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Simple Summary: Although immune checkpoint inhibitors (ICIs) have achieved great progression
in cancer treatment, the efficacy of ICI monotherapy is still limited. Meanwhile, the negative efficacy
of thermal ablation for liver metastases is the high rate of local tumor progression. Since thermal
ablation-induced inflammation and increases in tumor antigens have been suggested to promote the
cancer-immunity cycle, thermal ablation and ICI can boost the immune response against cancer cells
as one of the positive synergy effects. The findings of preclinical and clinical research have provided
supportive evidence for the combination of ICIs with thermal ablation reversing T-cell exhaustion
and demonstrating synergy. However, the clinical feasibility of immune response activation by
combination therapy with ICI monotherapy and thermal ablation appears to be limited, it may be not
very common phenomena.

Abstract: Cancer immunotherapy, which reactivates the weakened immune cells of cancer patients,
has achieved great success, and several immune checkpoint inhibitors (ICIs) are now available in
clinical practice. Despite promising clinical outcomes, favorable responses are only observed in a
fraction of patients, and resistance mechanisms, including the absence of tumor antigens, have been
reported. Thermal ablation involves the induction of irreversible damage to cancer cells by localized
heat and may result in the release of tumor antigens. The combination of immunotherapy and thermal
ablation is an emerging therapeutic option with enhanced efficacy. Since thermal ablation-induced
inflammation and increases in tumor antigens have been suggested to promote the cancer-immunity
cycle, the combination of immuno-oncology (IO) therapy and thermal ablation may be mutually
beneficial. In preclinical and clinical studies, the combination of ICI and thermal ablation significantly
inhibited tumor growth, and synergistic antitumor effects appeared to prolong the survival of patients
with secondary liver cancer. However, evidence for the efficacy of ICI monotherapy combined with
thermal ablation is currently insufficient. Therefore, the clinical feasibility of immune response
activation by ICI monotherapy combined with thermal ablation may be limited, and thermal ablation
may be more compatible with dual ICIs (the IO–IO combination) to induce strong immune responses.

Keywords: immune checkpoint inhibitor; immuno-oncology; information dissemination; liver
metastasis; thermal ablation; tumor antigen

1. Introduction

Cancer immunotherapy has opened a new era in the field of oncology and may
revolutionize cancer treatment for patients with advanced or metastatic solid tumors.
Recent studies on immune checkpoint inhibitors (ICIs) demonstrated that their inhibitory
effects prevented the blockade of the immune system by cancer cells attempting to escape
their own destruction [1–3]. However, the efficacy of ICIs remains limited, and only a
fraction of patients (<40%) respond to immuno-oncology (IO) drugs [4], which has been
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attributed not only to the complexity of the immune system, but also to it being a tightly
regulated network [5]. Several resistance mechanisms have been identified and include
the absence of tumor antigens, T-cell exhaustion in the tumor microenvironment (TME),
and overexpression of β-catenin [6]. Therefore, the enhancement of antitumor immune
responses, as a strategy to overcome resistance to ICIs, is urgently needed.

Although hepatic resection remains the only potentially curative option for patients
with secondary liver cancer, minimally invasive locoregional therapies, including radiofre-
quency and microwave ablation, have been used to treat unresectable liver metastases.
The majority of thermal ablation systems consist of a generator and needle electrode that
delivers energy directly to the targeted tumor for cell death. Thermal ablation may induce
local inflammation and release multiple biomolecules, such as tumor antigens, into the
circulation. Locoregional thermal ablation has the potential to promote anticancer immune
responses [7–9], and a very rare event associated with this therapy is the abscopal effect,
which induces spontaneous distant tumor regression [10]. However, immunomodulatory
synergy by combination therapies may induce systemically effective antitumor immunity.
The findings of preclinical and clinical studies revealed that the combination of ICIs and
thermal ablation significantly inhibited tumor growth, and synergistic antitumor effects
appeared to prolong the survival of patients with secondary liver cancer. We herein discuss
the efficacy of immunotherapy combined with thermal ablation.

2. Background
2.1. Immune Resistance and Tumor Antigens

Cancer cells are either resistant to immunotherapy (primary resistance) or initially
respond and then develop resistance (acquired resistance) [11]. Resistance may also be
classified as intrinsic or extrinsic to tumor cells [12]. Tumor-intrinsic factors include the de-
pletion of neoantigens, defective antigen presentation, aberrant interferon signaling, tumor-
induced exclusion/immunosuppression, and plasticity of tumor cells. Tumor-extrinsic
factors include the lack of tumor T-cell infiltration and immunosuppression in the TME.
The combination of tumor-intrinsic and -extrinsic factors induces a resistance to therapy,
which leads to three different outcomes: (i) an insufficient antitumor T-cell response, (ii) the
inactivation of tumor-specific T cells, and (iii) a weak memory T-cell response [13].

There are various mechanisms of immune resistance. At the first step of the cancer
immunity cycle, the lack of sufficient tumor antigens and alterations in antigen processing
and/or tumor antigen presentation have been implicated in impaired antitumor T-cell
responses [14,15], and inadequate T-cell functions may induce various immunosuppressive
reactions in the TME [16]. As one of the positive synergy effects, tumor antigen release
by thermal ablation and monoclonal antibodies, targeting either the programmed cell
death protein (PD-1) or its ligand PD-L1, can boost the immune response against cancer
cells (Figure 1).
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A previous study examined sequential changes in serum carcinoembryonic antigen 
(CEA) levels in colorectal cancer patients treated with ablation for liver metastasis and 
showed that serum CEA levels initially increased in 65% of patients (11/17) and then grad-
ually decreased to a nadir after 3 months [21]. Significant differences were observed in IL-
2, IL-12, IL-1β, IL-8, and tumor necrosis factor-α levels 24 hours after ablation [22]. Endog-
enous danger signals, such as high mobility group box-1 and heat shock proteins, were 
also released from dying tumor cells. Furthermore, dying cells produced exosomes, which 
assisted in the maturation of dendritic cells and enhanced the tumor-specific cytotoxic T 
lymphocyte (CTL) response [23,24]. High levels of tumor-specific CD8+ T cells were pre-
viously shown to be induced in tumor-draining lymph nodes, due to heat-induced tumor 
damage [25,26]. Furthermore, antigen-presenting cells and tumor-infiltrating lympho-
cytes (TILs) were found to localize along the peripheral margin of the ablation zone [27]. 
Therefore, locoregional ablation therapy may provide a favorable TME for immune cells 
to function optimally, which will be beneficial when used in combination with ICIs [28,29]. 
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Figure 1. Activation of antitumor immune responses with thermal ablation. Note, CTL: cytotoxic T
lymphocyte; DC: dendritic cell; MHC: major histocompatibility complex.

2.2. Impact of Thermally Induced Cell Death on Immune Responses

Thermal ablation is a localized treatment that induces tumor destruction by heating
the tumor tissue to a core temperature > 100 ◦C [17,18]. This increase in temperature
denatures intracellular proteins and causes the dissolution and melting of lipid bilayers,
which irreversibly damage cancer cell membranes [19]. Temperatures > 105 ◦C strongly
induce the transport of extracellular and intracellular water out of tissue, as well as tissue
boiling, vaporization, and carbonization, which ultimately leads to cell death through
coagulative necrosis [20]. During ablation, air bubbles produced by thermal ablation
actively flow along the marginal hepatic vein to the main circulation.

A previous study examined sequential changes in serum carcinoembryonic antigen
(CEA) levels in colorectal cancer patients treated with ablation for liver metastasis and
showed that serum CEA levels initially increased in 65% of patients (11/17) and then
gradually decreased to a nadir after 3 months [21]. Significant differences were observed
in IL-2, IL-12, IL-1β, IL-8, and tumor necrosis factor-α levels 24 hours after ablation [22].
Endogenous danger signals, such as high mobility group box-1 and heat shock proteins,
were also released from dying tumor cells. Furthermore, dying cells produced exosomes,
which assisted in the maturation of dendritic cells and enhanced the tumor-specific cy-
totoxic T lymphocyte (CTL) response [23,24]. High levels of tumor-specific CD8+ T cells
were previously shown to be induced in tumor-draining lymph nodes, due to heat-induced
tumor damage [25,26]. Furthermore, antigen-presenting cells and tumor-infiltrating lym-
phocytes (TILs) were found to localize along the peripheral margin of the ablation zone [27].
Therefore, locoregional ablation therapy may provide a favorable TME for immune cells to
function optimally, which will be beneficial when used in combination with ICIs [28,29].

3. Outcomes
3.1. Preclinical Studies
3.1.1. Ablation-Induced Immunomodulation

Shi et al. retrospectively investigated thermal ablation-induced immune responses
in the tumor tissues of colorectal cancer patients with liver metastasis [8]. They enrolled
38 patients who underwent preoperative thermal ablation for liver metastasis, followed
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by primary tumor resection (the ablation group), and 40 patients who underwent primary
tumor resection alone (the non-ablation group). The number of TILs in the TME and
degree of programmed death-ligand 1 (PD-L1) staining in tumor cells and lymphocytes
were compared in colorectal cancer resection specimens. The median number of days
between initial ablation for liver metastasis and surgical resection of the primary tumor
was 6 (range, 4 to 10 days). Significantly higher levels of TILs were observed in the ablation
group (p < 0.001), and the CD4/CD8 ratio was significantly higher in the ablation group
(p = 0.002). These findings indicated that thermal ablation enhanced the tumor-specific
immune responses and promoted the infiltration of CTLs into the TME.

3.1.2. Combination of Ablation and Immunotherapy in Mice

Shi et al. also compared the outcomes of CT26 tumor-bearing mice treated with RFA
alone, PD-1 antibody alone, and the combination of thermal ablation and the anti-PD-1
antibody [8]. The injection of ICIs was repeated on days 1, 4, 7, and 10 after ablation.
Recurrence was not detected in the ablation zone in any group. Although the modest
inhibition of tumor growth was observed in the mice treated with ablation alone or the
anti-PD-1 antibody alone, the inhibition of tumor growth and prolonged survival were
observed in the group treated with the combination of ablation and the anti-PD-1 antibody.
Furthermore, CD8+ T-cell depletion eliminated the inhibition of tumor growth in the
combination therapy group, indicating the further enhancement of CD8+ T cell-mediated
antitumor immunity by the combination of ablation and PD-1.

Zhu et al. investigated the outcomes of the following groups of 4T1 breast cancer cell-
bearing mice: no treatment, the combination of PD-1 and cytotoxic T lymphocyte-associated
antigen (CTLA)-4 blockers, thermal ablation alone, and thermal ablation in combination
with ICIs [30]. The mice were injected 3 and 6 days after ablation. The combination of PD-1
and CTLA-4 blockers did not significantly affect mouse survival. Survival was significantly
longer in the thermal ablation in combination with ICIs group than in the no treatment,
ICIs alone, or thermal ablation alone group (p < 0.001, p < 0.001, and p = 0.01, respectively).
In parallel experiments, tumor-bearing mice were sacrificed on day 10 after ablation. Serum
IFN-γ levels were significantly higher in the thermal ablation in combination with ICIs
group than in the no treatment, ICIs alone, or thermal ablation alone groups (p < 0.001,
p < 0.001, and p = 0.01, respectively). The 4T1 (n = 5) or CT26 colon adenocarcinoma (n = 5)
cells were then implanted on the opposite flanks of ten surviving mice in the thermal
ablation in combination with ICIs group. On day 25, after the rechallenge, the outgrowth of
reimplanted 4T1 cells was significantly delayed (p = 0.002); however, no significant delays
were observed for reimplanted CT26 cells (p = 0.905). Collectively, these findings indicated
that the induction of tumor-specific immune responses are not elicited from prior exposure
to different cancers.

3.2. Clinical Studies
3.2.1. Oncological Outcomes

Since the initial approval of ipilimumab for the treatment of melanoma in 2011, several
ICIs have been launched for cancer therapy. However, retrospective research on the
combination of thermal ablation and ICIs has been limited.

McArthur et al. examined the tolerability of pre-operative cryoablation and/or ipili-
mumab in patients with operable breast cancer [31]. Patients were sequentially assigned
into the following treatment groups: tumor cryoablation alone (n = 7), intravenous ipili-
mumab (10 mg/kg) alone (n = 6), and the combination of cryoablation and ipilimumab
(n = 6). The cryoablation group was treated a median of 7 days before mastectomy (range,
4–10 days), and the ipilimumab group was treated a median of 10 days before mastectomy
(range 8–13 days). The combination therapy group received ipilimumab a median of 3 days
before undergoing cryoablation (range, 1–5 days). A peripheral blood flow cytometric
analysis of the samples collected from the combination group revealed a sustained increase
in the proportion of activated T cells, in both the CD4+ and CD8+ subsets. Furthermore, the
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proportion of Ki67-positive CD4+ T cells and CD8+ T cells was higher in the combination
therapy group than in either therapy group alone. However, neither the proportion of
CD4+ T cells, CD8+ T cells, or regulatory T cells, nor the ratio of effector T cells to regula-
tory T cells, significantly differed among the treatment groups. The ratio of Ki67-positive
effector T cells to regulatory T cells within the tumors was also higher in the combination
group (p = 0.05). However, the expression levels of immune checkpoint markers, including
CTLA-4, PD-1, and lymphocyte activation gene-3, on CD4 and CD8 TILs, at the time of
tumor resection, were similar among the treatment groups. Collectively, these findings
revealed sustained peripheral increases in Th1-type cytokine levels, activated and prolif-
erating CD4+ and CD8+ T cell numbers, and post-treatment proliferative T-effector cell
numbers, relative to the T-regulatory cell numbers within tumors by combination therapy.

Prospective clinical trials have investigated the efficacy of thermal ablation combined
with immunomodulation for various types of malignant tumors. A non-randomized phase
II study, evaluating the abscopal effect of pembrolizumab after radiotherapy or thermal
ablation in patients with mismatch repair-proficient metastatic colorectal cancer, is ongoing
(NCT02437071) [32].

3.2.2. Immune-Related Adverse Events (irAEs)

Leppelmann et al. retrospectively investigated whether interventional oncology proce-
dures, performed in combination with anti–PD-1/PD-L1 therapy, increased the risk of irAEs
in patients with different neoplasms [33]. Sixty-five patients (51% males; 63.1 ± 11.1 years)
with melanoma (n = 28), non-small cell lung cancer (n = 12), hepatocellular carcinoma
(n = 3), colorectal cancer (n = 2), and other malignancies were enrolled. They received anti–
PD-1/PD-L1 agents ≤90 days before or ≤30 days after the interventional procedure, such as
selective internal radiation therapy (n = 28), cryoablation (n = 22), thermal ablation (n = 16),
and transarterial embolization (n = 12). The anti–PD-1/PD-L1 agents, pembrolizumab
(n = 30), nivolumab (n = 22), and atezolizumab (n = 6), as well as the combination of
ipilimumab and nivolumab (n = 7), were administered to patients. irAEs occurred in
seven patients (10.8%), and the most common grade 1–2 complications were skin disorders
(n = 5). Grade 3 irAEs, such as skin disorders (n = 1) and liver dysfunction (n = 1), were
conservatively managed. The median time to the onset of irAEs was 33 days (interquartile
range, 19–38 days). No unmanageable irAEs developed within 90 days of interventional
treatments combined with ICIs.

3.2.3. Information Dissemination Considering Scientific Credibility

Patient decisions about appropriate health care for specific clinical should be based
on the best available current, valid, and relevant evidence. The internet makes finding
evidence for clinical practice easy. Much evidence about thermal ablation and cancer
immunotherapy can be found; however, it is difficult to define that sufficient appropriate
evidence has been accumulated. Then, the concept of the information dissemination model
can be useful for evaluating the spread of medical information. Information dissemina-
tion analysis provides a more detailed understanding of complex social dynamics [34–37].
According to a simplified model analysis, an increase in the credibility of scientific infor-
mation and its relevance to the daily lives of individuals will enhance the speed and final
scale of information spreading (Figure 2A). Figure 2B shows PubMed-indexed medical
publications, in terms of hepatitis C and interferon, as an example of information dissemi-
nation. Interferon was formerly the only antiviral drug for chronic hepatitis C infection.
Although PubMed-indexed medical publications had increased, until recently, interferon-
based treatment has been declining, since the introduction of interferon-free therapy with
direct-acting antivirals in 2014. With the terms “lung cancer” and “immune checkpoint
inhibitor”, PubMed-indexed medical publications have markedly increased, due to the
development of promising IO treatments, whereas those with the terms “thermal ablation”
and “immune checkpoint inhibitor” have not (Figure 2C).
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Figure 2. Information dissemination. (A) Simple model of rumor spreading. The stronger the
correlation degree between medical information and real-world evidence is, the larger the spreading
scale of medical information and faster the speed of dissemination are. Red line: The curve of
information disemination when the credibility of scientific information was highest. Blue line: The
curve of information disemination when the credibility of scientific information was 2nd higher.
Green line: The curve of information disemination when the credibility of scientific information was
tertiary. Light blue line: The curve of information disemination when the credibility of scientific
information was lowest. (B) Annual research reports indexed in PubMed for the terms “hepatitis
C” and “interferon”. (C) Annual research reports indexed in PubMed: “lung cancer and immune
checkpoint inhibitor” vs. “thermal ablation and immune checkpoint inhibitor”. Note, search terms
1*: lung cancer and immune checkpoint inhibitor; search terms 2†: thermal ablation and immune
checkpoint inhibitor. Light grey: The number of publications per year with topics of lung cancer and
immune checkpoint inhibitor. Dark grey: The number of publications per year with topics of thermal
ablation and immune checkpoint inhibitor.
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4. Summary

The efficacy of ICI monotherapy is still limited as a critical bottleneck, and an urgent
medical question that needs to be addressed is how to convert an immune cold into a hot
tumor. Meanwhile, the negative efficacy of thermal ablation for liver metastases is the
high rate of local tumor progression [38,39]. There are each unmet needs for treatment
efficacy. Here, we searched the manuscripts regarding synergistic effects in combination
with IO and thermal ablation fairly. Among them, some preclinical/clinical manuscripts
were selected, based on originality, logic, significance, and high impact on clinical applica-
tion. Since thermal ablation-induced increases in tumor antigens have been suggested to
promote the cancer-immunity cycle, the combination of IO therapy and thermal ablation
may be mutually beneficial. The findings of preclinical and clinical research have provided
supportive evidence for the combination of ICIs with thermal ablation reversing T-cell
exhaustion and demonstrating clinical synergy; however, it cannot be very common phe-
nomena. The speed of evidence accumulation on the combination of ICI monotherapy
and thermal ablation has been insufficient. The clinical feasibility of immune response
activation by combination therapy with ICI monotherapy and thermal ablation appears
to be limited. Currently, combined immunotherapy is the treatment trend, and dual ICIs
(IO–IO combination) are thought to prevent effector T-cell exhaustion, boosting the an-
titumor immune response powerfully. When synergistic effects in combination with ICI
monotherapy are unacceptable, thermal ablation may be more compatible with dual ICIs
(IO–IO combination) to induce strong immune responses.
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CEA carcinoembryonic antigen
CTL cytotoxic T lymphocyte
CTLA cytotoxic T lymphocyte-associated antigen
ICIs immune checkpoint inhibitors
IO immuno-oncology
irAEs immune-related adverse events
PD-1 programmed death-1
PD-L1 programmed death-ligand 1
TILs tumor-infiltrating lymphocytes
TME tumor microenvironment
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