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Biological aging is a complex process featured by declined function of cells and

tissues, including those of the immune system. As a consequence, aging affects the

expression and development of autoantibodies and autoreactive T cells, which can be

seen in their sum as the autoimmunome of an individual. In this study we analyzed

whether sets of autoimmune features are associated with specific phenotypes which

form autoimmunomic signatures related to age and neurodegenerative diseases. The

autoantibody profile data of healthy subjects and patients from the GEO database

was used to explore autoimmunomic signatures of aging and three neurodegenerative

diseases including Parkinson’s disease (PD), Alzheimer disease (AD) and Multiple

Sclerosis (MS). Our results demonstrate that the autoimmunomic signature of aging

is featured by an undulated increase of IgG autoantibodies associated with learning

and behavior and a consistent increase of IgG autoantibodies related to ribosome

and translation, and the autoimmunomic signature of aging are also associated

with age-related neurodegenerative diseases. Intriguingly, Differential Expression-Sliding

Window Analysis (DE-SWAN) identified three waves of changes of autoantibodies during

aging at an age of 30, 50, and 62 years, respectively. Furthermore, IgG autoantibodies,

in particular those against ribosomal proteins, could be used as prediction markers for

aging and age-related neurodegenerative diseases. Therefore, this study for the first

time uncovers comprehensive autoimmunomic signatures for aging and age-related

neurodegenerative diseases.

Keywords: autoantibodies, autoimmunome, autoimmunomic signature, aging, age-related diseases, Parkinson’s

disease, Alzheimer disease, multiple sclerosis

INTRODUCTION

As a complex biological process, aging develops with time on molecular, cellular, as well as on
organ and organism’s level. With age, the regenerative capacity of organs and tissues declines
progressively and inevitably resulting in a step-wise loss of their physiological functions (Wyss-
Coray, 2016). Beside physiological alterations, aging is also essentially associated with many
pathological phenomena such as cancer and neurodegenerative diseases (Lopez-Otin et al., 2013).
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Intriguingly, the program of aging is partially encoded by
circulating factors. This notion has been well-demonstrated
by mouse heterochronic parabiosis models, where exposure to
young blood leads to the rejuvenation of aging tissues such as
brains, bone, heart, kidney, liver, pancreas and muscle (Conboy
et al., 2005; Loffredo et al., 2013; Salpeter et al., 2013; Katsimpardi
et al., 2014; Sinha et al., 2014; Baht et al., 2015). Furthermore,
transfer of plasma proteins isolated from blood of young mice
or human umbilical cord is able to revitalize brain functions in
aged mice (Villeda et al., 2014; Castellano et al., 2017), suggesting
a primary role of plasma proteins as the key circulating factor
for the rejuvenation. In a recent study ∼3,000 plasma proteins
in more than four thousands healthy individuals were analyzed
and a proteomic signature of aging was discovered (Lehallier
et al., 2019). Interestingly, plasma proteins associated with age-
related diseases are enriched in distinct waves of aging (Lehallier
et al., 2019), suggesting a connection between aging and age-
related disorders.

Natural autoantibodies are a specific group of plasma proteins
which are present in all individuals (Coutinho et al., 1995).
These autoantibodies are not pathogenic and participate in
various physiological processes, such as immune regulation and
tissue homeostasis (Lobo et al., 2010). Based on the enormous
diversity of autoantibodies and autoreactive T cells and their
individual expressions in response to genetic and environmental
factors, their sum can be coined as “autoimmunome,” and an
“autoimmunomic signature” represents a set of autoimmune
features associated with a phenotype. In this study, we
hypothesized that the autoimmunome is associated with
physiological and pathological conditions. Among five main
classes of immunoglobulins, IgG is the predominant class found
in the circulation and it has the longest serum half-life (Schroeder
and Cavacini, 2010). It has been demonstrated that natural
autoantibodies of the IgG class are abundant and ubiquitous in
human sera and their individual levels are affected by age, sex and
disease (Nagele et al., 2013). Therefore, in order to explore and
characterize the autoimmunomic signatures of aging and age-
related diseases, we analyzed the profiles of IgG autoantibodies in
healthy individuals as well as patients with early stage Parkinson’s
disease (ESPD), advanced stage Parkinson’s disease (ASPD),
Alzheimer disease (AD) and multiple sclerosis (MS).

METHODS

Data Retrieval and Normalization
The dataset GSE62283 used in this study was retrieved from
the NCBI GEO database. This dataset contains serum IgG
autoantibody profiles of 156 healthy subjects, 103 patients with
ESPD, 29 patients with ASPD, 54 AD and 30 patients with
MS. In the current study, we excluded one healthy control
subject who was 86 years since the big gap in age between
this and the second oldest subject with 79 years disabled an
analysis by DE-SWAN. Moreover, five samples from ASPD
and eight samples from AD patients were excluded because
of lacking information on person’s age and/or sex. In total,
the current study included serum IgG autoantibody profiles of
155 controls, 103 ESPD, 24 ASPD, 46 AD, and 30MS samples.

The demographic features of patients and healthy individuals
are summarized in Supplementary Table 1. The autoantibody
profile was determined as serum levels of IgG autoantibodies
against 9,256 different full-length proteins.

The raw data of array of all subjects were downloaded
and imported into R Studio (Version: 3.4.4) by using R based
package limma. Raw files were first submitted to background
correction using “backgroundCorrect (method=normexp),” and
then “quantile” method was used to normalize the relative
fluorescence unit among the arrays. After background correction
and normalization, data of each array were log10 transformed
and used for further analyses.

Determination of Linear Changes in the
Autoimmunome of Aging and
Neurodegenerative Diseases
To determine autoimmunomic signatures in healthy subjects, we
constructed following linear model with age (chronological age)
and sex (male or female) as variants:

levels of autoantibodies ∼ α + β1age+ β2sex+ ε

To explore autoimmunomic signatures of neurodegenerative
diseases, 103 ESPD patients, 24 ASPD patients, 46 AD patients,
30MS patients and equal number of sex- and age-matched
controls selected from the 155 healthy individuals were used for
the analysis. To identify natural autoantibodies associated with
each disease, we used the following linear model with diagnosis
(patient or control), age (chronological age) and sex (male or
female) as variants:

levels of autoantibodies ∼ α + β1diagnosis+ β2age+ β3sex+ ε

Coeffeciency and p-values (F-test) were calculated for each
autoantibody. P-values were adjusted using method of
Benjamini–Hochberg (BH). To determine the relative proportion
of age and sex in explaining the change of natural autoantibodies,
we output the type II sum of squares by using Anova function
from package car in RStudio and calculated the partial Eta
Squared (Eta2) using following formula:

∂Eta2 =

∑
ofsquareseffect

∑
ofsquareseffect +

∑
ofsquareserror

Enrichment Analysis
To explore the enriched biological pathways and annotations,
we utilized topGO package in RStudio (Version 3.4.4) and
the DAVID online database (The Database for Annotation,
Visualization and Integrated Discovery, version 6.8)
which consists of a comprehensive collection of biological
knowledgebase and functional analytic tools for understanding
the biological meaning behind a list of genes or proteins.
Significance of enrichment of GO (Gene Ontology), KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathways
or UP-Tissue (Uniprot tissue) were determined using the
9,256 full-length human protein antigens on the protein
array (www.invitrogen.com/protoarray, version 5.0), as the
background list.
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FIGURE 1 | The autoimmunomic signature of aging identified by linear modeling. In total, serum levels of IgG autoantibodies against 9,256 human antigens were

analyzed using linear models. Volcano plots representing changes of the autoimmunome with sex (A) and age (B). Dot sizes are proportional to the product of

–log10(p-value) and sex or age effect (beta of the linear model). (C) Relative percentage of variance explained by age and sex, where partial Eta2 is calculated for age

and sex. Values for each autoantibodies are connected by edges. (D) Autoantibody trajectories during aging. Levels of 1,276 aging-associated IgG autoantibodies

(Continued)
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FIGURE 1 | were z-scored and trajectories of the autoantibodies were estimated by LOESS. (E) Heatmap and unsupervised hierarchical clustering of trajectories of

the 1,276 aging-associated autoantibodies. The heatmap was used to group autoantibodies with similar trajectories. The right panel shows the 6 clusters, with thicker

lines representing the average trajectory for each cluster. The top 5 significantly enriched pathways are represented for each cluster. Pathway enrichment was tested

using GO and KEGG databases.

Clustering of IgG Autoantibody Trajectories
To determine clusters of IgG autoantibodies, log10 transformed
levels of each autoantibody were z scaled and were fitted
using locally weighted scatterplot smoothing (LOESS) regression,
which is a regression technique utilized to characterize the
relationships between paired features by fitting a smooth curve to
the scatter plot of data points. To classify each autoantibody into
similar group, the distance between each pair of autoantibodies
was calculated by the Euclidianmethod and the completemethod
was used for hierarchical clustering. To further understand the
biological pathways and functions of each cluster, we performed
enrichment analysis as described above.

Differential Expression–Sliding Window
ANalysis (DE-SWAN)
To explore changes of natural IgG autoantibodies during aging,
we utilized the DE-SWAN analysis tool which was recently
established by Lehallier et al. for identification of linear and
non-linear changes during aging (Lehallier et al., 2019). This
tool analyzes levels of autoantibodies within a window of 20
years and compares two groups in parcels of 10 years (e.g.,
30–40y compared with 40–50y), while sliding the window in
increments of 1 year from young to old (Lehallier et al., 2019).
By virtue of DE-SWAN, we identified significant changed natural
autoantibodies at each year with a threshold of an adjusted
p-value (method = BH) lower than 0.05. Age was binarized
according to the parcels and the formula of linear model that we
used in the DE-SWAN is as follows:

levels of autoantibodies ∼ α + β1age low
high

+ β2sex+ ε

Prediction of Aging and Aging-Related
Diseases by Using IgG Autoantibodies
To estimate whether natural autoantibodies could be used for
prediction of aging and aging-related diseases, we utilized the
elastic net algorithm which is a popular regularized regression
algorithm and commonly used in exploration of predictive
signatures (Lehallier et al., 2016). For classification of aging,
all 155 healthy subjects were divided into two groups, one
including subjects whose age were below 65 years and a second
group including subjects whose age were equal to or higher
than 65 years. For classification of aging-related diseases, 103
ESPD patients, 24 ASPD patients, 46 AD patients, 30MS patients
and equal numbers of sex- and age-matched healthy controls
were included in the analysis. For each classification trial, the
dataset was randomly divided into two parts: a training set which
contains 2/3 of the data and a testing set which contains the
residual 1/3 of data. An elastic net (alpha = 0.8, 100 lambda
tested, “lambda.min” estimated after 10-fold cross validation was

used as the shrinkage variable) was built using the training data
set. In order to minimize the error of autoantibodies estimated
due to random sampling, we performed 500 times iterative
resampling of training and testing set. For each of permutation,
average of accuracy, sensitivity and specificity were calculated.
Standard deviation of accuracy across 500 permutations was used
to estimate the stability of model. A lower standard deviation
of accuracy indicates higher stability of the model. Besides,
to evaluate the importance of autoantibodies in the prediction
and selected top autoantibodies, we ranked the autoantibodies
according to the number of appearances in elastic net model
across 500 permutations and termed importance index.

To further reduce the autoantibody used in the predictive
model to reach optimal accuracy, sensitivity and specificity, we
ranked the autoantibodies according to the importance index
and select top 2, 5, 10, 15, and 20 important autoantibodies
for classification of aging and aging-related diseases. A ridge
regression model (alpha = 0, 100 lambda tested, “lambda.min”
estimated after 10-fold cross validation was used as the shrinkage
variable) was built using top 2, 5, 10, 15, and 20 autoantibodies.
Again, 500 times iterative resampling of training and testing set
was performed. Averages of sensitivity and specificity, average
and standard deviation of accuracy across 500 permutations
were estimated.

RESULTS

Linear Modeling Reveals an
Autoimmunomic Signature of Aging
To determine a potential relationship between aging and the
autoimmunome, we retrieved dataset GSE62283 from GEO
database and analyzed serum IgG antibodies against 9,256
different autoantigens in 155 healthy subjects ranging in age
between 19 and 79 years (DeMarshall et al., 2015). Using
linear modeling, we first accessed autoimmunomes of aging
and sex. Within the IgG autoantibodies analyzed, 1,276 of
them showed significant (q < 0.05, Figure 1A) alterations
depending on age, with a strongest effect seen on autoantibodies
against vaccinia related kinase 3 (VRK3), fibroblast growth
factor 12 (FGF12), thyrotropin releasing hormone (TRH),
collectin subfamily member 12 (COLEC12), and zinc finger
with KRAB and SCAN domains 1(ZKSCAN1). Regarding sex,
levels of 238 IgG autoantibodies were found to be significantly
different between women and men (q < 0.05, Figure 1B).
Interestingly, the majority of autoantibodies associated with
the sex (194 of 238) also display significant changes during
aging (Supplementary Table 2). However, effects of age on
autoantibody expression exceed those of sex not only with regard
to the number of different autoantibody affected but also to their
individual differences in the expression level (Figure 1C).
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FIGURE 2 | Waves of autoimmunomic changes with age. (A) Changes in autoantibody expression during aging in 155 healthy subjects. Within each window,

p-values plotted in a log10 scale were estimated by DE-SWAN with age and sex as covariates and then adjusted using the Benjamini–Hochberg method. (B) Number

of autoantibodies differentially expressed (Padjusted < 0.05) during aging in ESPD patients identified by DE-SWAN. Three waves peaking at the age of 30 (red line), 50

(blue line), and 62 (green line) years, respectively, were identified by using DE-SWAN. (C) Overlaps among aging-associated autoantibodies identified by DE-SWAN at

the age of 30, 50, and 62 years (Padjusted < 0.05). (D) Top 10 significanlty changed autoantibodies identified by DE-SWAN at the age of 30, 50, and 62 years,

respectively. Blue and yellow colors represent local increase and decrease, respectively (*Padjusted < 0.05, **Padjusted < 0.01, and ***Padjusted < 0.001). (E) Visualization

of pathways significantly enriched for aging-associated autoantibodies identified by linear modeling (LmAge) and DE-SWAN at the age of 30, 50, and 62 years.

p-values were calculated by DAVID server using Fisher’s test and adjusted using the Benjamini–Hochberg method. Autoantibodies upregulated and downregulated

were analyzed separately. Gene ontology (GO) terms and KEGG pathways are shown, and the top 10 significant pathways per condition are represented.

When visualized as z-scored changes, the 1,276 IgG
autoantibodies significantly associated with aging could be
categorized by two groups with a first group containing
816 autoantibodies increasing during aging and a second
group of 460 autoantibodies which levels decreased over
age (Figure 1D, Supplementary Table 3). All significant aging-
related IgG autoantibodies were further grouped into six
clusters by unsupervised hierarchical clustering (Figure 1E,
Supplementary Table 4). Beside four clusters showing an
undulating pattern (clusters 1, 2, 5, and 6), clusters 3 and 4
changed linearly over age.

To explore the biological relevance of these changes, we
performed enrichment analysis for antigens targeted by aging-
associated IgG autoantibodies using Database for Annotation,
Visualization and Integrated Discovery (DAVID) which provides
a set of data-mining tools that promote the discovery of gene
ontology (GO) functional categories. Based on this analysis, 5 out
of the 6 clusters were significantly enriched for specific biological
terms (Padjusted < 0.05, Figure 1E, Supplementary Table 5).
Interestingly, IgG autoantibodies against antigens enriched
in ribosome, translation, mitochondrial translation and
mitochondrial ribosome were found to consistently increase
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FIGURE 3 | Autoimmunomic signatures of neurodegnerative diseases identified by linear modeling. In total, serum levels of IgG autoantibodies against 9,256 human

antigens in 103 patients with ESPD, 24 patients with ASPD, 46 patients with AD, and 30 patients with MS as well as their corresponding age- and gender matched

healthy controls were analyzed using linear modeling. Volcano plots representing changes within the autoimmunome in ESPD (A), ASPD (B), AD (C), and MS (D). Dot

sizes are proportional to the product of –log10(p-value) and disease effect (beta of the linear model). (E) Visualization of pathways significantly enriched for aging- and

disease-associated autoantibodies identified by linear modeling. Autoantibodies upregulated and downregulated were analyzed separately. Top 10 significantly

enriched gene ontology terms per condition per disease are represented, and aging related clusters are used as reference.

during aging (cluster 3). Moreover, autoantibodies directed
against antigens enriched in behavior, learning, fatty and lipid
oxidation increased with age in an undulating manner (clusters
1 and 2), while those directed against antigens enriched in
endothelial cell proliferation and protein phosphorylation

decreased during aging (cluster 6).

Waves of Changes of IgG Autoantibodies
During Aging Revealed by Quantifying
Autoimmunomic Changes
Previously, Lehallier et al. developed a software tool termed
differential expression-sliding the window analysis (DE-SWAN)
and utilized it for the quantification of the proteomic changes
across the lifespan (Lehallier et al., 2019). To better characterize
the autoimmunomic signature of aging, we applied the DE-
SWAN to quantify the changes of IgG autoantibodies. As
shown in Figures 2A,B, the determination of differentially
expressed (Padjust < 0.05) autoantibodies uncovers three waves
of changes of autoantibodies at an age of 30, 50, and 62, years,
which contains 717, 27, 291 IgG autoantibodies, respectively
(Supplementary Table 6). Noticeably, there were considerable
overlaps in the composition of the three aging-related waves
(Figure 2C). For example, 7 out of top 10 differentially expressed

autoantibodies in the wave at age 30 were present also in the
wave at age 62, and 8 out of top 10 differentially expressed
autoantibodies in the wave at age 50 also showed up in the wave
at age 62 (Figure 2D). Two autoantibodies, anti-purinoceptor 2
(P2RY2) and anti-matrix AAA peptidase interacting protein 1

(MAIP1) were consistently present in all three waves.
To further characterize autoantibodies significantly changes

in the three waves, we performed enrichment analysis using
DAVID. The result demonstrated that IgG autoantibodies
upregulated in the peak of 30 years were enriched in GO terms
of visual behavior, cell aging, cognition and learning, while
those downregulated at the peak of 30 were enriched in GO
terms of regulation of cell differentiation, cell migration, cell
motility, localization of cell and protein activation cascade. With
autoantibodies changes in the waves of 50 and 62 years, the only
significantly enriched GO term was phagocytosis, recognition
for upregulated autoantibodies in wave 62 year (Figure 2E,
Supplementary Table 7).

Previously, Lehallier et al. identified three aging-related
waves of plasma proteins (Lehallier et al., 2019). To explore the
relationship between autoimmunome and plasma proteome,
we compared the three aging-related waves of autoantibodies
identified here and aging-related waves of plasma proteins
identified by Lehallier et al. Interestingly, only very limited
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FIGURE 4 | Prediction of aging and age-related diseases using autoantibodies. (A) Strategy for modeling and autoantibody selection for the prediction of aging and

neurodegenerative diseases. The mean classifications accuracy rate, sensitivity, and specificity were calculated across the 500 resampled test data sets. (B) Path plot

of sensitivity and specificity for models includes the 2 to 20 top selected autoantibodies for aging and neurodegenerative diseases. The numbers of autoantibodies are

indicated by the numbers in the lines within the plot. Gray quadrant indicates the area of the figure in which sensitivity and specificity are higher than 0.7. (C) Path plot

of the accuracy rate of classification and its SD across 500 permutations for models includes the top 2 to 20 selected autoantibodies for aging and neurodegenerative

diseases. A small SD across permutations (close to 0) demonstrates a high stability of the model. (D) Heatmap of importance index of top 5 selected autoantibodies in

aging and neurodegenerative diseases.

number of autoantigens were observed in both groups
(Supplementary Figure 1A), suggesting that the production of
IgG autoantibodies is unlikely associated with that of plasma
proteins. Based on this finding, we hypothesized that the
expression of serum IgG autoantibodies could be associated
with the presence of autoantigens in tissues and organs. To
validate this notion, we performed enrichment analysis for
aging-related waves of autoantibodies using the DAVID tool
to discover their relevant UP-TISSUE categories. Intriguingly,
proteins targeted by autoantibodies in the wave at 62 years
were enriched in thyroid, thalamus, uterine endothelium and

several types of tumors such as dermoid, rectum and esophagus
tumor, while those targeted by autoantibodies in the wave at
30 years were enriched in hippocampus, placenta and muscle
(Supplementary Figure 1B).

To investigate whether the aging-related waves of
autoantibodies also exist under pathological conditions, we
utilized the DE-SWAN tool to analyze the autoimmunome
of 103 patients with ESPD in an age range between 37 and
79 years. In contrast to healthy subjects, no aging-related
wave of autoantibodies was observed in patients with ESPD
(Supplementary Figures 2A,B), suggesting that the disease
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might have a strong impact on the autoimmunome which masks
the effect of aging. This notion was supported by the finding
from linear modeling analysis with ESPD patients and healthy
controls, where the disease showed a significantly stronger
effect on autoantibodies as compared to both, age and sex
(Supplementary Figure 2C).

Autoimmunomic Signatures of
Aging-Related Neurodegenerative
Diseases
The strong effect of ESPD on the autoimmunome encouraged
us to further explore the autoimmunomic signatures of age-
related neurodegenerative diseases including ESPD, ASPD, AD,
and MS. We retrieved autoantibody profiling data from 103
patients with ESPD, 24 patients with ASPD, 46 patients with
AD, and 30 patients with MS, and compared them with
equal numbers of age- and sex-matched healthy individuals.
As compared to their corresponding controls, ESPD, ASPD,
AD, and MS are significantly (Padjusted < 0.05) associated
with 2,723, 1,154, 1,571, and 236 autoantibodies, respectively
(Figures 3A–D, Supplementary Table 8).

Enrichment analysis shows that autoantigens targeted by
antibodies unregulated in ESPD were significantly enriched
in GO terms of ribosome, RNA binding, translation,
mitochondrial ribosome, and mitochondrial translation
(Supplementary Table 9). Intriguingly, these GO terms were
also associated with cluster 3 autoantibodies which increase
consistently with age in healthy individuals (Figure 3E),
suggesting a link between aging and ESPD. As compared
to upregulated autoantibodies, enrichment for autoantigens
targeted by antibodies downregulated in ESPD was much less
prominent, with a significant enrichment e.g., in GO terms of
cell projection assembly and hippo signaling. Unexpectedly, the
autoimmunomic signature of ASPD differed considerably
from that observed in ESPD. Autoantigens targeted by
autoantibodies upregulated in ASPD were only significantly
enriched in terms of mRNA binding (Padjusted = 0.02), while
those downregulated in ASPD were enriched in peptidyl-
tyrosine phosphorylation, peptidyl-tyrosine modification, and
receptor regulator activity which are also associated with
aging (Figure 4D, Supplementary Table 9). AD, another age-
related neurodegenerative disease, was also associated with

autoantibodies related to aging. Many GO terms associated with
autoantibodies increased during aging, including visual behavior,

visual learning, associative learning, fatty acid oxidation and

carboxylic acid. Furthermore, catabolic processes were also

associated with upregulated autoantibodies in AD (Figure 3E,

Supplementary Table 9). However, at least som GO terms
associated with autoantibodies decreased with age in healthy
subjects, such as endothelial cell proliferation and protein

phosphorylation, found to be down-regulated in AD compared

to healthy controls (Figure 3E, Supplementary Table 9). As

an autoimmune-mediated neurodegenerative disease, MS was

associated with autoantibodies which were not significantly

enriched in any GO terms (Supplementary Table 9).

Autoantibodies as Predictive Parameters
for Aging and Age-Related
Neurodegenerative Diseases
Given the strong association of the autoimmunome with aging
and age-related diseases, we investigated whether autoantibodies
could be suitable markers for the prediction of ESPD, ASPD,
AD and MS. The term “prediction” is here in the context of
probability theory and not in the sense of a medical prognosis.
To this end, patients and their corresponding healthy controls
were randomly divided into two subgroups, where two thirds
of the subjects were used to build a predictive model that was
validated on the remaining one third of individuals (Figure 4A).
A corresponding analysis was performed to predict aging by
categorizing healthy individuals into groups of members <65
years of age (status “young”) and≥ 65 years of age (status “old”).
The old-age threshold was defined as 65 years for two reasons.
On the one hand, the term “elderly” has been conventionally
defined as a chronological age of 65 years old or older (Sabharwal
et al., 2015). On the other hand, it has been shown that
healthy subjects over 65 years of age have higher number of
detectable autoantibodies than those below 65 years (Nagele
et al., 2013). Using the top 2 to 20 selected autoantibodies,
we calculated sensitivity and specificity of each prediction
model (Figure 4B).

Notably, autoantibodies were extremely accurate
markers for the prediction of ASPD and AD, with
sensitivity/specificity/accuracy of 100%/100%/100% in
all predictions (Figure 4B). Furthermore, the SD across
permutations indicated that prediction of ASPD and AD were
stable (Figure 4C). Among 500 permutations, only 125 and
66 autoantibodies were used at least once for the prediction,
suggesting a small proportion of the autoantibodies which differ
considerably between the two diseases and their controls. The
top five autoantibodies enabling a prediction of ASPD were
enoyl-CoA hydratase 1(ECH1), immunoglobulin kappa variable
1-5 (IGKV1-5), cell division cycle associated 7 (CDCA7), taste
2 receptor member 43(TAS2R43) and DEAD-box helicase 19B
(DDX19B) (Figure 4D, Supplementary Table 10). By contrast,
prediction of AD was possible by the use of sprouty RTK
signaling antagonist 2(SPRY2), vaccinia related kinase 3(VRK3),
fibroblast growth factor 12 (FGF12), UDP-N-acetylglucosamine
pyrophosphorylase 1(UAP1), and regulatory factor X3 (RFX3).
Although less stable and accurate than ASPD and AD, MS
and ESPD could also be predicted by autoantibodies with high
and stable accuracies (Figures 4B,C, Supplementary Table 10).
By contrast, the prediction of aging was largely dependent
on the number of autoantibodies used, where the prediction
with top 20 autoantibodies led to an acceptable accuracy
(sensitivity/specificity/accuracy, 88%/97%/90%) but the
prediction with top 2 autoantibodies led to a low accuracy
(sensitivity/specificity/accuracy, 48%/95%/71%) (Figures 4B,C,
Supplementary Table 10).

Since autoantibodies that increase progressively and
consistently with age are associated with ribosomes and

ribosomal proteins are suggested to be associated with aging
(Kaushik and Cuervo, 2015; Steffen and Dillin, 2016), we next
determined whether autoantibodies against ribosomal proteins
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FIGURE 5 | Prediction of aging and age-related diseases using autoantibodies against ribosomal proteins. (A) Path plot of sensitivity and specificity for models

includes the 2 to 20 top selected autoantibodies against ribosomal proteins for aging and neurodegenerative diseases. (B) Path plot of the accuracy rate of

classification and its SD across 500 permutations for models includes the top 2 to 20 selected autoantibodies against ribosomal proteins for aging and

neurodegenerative diseases. (C) Heatmap of importance index of top 5 selected autoantibodies against ribosomal proteins in aging and neurodegenerative diseases.

could be used for the prediction of aging and age-related
diseases. Out of 146 autoantibodies against ribosomal proteins,
145, 144, 134, 102, and 83 were used at least once for the
prediction of aging, ESPD, MS, ASPD, and AD, respectively,
across 500 permutations (Supplementary Table 11). Noticeably,
high and stable prediction accuracy was observed in AD (91–
100%), followed by ASPD (85–95%), aging (86–93%), ESPD
(82–84%), and MS (74–89%) (Figures 5A,B). Regarding the
individual autoantibody level, IgG against ribosomal protein
S6 kinase A6 (RPS6KA6) was the most frequently selected
autoantibody for the prediction of AD, ASPD and aging
(Figure 5C, Supplementary Table 11).

DISCUSSION

Biological aging is a progressive and inevitable process featured
by declined functions of cells and tissues/organs. Previous studies
have identified transcriptomic, metabonomic, methylatomic, and
proteomic signatures for aging (Jylhava et al., 2017). In this study,
we reanalysed the autoantibody profile data of healthy subjects
and patients with ESPD, ASPD, AD, and MS from GEO database
(DeMarshall et al., 2015). Different to DeMarshall’s study in
which the identification of diagnostic autoantibodies for disease
was aimed by examining differentially expressed autoantibodies
between patients and controls, we here intended to identify and
characterize autoimmunomic signatures of aging and age-related
diseases and to search for predictive autoantibodies. Linear
model regression revealed that autoimmunomic signatures of
aging and age-related diseases are featured by an increased
expression of IgG autoantibodies associated with learning,
behavior, ribosome and translation. Moreover, DE-SWAN
showed that autoantibodies in healthy subjects change in an

undulating pattern during aging. In addition, by using elastic
net algorithm we identified a different set of autoantibodies as
the previous study (DeMarshall et al., 2015) as parameters for
the prediction of age-related neurodegenerative diseases. To our
knowledge, this study for the first time revealed that there are
distinct patterns and/or waves of autoantibodies with aging and
age-related neurodegenerative diseases.

Similar to aging-associated expression of plasma proteins
(Lehallier et al., 2019), most age-associated autoantibodies
change in an undulating pattern. Moreover, quantification of the
changes in the autoimmunome revealed two major waves in the
fourth and seventh decade of life, which overlaps in their time
windows with the waves of changes in the plasma proteome
(Lehallier et al., 2019). However, comparison between the waves
of autoimmunomic changes with those of plasma proteomic
changes revealed that there is only little overlap between antigens
targeted by the changed autoantibodies and changed plasma
proteins, suggesting that autoimmunomic alternations are not a
consequence of the abnormalities in plasma protein expression.
This notion is further supported by the association of waves
of autoimmunomic changes with tissues/organs, where wave
in the fourth decade of life is associated with brain and its
function and that in the seventh decades of life is associated
with various tumors. Given that dysregulation of homeostasis of
tissue could be a trigger of autoimmunity (Petersen et al., 2017),
the autoimmunomic changes might reflect the abnormalities in
peripheral tissues.

Interestingly, the two major aging-related waves of

autoantibody changes identified in healthy subjects were

not observed in patients with ESPD. There are probably three

reasons for the lack of the aging-related waves in patients. First,
the neurodegenerative disease shows a strong impact on the
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autoantibody profile, potentially masking the effect of aging on
the changes of autoantibodies. Second, unlike healthy control
group, the starting age of ESPD group is at 37 years, which makes
it challenging to detected the wave in the fourth decade of life,
Third, patients with ESPD might have different baselines and
waves of autoantibody changes from the healthy subjects.

Maybe the most important feature of the autoimmunomic
signatures of aging and age-related diseases is that they
are associated with brain and its function. Autoantibodies
which increase considerably at the third and fourth decades
of life are significantly enriched in the biological processes
of learning and behavior. In line with this finding, the wave of
autoimmunomic changes at the fourth decade of life is associated
with hippocampus, learning and behavior. Furthermore, learning
and behavior are also associated with autoantibodies whose
expression is increased in AD and ESPD. It is widely accepted
that oxidative stress increases during aging and neuronal cells are
highly sensitive to oxidative stress (Finkel and Holbrook, 2000),
leading to the elevation of oxidized neuron proteins (Wang
and Michaelis, 2010). Beside oxidized proteins, other proteins
abnormalities such as misfolding and aggregation are also
hallmarks in neuron cells during aging and neurodegeneration
(Perluigi et al., 2014; Walther et al., 2015). Although the
protein abnormalities are principally physiological features of
aging, excessive levels of such abnormalities are associated
with age-related neurodegenerative disorders, including AD
and PD (Chen et al., 2012). Therefore, it is conceivable to
speculate that the association of aging and age-related diseases
with autoantibodies targeting neurological antigens might reflect
proteins abnormalities in neuronal cells. Although it is not
known whether these autoantibodies are of physiological or
pathological relevance, they reflect the proteins changes in the
neuron cells and thus could be potential markers for aging and
age-related diseases.

Only a small portion of autoantibodies increase with age
consistently in a linear manner. A common key feature of those
autoantibodies is that their antigens are predominantly expressed
in ribosomes. Although autoantibodies against ribosomal
proteins have been observed patients with systemic lupus
erythematosus for more than 30 years (Choi et al., 2020),
the association of those autoantibodies with aging and age-
related disease has not been reported. Given that ribosomes are
the factories tasked with protein synthesis and thus regulate
proteostasis, it is not surprising that ribosomes play a critical role
in aging. Moreover, it has been demonstrated that deficiency of
specific ribosomal proteins could significantly affect the life span
in many experimental organisms (Hansen et al., 2007; Steffen
et al., 2008; Zid et al., 2009; Houtkooper et al., 2013). In humans,
a genetic polymorphism within the mitochondrial ribosomal
protein L23 (MRPL23) gene has been shown to be associated
with cognitive aging (Moulton, 2018). Biogenesis of ribosomes
is a complex process which encompasses a complicated series of
events including the synthesis and processing of ribosomal RNAs,
assembly of ribosomal proteins, transport to the cytoplasm
and association of ribosomal subunits (Turi et al., 2019). Our
study shows that autoantibodies against ribosomal proteins

consistently increase with age and are associated with age-
related neurodegenerative diseases. There are two possible
explanations for this phenomenon. At first, abnormalities in
ribosome biogenesis during aging and development of age-
related neurodegenerative diseases may lead to the generation
of autoantibodies against ribosomal proteins. This notion is
supported by findings that aging is associated with aberrant
ribosome biogenesis, including accumulation of DNA damage
(Flach et al., 2014) and progressive decrease in the expression of
ribosomal proteins (Jung et al., 2015). Furthermore, deregulated
ribosome biogenesis is observed in age-related neurogenerative
diseases. For example, it has been reported that the early phase
of AD is associated with ribosome dysfunction including a
decreased rate and capacity for protein synthesis, decreased
ribosomal RNA and tRNA levels, and an increased RNA
oxidation (Ding et al., 2005). In addition, downregulation of
ribosome biogenesis has also been observed in patients with PD
(Rieker et al., 2011; Taymans et al., 2015). The second possibility
is that the abnormalities occur first in the immune system with
aging, which impacts the ribosome biogenesis thereby generating
autoantibodies against ribosomal proteins. Moreover, this study
demonstrates that autoantibodies can be used as prediction
markers for aging and age-related diseases. Even if the analysis is
limited to autoantibodies against ribosomal proteins only, it still
allows a high and stable accuracy in the prediction of AD and
PD. Taken together, autoantibodies against ribosomal proteins
are associated with and can be used as prediction markers
for aging and age-related diseases, which in line with the fact
that ribosome is essentially involved in the physiological and
pathological changes during aging.

It is necessary to mention that for aging and each disease,
only one cohort was available to explore the autoimmunomic
signatures, and a validation of our findings in an independent
dataset was not possible. Moreover, numbers of healthy
individuals and patients are relatively small, which limits the
statistical power and might lead to type II error. Particularly,
this may critically impact the predictive analyses where the
cohorts are divided into two subsets for training and test,
respectively. Therefore, further investigations with high power
and longitudinal components are required to further substantiate
the findings of this study.

In conclusion, this study for the first time uncovers
autoimmunomic signatures for aging and age-related
neurodegenerative diseases. Identification of autoantibodies
that associated with aging or age-related diseases
will likely improve the prediction of aging and the
diagnosis of the diseases. Moreover, further examining
the function of those autoantibodies might open
new therapeutic strategies for treating age-related
neurodegenerative conditions.
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