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A B S T R A C T   

Objective: With the emergence of artificial intelligence (AI)-based health interventions, systemic racism remains a 
concern as these advancements are frequently developed without race-specific data analysis or validation. To 
evaluate the potential utility of an AI-based cardiovascular diseases (CVD) screening tool in an under-resourced 
African-American cohort, we reviewed the AI-enhanced electrocardiogram (ECG) data of participants enrolled in 
a community-based clinical trial as a proof-of-concept ancillary study for community-based screening. 
Methods: Enrollees completed cardiovascular testing including standard 12-lead ECG and a limited echocardio-
gram (TTE). All ECGs were analyzed using previously published institution-based AI algorithms. AI-ECG pre-
dictions were generated for age, sex, and decreased left ventricular ejection fraction (LVEF). Diagnostic accuracy 
of the AI-ECG for decreased LVEF and sex was quantified using area under the receiver operating characteristic 
curve (AUC). Correlation between actual age and AI-ECG predicted age was assessed using Pearson correlation 
coefficients. 
Results: Fifty-four participants completed both an ECG and TTE (mean age 55 years [range 31-87 years]; 66.7% 
female). All participants were in sinus rhythm, and the median LVEF of the cohort was 60-65%. The AI-ECG for 
decreased LVEF demonstrated excellent performance with an AUC of 0.892 (95% confidence interval [CI] 0.708- 
1); sensitivity=50% (95% CI 9.5-90.5%; n=1/2) and specificity=96% (95% CI 86.8-98.9%; n=49/51). The AI- 
ECG for participant sex demonstrated similar performance with AUC of 0.944 (95% CI 0.891-0.998); 
sensitivity=100% (95% CI 82.4-100.0%; n=18/18) and specificity=77.8% (95% CI 61.9-88.3%; n=28/36). 
The AI-ECG predicted mean age was 55 years (range 26.9-72.6 years) with a strong correlation to actual age 
(R=0.769; p<0.001). 
Conclusion: Our analyses of previously developed AI-ECG algorithms for prediction of age, sex, and decreased 
LVEF demonstrated reliable performance in this community-based, African-American cohort. This novel, 
community-centric delivery of AI could provide valuable screening resources and appropriate referrals for early 
detection of highly-morbid CVD for under-resourced patient populations.  
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CVH, cardiovascular health; FAITH!, Fostering African-American Improvement in Total Health!; LS7, Life’s Simple 7; LVEF, left ventricular ejection fraction; 
mHealth, mobile health; SDOH, Social determinants of health; TTE, transthoracic echocardiogram. 
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1. Introduction 

Minoritized racial and ethnic populations often face significant 
barriers to prevention and treatment of cardiovascular disease (CVD) 
[1]. Prior studies have provided evidence demonstrating the impact of 
adverse social determinants of health (SDOH) on worse CVD outcomes 
among most of these groups compared to non-Hispanic White in-
dividuals [2–4]. These SDOH include limited access to quality health 
care, economic disempowerment, disenfranchised neighborhoods with 
unreliable/inaccessible transportation, and destitute housing. Further, 
there is historic mistrust of the healthcare system, particularly among 
African-Americans that is attributed to past unethical research and in-
justices such as the Tuskegee Syphilis Study and the Henrietta Lacks cell 
line [1,5]. Even with the emergence of mobile health (mHealth), tele-
health, and artificial intelligence (AI)-based health interventions as 
means to address healthcare disparities, systemic racism remains a 
concern as these advancements are frequently developed and deployed 
without race-specific data analysis or validation [1,6]. Further, there 
remains a gap in health technology integration at the community and 
individual levels which could potentially widen the digital divide and 
worsen healthcare disparities [1,5]. 

There have been research efforts to mitigate racial disparities in 
cardiovascular health (CVH) by prioritizing marginalized populations 
through authentic community engagement [6,7]. The FAITH! (Fostering 
African-American Improvement in Total Health!) Trial is a 
community-based participatory research (CBPR) initiative which aims 
to bridge the digital divide for African-Americans through co-design and 
testing of mHealth interventions with community members for CVH 
promotion. Participants in this trial had significant improvements in 
their CVH with use of a personalized, smartphone-based, mHealth life-
style intervention (FAITH! App) promoted among African-American 
churches [7]. With community partner input (FAITH! Community 
Steering Committee [CSC]), a community-based FAITH! Trial ancillary 
study (FAITH! Heart Health+) was launched to provide participants 
with extended CVH assessment and diagnostic testing including an 
electrocardiogram (ECG) and limited transthoracic echocardiogram 
(TTE). 

Currently, all ECGs obtained in the Mayo Clinic Health System un-
dergo AI-enhanced algorithmic assessment to identify potential CVDs 
not readily apparent by manual ECG interpretation alone [8]. To eval-
uate the effectiveness and potential utility of the AI-based CVD screening 
tool in an under-resourced African-American cohort, we reviewed the 
AI-enhanced ECG data of FAITH! participants, as a proof-of-concept 
ancillary study for community-based AI CVD screening. 

2. Methods 

2.1. Study design and participants 

In partnership with the FAITH! CSC, we conducted a CBPR project, 
FAITH! Heart Health+, as an ancillary study to the overarching FAITH! 
Trial which focused on structural racism and CVH. The CSC provided 
input in all project phases including conceptualization of the need for 
additional CVD screening, development of a culturally sensitive imple-
mentation plan, and dissemination of study results to participants and 
key stakeholders. Community partners expressed the importance of 
leveraging innovative technological resources, including AI, for the 
benefit of the FAITH! Trial participants and to serve as a model for other 
healthcare systems. 

The design, recruitment, and preliminary findings of the overarching 
FAITH! Trial have been previously described in detail [7]. In brief, 
members from partnering churches in Rochester and Minneapolis, 
Minnesota were invited to participate in the study. Participants included 
in the study were African-American adults with smartphone ownership, 
basic internet skills (eg, navigation, downloading, etc.) and at least 
weekly internet and email access. Limited exclusion criteria were 

impaired ambulatory ability, pregnancy, or mental disability precluding 
independent mHealth app use. Baseline survey data included CVH 
assessment (American Heart Association Life’s Simple 7 [AHA LS7] 
metrics for scoring), socio-demographics, relevant medical history, and 
SDOH influences on CVH. Study participants were randomized to either 
the FAITH! App mHealth lifestyle intervention or control group to assess 
impact of the app on overall CVH. 

For inclusion in the Heart Health+ study, participants had to be 
enrolled in FAITH! Trial and provide informed consent. No additional 
eligibility criteria were applied. Enrolled participants completed a 
health assessment at a local community-oriented health center by a 
mobile clinical research unit team. The assessment included extended 
CVD risk evaluation and SDOH assessment (eg, housing-based socio-
economic status [HOUSES] index; neighborhood deprivation by area 
deprivation index [ADI]) by electronic survey [9,10]. The study was 
approved by the Mayo Clinic Institutional Review Board and registered 
(clinicaltrials.gov NCT03777709). 

2.2. Artificial intelligence-enhanced electrocardiography and 
echocardiography 

Enrolled Heart Health+ study participants completed cardiovascular 
testing including a standard, digital, 10-second 12-lead ECG and a 
limited TTE using a SonoSite Titan portable ultrasound machine [7]. The 
ECG date, acquisition location, and rhythm were extracted from the 
MUSE system (GE Healthcare, Marquette, WI). The ECG rhythm, ECG 
characteristics and echocardiographic findings including left ventricular 
ejection fraction (LVEF) were adjudicated by a technologist under 
cardiologist supervision. Incentives (US$50 cash cards) and parking 
vouchers were provided to participants for their time and effort at 
completion of each study assessment: electronic survey, laboratory 
studies, ECG, and TTE. 

All ECGs were analyzed using previously published convolutional 
neural networks embedded in the Mayo Clinic electronic medical record 
system via an AI-ECG Dashboard [8]. AI-ECG prediction probabilities 
were generated for age, sex and decreased LVEF [11,12]. Decreased 
LVEF in our cohort was defined as a value below <50%, slightly more 
lenient than the national/international definition of reduced LVEF 
<40% [13]. LVEF was visually estimated from the TTE images. 

2.3. Statistical analysis 

Patient demographic variables were summarized as total with per-
centage for categorical variables and mean with standard deviation for 
continuous variables. The diagnostic accuracy of the AI-ECG to detect 
decreased LVEF and predict participant sex was quantified using area 
under the receiver operating characteristic curve (ROC AUC). Sensitivity 
and specificity were calculated for decreased LVEF and sex prediction 
using a cut-off of AI-ECG predicted probability >0.256 and >0.48, 
respectively. Correlation between actual age and AI-ECG predicted age 
was assessed using Pearson correlation coefficients. All statistical ana-
lyses were performed using R version 4.1.2 (R Foundation for Statistical 
Computing, Vienna, Austria). 

3. Results 

3.1. Cohort demographics 

There was high enthusiasm and interest in participation in the Heart 
Health+ study as a total of 63 of 85 FAITH! Trial participants (74%) 
were successfully enrolled in the Heart Health+ Study of which 54 
(86%) completed both an ECG and a TTE between February and April of 
2022. The mean age of participants was 55 years (range 31-87 years) 
and 66.7% were female which is representative of the overall FAITH! 
Trial [7]. Personalized CVH risk factors and SDOH are reported in 
Supplemental Table 1. The average CVH (AHA-LS7) score for the cohort 
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was 6.54 (standard deviation [SD] 1.86). Mean state and national ADI 
rankings were 5.9 (SD 2.6) and 48.6 (SD 20.4) respectively indicating 
moderate neighborhood deprivation. Participants were also of lower 
socioeconomic status (mean standardized HOUSES index score -0.93 
[SD 2.5]). 

3.2. Electrocardiography and echocardiography 

All participants were in sinus rhythm (i.e., normal sinus rhythm or 
sinus bradycardia) at the time of ECG recording, and a TTE was per-
formed on the same day for 35 (64.8%) of participants. Those who un-
derwent TTE at a separate time were evaluated on average within 32.2 
days of ECG recording. The median LVEF range of the cohort was 60- 
65%, and two participants had a reduced LVEF (<50%). 

3.3. Artificial intelligence-enhanced electrocardiography 

The AI-ECG for the detection of LVEF demonstrated excellent per-
formance with an AUC of 0.892 (95% confidence interval [CI]: 0.708-1) 
with sensitivity of 50% (n=1/2; 95% CI: 9.5%-90.5%), and specificity of 
96% (n=49/51; 95% CI: 86.8%-98.9%). The AI-ECG for prediction of 
participant sex (probability of male sex being a positive test result) had 
similarly strong performance with AUC of 0.944 (95% CI: 0.891-0.998), 
sensitivity of 100% (n=18/18; 95% CI: 82.4%-100.0%), and specificity 
of 77.8% (n=28/36; 95% CI: 61.9%-88.3%) (Fig.). The AI-ECG pre-
dicted mean age was 55 years (range 26.9-72.6 years). The correlation 
between actual age and AI-ECG predicted age was strong with R=0.769 
(p<0.001) (Fig.). On average AI-ECG predicted age was within 0.024 
(SD 7.7) years of participants’ actual ages. 

A single participant with ECG limb lead reversal had a false positive 
AI-ECG prediction for decreased LVEF, which potentially demonstrates 
limitations of the AI-ECG in routine clinical practice and highlights ECG 

leads that likely influence the AI-based probabilities. However, it is 
noted that this participant also had sex misclassified by the AI-ECG 
(female participant with AI-ECG estimated a 99% probability of being 
male; Supplemental Fig. 1) suggesting a potential use of the AI-ECG sex 
estimation to serve as a “validity check” for AI-ECGs with unanticipated 
results. 

An exploratory analysis was performed to assess potential correlates 
between AI-ECG scores for decreased LVEF, age, and CVD risk factors 
including CVH and SDOH survey data (Supplemental Figs. 3-10). 

4. Discussion 

In this study, we found that previously developed and validated AI- 
ECG algorithms for LVEF, age, and sex prediction demonstrated reliable 
performance in this community-based African-American cohort. Par-
ticipants were able to receive AI-ECG-based screening at a local com-
munity venue with subsequent ECG processing via our institution-based 
AI-ECG dashboard [8]. While only weak correlations existed between 
CVH, SDOH and AI-ECG results, this study provides a framework for 
community-based AI-ECG screening in areas with limited healthcare 
access and/or resources. Based on FAITH! CSC guidance and feedback, 
all participants will receive the results from their extended CVD 
screening (including ECG and TTE results) via a lay-friendly, culturally 
tailored, Heart Healthy card explaining each test in plain language 
(Supplemental Fig. 2). 

This proof-of-concept application of the AI-ECG for community- 
based CVD screening has far-reaching implications, particularly in 
communities who may experience barriers to medical care [1,6,7]. This 
process may also be a means to potentially address healthcare disparities 
in limited resource medical facilities, including community health cen-
ters (eg, Federally Qualified Health Centers). Use of AI-ECG screening 
for cardiac pathology within these settings could amplify clinical 

Fig.. Successful community-based approach to cardiovascular disease screening by artificial intelligence-enhanced electrocardiograms in an underserved population 
of African-Americans. 
LEFT: Participants were recruited from partnering churches to enroll within the FAITH! Heart Health+ ancillary study. Enrolled participants completed a de-
mographic/health survey, laboratory studies evaluation, electrocardiogram (ECG) and a limited transthoracic echocardiogram. CENTER: ECGs were subsequently 
processed through our institution-based AI-ECG dashboard. RIGHT: Results from AI-processed ECGs were AI-ECG predicted participant age, participant sex, and 
decreased left ventricular ejection fraction. AI indicates artificial intelligence; CVD, cardiovascular disease; ECG electrocardiogram; LVEF, left ventricular ejection 
fraction; TTE, transthoracic echocardiogram. 
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suspicion for patients who would benefit from further diagnostic workup 
or sub-specialty referral allowing for effective distribution of limited 
resources in these communities. 

Attia et al. demonstrated that having an AI-ECG predicted age 
greater than chronologic age was associated with low LVEF, hyperten-
sion, and coronary artery disease, thus serving as a potential indirect 
biomarker for overall physiologic CVH [11]. AI-ECG age results may 
reinforce positive lifestyle changes [14], especially when used alongside 
a self-monitoring app like the FAITH! App which tracks health behav-
iors. This hypothesis needs to be tested in a larger cohort. 

As with community-based studies, there were several challenges 
faced by the study team and participants which were addressed with 
community partner input. Given competing demands of the COVID-19 
pandemic and participants’ full-time employment, there were initial 
scheduling difficulties of participant CVD screenings. The FAITH! CSC 
offered suggestions of coordination of appointments to accommodate 
participant work schedules with the opportunity to complete both their 
ECG and TTE either on the same day or at separate, shorter appoint-
ments at their convenience. Further, we were mindful of efficient timing 
(length) of diagnostic tests to minimize participant burden. This strategy 
proved useful as most participants (65%) completed all studies at one 
appointment, and those with separate appointments completed studies 
within an average of 32 days. Many participants lacked a consistent 
mode of transportation or had limited financial resources to cover 
transportation or parking expenses related to health assessments. Thus, 
the study team offered a convenient, community-based location near the 
partnering churches and provided parking and ride share vouchers. 

4.1. Limitations 

Our study is best understood within the context of its limitations. 
Given the small sample size, there were few participants with LVEF 
<50% (n=2) though many had multiple risk factors for CVD (eg, hy-
pertension, diabetes, overweight/obesity, etc. [Supplemental Table 1]). 
We also acknowledge that outlier data from this group, even as few as 1- 
2 missing inputs, can significantly impact the statistical significance of 
our findings. As noted, sensitivity (50%) is limited given the very low 
number of participants with true decreased LVEF (<50%), and the AI- 
ECG model was originally trained to identify LVEF ≤35% and may be 
less sensitive for LVEF above this threshold [12]. It is worth noting that 
AI-ECG probabilities in isolation may be of limited value without clinical 
correlation or additional diagnostic testing. 

5. Conclusions 

Our results demonstrate a promising proof-of-concept with signifi-
cant implications. If appropriately implemented, this community-centric 
health care initiative could provide valuable screening resources and 
appropriate referrals for early detection of highly-morbid cardiovascular 
conditions that are otherwise unavailable or inaccessible to individuals 
with limited healthcare resources, particularly minoritized racial and 
ethnic groups. This novel AI initiative also establishes a framework for 
larger studies to possibly identify socio-demographic risk factors which 
could have a significant impact on CVD detected by AI. 
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