG)25 hairpin in the C strand and a nick 5’ to the hairpin. Conversely, substrate 5’ C-

(CTG)25 stands for having a (CTG)25 hairpin in C strand and a strand break 5’ to the 

heterology. Two additional substrates, 5’ V-(CAG)25 and 5’ V-(CTG)25, were also similarly 

prepared (see Fig. 1a). The nick for all substrates is at the BglI site in the C strand, and is 

164 bp or 149 bp away from the hairpin, depending if the hairpin is in the C or V strand, 

respectively.

Cell Culture and Nuclear Extract Preparation

We cultured HeLa S3 cells to a density of 5 × 105 cells ml−1 in RPMI 1640 with 5% (v/v) 

FBS (Hyclone) and 4 mM glutamine at 37 °C in a 5% CO2 atmosphere, and prepared 

nuclear extracts according to Holmes et al. 34.

CAG/CTG hairpin repair and Analysis of Repair Intermediates

Unless mentioned otherwise, we performed CAG/CTG hairpin repair (HPR) by Southern 

blot analysis as described 13,14. Briefly, 42 fmol of DNA heteroduplex were incubated with 

Hou et al. Page 9

Nat Struct Mol Biol. Author manuscript; available in PMC 2016 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



100 μg of HeLa nuclear extracts in a 40-μl reaction containing 20 mM Tris-HCl (pH 7.6), 

110 mM KCl, 5 mM MgCl2, 1.5 mM ATP, 1 mM glutathione, and 0.1 mM each of the four 

dNTPs at 37°C for 30 min. Reactions were terminated by incubating with protease K (30 μg 

ml−1) at 37°C for 20 min. DNA was recovered by sequential phenol extraction and ethanol 

precipitation and digested with BsrBI and BglI. The resulting DNA products were separated 

on a 6% denaturing polyacrylamide gel, followed by electrotransferring to nylon membrane. 

The membrane was probed with a 32P-end labeled oligonucleotide specifically annealing to 

the BsrBI-BglI fragment in the nicked strand (see Fig. 1) to score for conversion of 35 

CAG/CTG repeats to 10 CAG/CTG repeats or vice versa. Repair products, as well as 

unrepaired molecules, were visualized by exposing to X-Ray film. Repair efficiency was 

quantified by KODAK Image Station 2000 (Kodak, Rochester, NY).

To analyze the repair intermediates, we conducted in vitro assay in the absence of exogenous 

dNTPs and the presence of 0.15 mM of aphidicolin and 0.5 mM ddNTPs to block repair 

DNA synthesis. Unless specified, DNA samples were digested with BsmBI and Bau36I. 

After electrophoresis, reaction intermediates were subjected to Southern blot analysis 

using 32P-labeled oligonucleotide probes specifically annealing to the BsmBI-Bau36I 

fragment in the nicked strand.

Purification of PCNA, p21C and FEN-1 Proteins

We expressed human recombinant PCNA, C-terminal domain of p21Cip1/WAF (p21C) in E. 
coli BL21 (DE3) cells and purified them to homogeneity as previously described 19. The 

human FEN-1 expression vector was a gift from Binghui Shen (City of Hope) and the 

protein was overexpressed in E. coli BL21 (DE3) cells and purified to homogeneity as 

described 43.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Error-Free CAG/CTG HPR in Human Extracts
(a) DNA hairpin substrates. Circular DNA substrates contain a (CAG)25 or (CTG)25 hairpin 

either in the complementary (C) or viral (V) strand and a strand break 5’ to the hairpin (see 

Methods). The CAG (blue type/line) and CTG (red type/line) repeats are located between 

HindIII and EcoRI restriction enzyme sites. Sequence compositions of the (CTG)25 hairpin 

in C strand and the predicted secondary structure of the hairpin are given, while other 

substrates are depicted by colored lines at right. Different shapes for CAG and CTG hairpin 

heteroduplexes reflect their secondary structure as a random-coil and hairpin, 

respectively 42. Blue and red bars represent oligonucleotide probes complementary to the 

indicated locations in the nicked strand near the BglI and BsmBI sites, respectively. (b) 

CAG/CTG HPR assay. Individual heteroduplexes were incubated with active (+) or heat-

inactivated (x) HeLa nuclear extracts in the presence or absence of aphidicolin (Aph), as 

indicated. Bands with red squares indicate HPR products. Diagrams on the left or right side 

of the gel show substrates (Sub) and repair products (Rep) for hairpins in the V or C strand, 

respectively. Blue bar shows 32P-labed oligonucleotide probe annealing near to the BglI site 

(see a) in the nicked strand.
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Figure 2. Removal of Nicked Strand CTG Hairpin by Dual Incisions
(a) and (b) Analyses of repair intermediates. Repair intermediates were obtained by 

incubating C-(CTG)25 substrate with HeLa extracts under conditions of no DNA synthesis, 

and DNA samples were digested with Bsu36I and BsmBI and analyzed by Southern 

hybridization using an oligonucleotide probe (the BsmBI probe, see Fig. 1) complementary 

to the nicked strand near the BsmBI site (a) or a probe (the BglI probe, see Fig. 1a) 

complementary to nicked strand near the BglI site (b). (c) Schematic diagrams of individual 

repair intermediates identified in a (red type) and b (blue type). (d) Detecting repair 

intermediates by the BglI probe after digesting DNA samples with BglI and BsmBI. (e) and 

(f) Repair assays in time course. Reactions were performed under normal repair conditions 

as described in Fig. 1b, except for the incubation times as indicated. Repair products were 

detected by a 32P-labeled (CAG)10 oligonucleotide probe (e) or the BglI probe (f).
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Figure 3. Analysis of Repair Intermediates of Substrate C-(CAG)25
Repair intermediates were obtained and analyzed as in Fig. 2. (a) Intermediates detected by 

an oligonucleotide probe complementary to the nicked strand near the BsmBI site (the 

BsmBI probe, see Fig. 1a). (b) Intermediates detected by a probe complementary to nicked 

strand near the BglI site (the BglI probe, see Fig. 1a). (c) Schematic diagrams of individual 

intermediates obtained in a (diagrams 1-3) and b (diagrams 4 and 5). Dashed fragments 

indicate regions where DNA excision may occur, which produces product I. (d) Cleavage of 

C-(CAG)25 repair intermediates by FEN-1. Repair intermediates (lane 3) were obtained by 

incubating C-(CAG)25 with HeLa extracts for 5 min and treated with or without purified 

FEN-1 as indicated, followed by Southern analysis using the BsmBI probe (left panel) or a 

(CTG)10 oligonucleotide probe (right panel, purple line).
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Figure 4. Analysis of Repair Intermediates of Substrates V-(CAG)25 and V-(CTG)25
Repair intermediates were obtained as described in Fig. 2, and analyzed by Southern 

hybridization using the BsmBI probe (a) or the BglI probe (b). Reactions 1-5 and 6-10 in 

each panel show repair intermediates for substrates V-(CAG)25 and V-(CTG)25, respectively.
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Figure 5. PCNA Is Required for CAG/CTG HPR
(a) Inhibition of CAG/CTG HPR by p21C. Repair assays were performed as described in 

Fig. 1b, but in the presence or absence of p21C and/or PCNA. Repair products are 

highlighted by red rectangles. Sub and Rep stand for substrate and repair product, 

respectively. (b) and (c) PCNA is required at or prior to the incision reaction. Repair 

reactions were carried out in p21C-inactivated HeLa extracts in the presence or absence of 

exogenous PCNA, as indicated, and under the conditions of no DNA synthesis. Repair 

intermediates of individual substrates were analyzed by Southern hybridization using the 

BsmBI probe. Letter “x” indicates heat-inactivated HeLa extracts. Schematic diagram of 

DNA fragments on the left or right side of an autograph is specific for the left or right part of 

the gel, respectively.
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Figure 6. Model of CAG/CTG HPR in Human Cells
CAG/CTG HPR specifically targets repeat tracts for incisions in the nicked DNA strand, and 

the resulting gap is filled by an aphidicolin-sensitive DNA polymerase using the continuous 

strand as a template. However, distinct endonuclease activities are required for processing 

structure- and sequence-specific CAG/CTG hairpins. While repair of a CTG hairpin located 

in the nicked strand involves an incision on either side of the hairpin (a), removal of a CTG 

hairpin located in the continuous strand is via a single incision in the nicked strand opposite 

the hairpin (b). Conversely, removing a CAG hairpin in the continuous strand seems to 

require only one type of endonuclease activity (c), but removing the same hairpin in the 

nicked strand involves at least three different nuclease activities (d). For more details, see 

Discussion.
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