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Abstract
Schizophrenia has a complex and heterogeneous molecular and clinical picture. Over the years of research on this disease, 
many factors have been suggested to contribute to its pathogenesis. Recently, the inflammatory processes have gained par-
ticular interest in the context of schizophrenia due to the increasing evidence from epidemiological, clinical and experimental 
studies. Within the immunological component, special attention has been brought to chemokines and their receptors. Among 
them, CX3C chemokine receptor 1 (CX3CR1), which belongs to the family of seven-transmembrane G protein-coupled 
receptors, and its cognate ligand (CX3CL1) constitute a unique system in the central nervous system. In the view of regula-
tion of the brain homeostasis through immune response, as well as control of microglia reactivity, the CX3CL1–CX3CR1 
system may represent an attractive target for further research and schizophrenia treatment. In the review, we described the 
general characteristics of the CX3CL1–CX3CR1 axis and the involvement of this signaling pathway in the physiological 
processes whose disruptions are reported to participate in mechanisms underlying schizophrenia. Furthermore, based on the 
available clinical and experimental data, we presented a guide to understanding the implication of the CX3CL1–CX3CR1 
dysfunctions in the course of schizophrenia.
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Introduction

Schizophrenia is a chronic and severe mental illness, ranked 
among the leading causes of disability worldwide in recent 
years [1–3]. Despite a relatively low prevalence, the condi-
tion is one of the major contributors to the global burden 
of disease [2, 3]. The onset of that disorder usually appears 
in late adolescence or early adulthood [4]. The diagnosis 
of schizophrenia is based on clinical criteria that consider 
varied symptomatology, generally categorized into three 
groups: positive symptoms including hallucinations, delu-
sions or conceptual disorganization; negative symptoms 
consisting of blunted or loss of affect and conative func-
tions, avolition or apathy; and cognitive deficits referring 
to impairment of various types of memory and difficulty 

processing and using information [5–7]. Although the causes 
of schizophrenia remain unclear, the heterogeneous nature 
of the condition implies the contribution of multiple aetio-
logical factors. The reports have suggested that the develop-
ment of this illness may result among others from genetics 
[8–10], altered brain connectivity [11–15], abnormalities 
in neurotransmission systems [16–21] and/or environmen-
tal factors, including childhood trauma [22, 23], maternal 
stress [24] and infections during pregnancy [25–27], obstet-
ric complications [28] as well as prenatal malnutrition [29]. 
The interplay between some of these factors, for example, 
gene–environment interactions [30–33] with an increased 
focus on epigenetic regulation [34–36], has been also pro-
posed as the basis of this disorder. Recently, even though 
diversity in research data emerges [37–39], multiple studies 
have strongly supported the role of an inflammatory com-
ponent in the pathogenesis of schizophrenia [40–42]. It has 
been shown that patients with this disease suffer from dis-
turbances in the expression of cytokines and chemokines 
with inter alia the affected levels of interleukin-1β (IL-1β), 
IL-2, IL-1 receptor antagonist (IL-1RA), and elevated pro-
duction of IL-6, IL-8, tumour necrosis factor α (TNF-α), 
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monocyte chemoattractant protein-1 (MCP-1) and C–C 
motif chemokine ligand 5 (CCL5 or RANTES) in blood or 
cerebrospinal fluid [43–48]. Additionally, polymorphisms 
in cytokine genes such as IL-2, IL-6, IL-10 and TNF-α are 
likely to be a risk factor for this disease [49–51]. Some post-
mortem studies have found the presence of activated micro-
glia and changes in the levels of cytokines, chemokines and 
microglial markers [e.g., major histocompatibility complex 
class I (MHCI), MHCII, IL-1β, IL-6, IL-8] in brain tissues 
[39]. In the central nervous system (CNS), microglia are 
the main immunocompetent cells and primary reservoirs of 
inflammatory factors [52]. Even though microglia constitute 
only about 10% of the total brain cells [53], they respond rap-
idly to even minor pathological changes in the CNS and may 
contribute directly to brain homeostasis. Therefore, inter-
est in the role of critical molecules modulating functions of 
microglia has been prompted in the context of mechanisms 
underlying schizophrenia. Among them, chemokines, in par-
ticular, have gained special attention with recent evidence 

suggesting the importance of the CX3CL1–CX3CR1 axis 
to this condition.

The general characteristic of the CX3CL1–
CX3CR1 system

C-X3-C motif chemokine ligand 1 (CX3CL1) was firstly 
described in 1997 under the name “fractalkine” in humans 
[54] and simultaneously as “neurotactin” in mice [55]. This 
molecule differs notably from other classes of chemokines 
in terms of structure (Fig. 1). CX3CL1 is synthesized as 
an intracellular precursor (50–75  kDa) that undergoes 
rapid maturation processes to yield mature glycoprotein 
(95–100 kDa) transported to the cell surface [56, 57]. The 
full-length CX3CL1 is encoded by a 395–397-amino-acid 
chain and contains a chemokine domain, mucin-like stalk, 
transmembrane region and a cytoplasmic tail [54, 58, 59]. 
Due to the specific arrangement of two cysteine residues near 

Fig. 1  Scheme illustrating the structure, localization and signal-
ing pathways affected by the CX3CL1–CX3CR1 axis. CX3CL1, 
produced mostly by neurons, is a membrane-bound molecule with 
a chemokine domain, mucin-like stalk, transmembrane region and 
cytoplasmic tail. Cleavage of CX3CL1 is mediated under physiologi-
cal or pathological conditions by ADAM10 or ADAM17, MMP-2, 

MMP-3 and cathepsin S, respectively. Binding CX3CL1 to CX3CR1, 
which is a seven-transmembrane domain  Gi protein-coupled recep-
tor expressed primarily on microglia, results in an intracellular trans-
mission engaging multiple signaling pathways. TM transmembrane 
domain, EL extracellular loop, IL intracellular loop
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the amino terminus divided from each other by three amino 
acids, it was assigned to a separate type of chemokines (δ 
subfamily) and it is the only known representative of the 
CX3C class so far [54, 55]. CX3CL1 appears in two forms: 
soluble (sCX3CL1) and membrane-bound (mCX3CL1) [60], 
which recently have been suggested to display differential 
activities within the CNS [61]. Under physiological condi-
tions, the cleavage of sCX3CL1 is primarily carried out by 
a disintegrin and metalloproteinase domain-containing pro-
tein 10 (ADAM10) [62], while in the case of induction with 
a stress factor—by the TNF-α converting enzyme (TACE 
or ADAM17) [56, 63], matrix metalloprotease-2 (MMP-2) 
[64] and MMP-3 [65] or cathepsin S [66, 67]. It should be 
noted that there are some inconsistencies in the observed 
molecular weight of the secreted chemokine, possibly due 
to multiple forms of sCX3CL1 generated by the shedding 
from the cell surface at alternative sites [62, 68, 69]. Several 
reports have also shown that the CX3CL1 gene is polymor-
phic and its genetic variants may be related to HIV infec-
tion [70], postoperative chronic pain [71], coronary artery 
disease [72, 73] and carotid intima-media thickness [74] as 
well as a reduced risk of major depression [75]. CX3CL1 
is vastly distributed throughout the body with the predomi-
nant expression in the brain [76] and to a lesser extent in 
the heart, kidney, lung and uterus [55]. In the CNS, the 
distribution of this chemokine varies between regions [77]. 
The highest protein levels of CX3CL1 were detected in the 
amygdala, cerebral cortex (particularly in layers II, III, V 
and VI), hippocampus (most intensely in CA1 field), basal 
ganglia and olfactory bulb. Other brain structures such as the 
hypothalamus and brainstem showed a scattered and scant 
presence of CX3CL1. Concerning the gene expression of 
this chemokine, it corresponds with protein localization 
as the uppermost mRNA levels were measured in the hip-
pocampus, cerebral cortex and striatum [77]. On the cellular 
level, the main sources of CX3CL1 are neurons [78] along 
with dendritic cells [79], endothelial cells [54, 80], epithelial 
cells [80, 81], fibroblasts [82], macrophages [83] and smooth 
muscle cells [84]. Within the brain, it was suggested that 
also astrocytes produce CX3CL1, however, at lower levels 
than neurons [85–87] or as a result of inflammatory stimu-
lation, in an example with TNF-α and interferon γ (IFN-γ) 
[88].

CX3CL1 interacts with only one known receptor (Fig. 1). 
It was first described by the name RBS11 in rats [89] and 
later as V28 in humans [90]. However, since it has repre-
sented the first receptor for CX3CL1, it was accordingly 
designated as CX3C chemokine receptor 1 (CX3CR1) [91]. 
CX3CR1 is a seven-transmembrane domain  Gi protein-
coupled receptor (GPCR) and belongs to the A class, which 
includes rhodopsin-like receptors [91]. CX3CR1 (40 kDa) 
is composed of 355 amino acid residues forming an extra-
cellular N-terminus, alternately arranged α-helical domains 

(TM1–TM7), intracellular (IL1–IL3) and extracellular 
(EL1–EL3) loops, and an intracellular C-terminus [92]. IL2 
contains a DRY (also called DRYLAIV) motif, which is 
crucial for G protein interactions and signal transduction 
by the receptor [90, 91]. The research data have shown the 
presence of the receptor gene’s single-nucleotide polymor-
phisms (SNPs) resulting in two functional variants (V249I 
and T280M) [93], which to varying degrees have been asso-
ciated with age-related macular degeneration [94], AIDS 
[95], amyotrophic lateral sclerosis [96, 97], coronary artery 
disease [98], Crohn’s disease [99], multiple sclerosis [100] 
and obesity [101]. Additionally, these SNPs may affect arte-
rial blood volume in the precuneus, left posterior parietal 
cortex and left posterior cingulate cortex, structures with 
observed abnormalities in schizophrenia, bipolar disorder, 
autism and Alzheimer’s disease [102]. Recently, CX3CR1 
V249I polymorphism has been also suggested as a factor 
that improved overall and progression-free survival in low-
grade gliomas [103]. Regarding the expression, CX3CR1 is 
present on microglia [104, 105], dendritic cells [106], mast 
cells [107], monocytes [108, 109], macrophages [108], natu-
ral killer cells [91, 110], neutrophils [108], T lymphocytes 
[108] and thrombocytes [111].

Binding the ligand to CX3CR1 results in an intracel-
lular transmission mediated by several second messengers 
and transcription factors, including for instance activator 
protein 1 (AP-1) [112],  Ca2+ [113, 114], cAMP response 
element-binding protein (CREB) [115], inositol 1,4,5-tri-
sphosphate (IP3) [114], nuclear factor erythroid-derived 
2-like 2 (NRF-2) [116], nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) [112, 115, 117, 118] 
as well as signal transducers and activators of transcription 
1/3 (STAT1/3) [112, 119]. The signal transduction by the 
receptor affects pathways engaging protein kinase B (PKB or 
Akt) [120–122], extracellular signal-regulated kinase (ERK) 
[118, 120, 123], Janus kinase (JAK)/STAT [112, 119, 124], 
c-Jun N-terminal kinases (JNK) [118, 121], p38 mitogen-
activated protein kinases (p38MAPKs) [112, 115], phosph-
oinositide-3-kinase (PI3K) [120, 125] and steroid receptor 
coactivator/focal adhesion kinase (Src/FAK) [126, 127] 
(Fig. 1). Regulation of these signaling pathways underlines 
the reported in literature roles of the CX3CL1–CX3CR1 
axis both in physiological and pathological processes within 
the organism.

The involvement of the CX3CL1–CX3CR1 
dyad in the brain physiology

The participation of CX3CR1 activation by its ligand in 
homeostatic conditions has been already addressed in 
impressive details in a few excellent articles, both experi-
mental and review [128–133]. We invite the reader to 
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get acquainted with these publications, and therefore in 
this chapter, we will briefly present only reports that are 
essential for understanding further data showing the 
CX3CL1–CX3CR1 system in the context of schizophrenia 
(Fig. 2).

The major role of the CX3CL1–CX3CR1 axis in the CNS 
covers control of the activation and functioning of micro-
glia. For the first time, the phenomenon has been supported 
by the in vitro experiments, in which stimulation with the 
ligand triggered induction of  Ca2+ mobilization, activation 
of MAPK and Akt, strong migratory activity and the reor-
ganization of the actin cytoskeleton of these cells [104]. 
Additionally, Lyons et al. [134] described the decrease in 
CX3CL1 level in the hippocampus of aged rats that was 
accompanied by an increase of microglial activation. Treat-
ment of those animals with the ligand diminished the activa-
tion, proving that CX3CL1 is required to maintain the cells 
in a quiescent state [134]. In line with this function, it has 
been shown that the interaction of CX3CL1 with CX3CR1 
participates in the regulation of the inflammatory response 
of microglia, which includes a release of cytokines, nitric 
oxide and reactive oxygen species [122, 135–137]. The 
impairment of these processes, leading to prolonged micro-
glial activation and neuroinflammation, has been indicated 
as part of schizophrenia pathology [138, 139].

It is widely recognized that the CX3CL1–CX3CR1 pair 
takes part in synapse-related processes, including synaptic 
formation, maturation, integration, pruning and transmis-
sion. The evidence has been provided by many data, includ-
ing the research on Cx3cr1-deficient mice. In the article by 
Paolicelli et al. [140], these animals were characterized by 
transiently reduced microglia numbers in the developing 

brain and delayed synaptic pruning. The deficiency in this 
process resulted in an excess of dendritic spines and imma-
ture synapses and was associated with the persistence of 
electrophysiological and pharmacological indicators of 
immature brain circuitry [140]. Rogers et al. [141] demon-
strated that mice lacking the Cx3cr1 gene displayed a signifi-
cant decrease in hippocampal neurogenesis, impaired syn-
aptic plasticity and up-regulated level of pro-inflammatory 
IL-1β, followed by the behavioral changes (precisely, dis-
rupted motor learning, associative and spatial memory). As 
presented by Bolós et al. [142], the depletion of the receptor 
caused the deficient synaptic integration of adult-born gran-
ule neurons in the hippocampal dentate gyrus, both at the 
afferent (a decreased number of dendritic spines) and effer-
ent (a reduced area of axonal terminals) level. Other research 
revealed that Cx3cr1−/− knockouts exhibited alterations in 
postnatal functional maturation of thalamocortical synapses 
[143]. The above-mentioned data are particularly important 
in the context of multiple synapse pathologies (e.g., reduc-
tion in spine density, enrichment of rare disruptive variations 
in synaptic genes and increased synaptic pruning) observed 
in the brains of patients with schizophrenia [144, 145].

Synaptic remodeling and plasticity contribute to the 
development of neural networks [146–148]. Therefore, it 
seems natural that the CX3CL1–CX3CR1 dyad is engaged 
in the formation of these circuits within the brain. This sub-
ject was reviewed extensively in the article by Paolicelli 
et al. [129], where the authors collected convincing data 
implicating the interaction of CX3CL1 with its receptor in 
the formation and reconstruction of neural connectivity. The 
research findings have shown that anomalous circuitry is one 
of the hallmarks of schizophrenia as the changes in neural 

Fig. 2  The role of the CX3CL1–CX3CR1 signaling pathway in the 
pathology of schizophrenia. In physiological conditions, the inter-
action of CX3CL1 with CX3CR1 is essential for the regulation of 

multiple processes in the brain. The disturbances within this axis 
and subsequent disruptions within these mechanisms implicate the 
CX3CL1–CX3CR1 dyad in schizophrenia
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networks of, inter alia, the prefrontal cortex and hippocam-
pal formation of the individuals with the illness have been 
found [149–153].

The implication of the CX3CL1–CX3CR1 
signaling pathway in schizophrenia

Clinical data

To date, only a few studies have evaluated the expression 
of CX3CL1 and CX3CR1 in patients with schizophrenia 
(Table 1). As reported by Bergon et al. [154], meta-anal-
yses of microarray data from postmortem brain and blood 

Table 1  Summary of alterations in the CX3CL1–CX3CR1 axis protein levels and mRNA expression reported in the studies in patients with 
schizophrenia

NA not assessed

Study CX3CL1 CX3CR1 Comment

Bergon et al. [154] NA mRNA expression, decreased Meta-analyses of postmortem brain 
and blood samples from patients with 
schizophrenia

Brain regions included in the study: 
the prefrontal, frontal and temporal 
cortices, cerebellum, hippocampus, 
striatum and thalamus

RT-qPCR examination of peripheral 
blood mononuclear cells from patients 
with schizophrenia

Fries et al. [155] NA mRNA expression, decreased Genome-wide analysis of peripheral 
blood mononuclear cells from veterans 
with schizophrenia

Li et al. [156] NA mRNA expression, decreased Datasets integrated analysis of samples 
from patients with schizophrenia

Hippocampus
Gandal et al. [157] Differential gene expression, decreased Differential gene expression, decreased Analyses of microarray gene expres-

sion data of postmortem samples from 
patients with schizophrenia

Frontal and parietal cortex
[158] Differential gene expression, 

decreased; variously expressed 
isoforms

Differential gene expression, 
decreased; variously expressed 
isoforms

Analyses of RNA-sequencing data of 
postmortem samples from patients 
with schizophrenia

Frontal and temporal cortex
Ishizuka et al. [159] NA Ala55Thr variant in CX3CR1 gene Destabilization of the receptor gene’s 

conformation leading to the increased 
risk of schizophrenia

Ormel et al. [160] NA mRNA expression, increased in one of 
the phenotypes within the cells

Monocyte-derived microglia-like 
cells obtained from peripheral blood 
mononuclear cells of patients with 
schizophrenia

Zhang et al. [161] NA mRNA expression Postmortem samples from patients with 
schizophrenia

Unchanged (patients with schizophre-
nia versus controls)

Dorsal lateral prefrontal cortex, anterior 
cingulate cortex

Increased (suicide completers with 
schizophrenia versus non-suicide 
subjects affected by the condition)

Anterior cingulate cortex

Hill et al. [162] mRNA expression, unchanged mRNA expression, unchanged Postmortem samples from patients with 
schizophrenia

Orbitofrontal cortex
Protein level, decreased Protein level, unchanged Dorsolateral prefrontal cortex
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samples highlighted down-regulation of CX3CR1 mRNA 
levels in the subjects affected by this condition. The find-
ing was further confirmed by RT-qPCR examination in the 
peripheral blood mononuclear cells (PBMCs) obtained from 
the suffering from schizophrenia. The dysregulation of the 
gene expression in PBMCs was independent of confounding 
variables (including tobacco smoking, age, gender or antip-
sychotic medication) and correlated with a depression–anxi-
ety phenotype [154]. Comparable results were presented by 
Fries et al. [155] whose genome-wide research revealed the 
diminished CX3CR1 level in PBMCs from veterans with 
a diagnosis of schizophrenia. Similarly, the datasets-inte-
grated analysis showed that the CX3CR1 expression was 
decreased in the hippocampi of individuals with this illness 
[156]. Another evidence for this phenomenon was deliv-
ered by Gandal et al. [157] whose multifaceted and com-
plex microarray study revealed a robust reduction in both 
CX3CL1 and CX3CR1 levels in postmortem cortical samples 
from patients with schizophrenia. The authors confirmed 
and expanded these findings in further examinations apply-
ing large-scale RNA-sequencing-based quantifications that 
integrated genetic and genomic data from numerous well-
curated, high-quality postmortem brain specimens from indi-
viduals with the disease and controls [158]. The analyses of 
a transcriptomic organization at the levels of a gene, isoform, 
local splicing and gene networks indicated down-regulation 
in differential expression of CX3CL1 and CX3CR1 as well 
as the presence of variously expressed isoforms [158]. Pos-
sibly such changes regarding genetic variants may exhibit 
distinct biological effects and consequently result in hetero-
geneity in pathology progression or symptom manifestation 
in schizophrenia. In parallel to these observations, it was 
shown that the rare variant (Ala55Thr) in the CX3CR1 gene 
contributes to the increased risk of this condition [159]. The 
researchers proved that the mutation could destabilize the 
conformation of the receptor by weakening the hydropho-
bic interaction between TM1 and helix 8 in the structure of 
CX3CR1. Consequently, the Ala55Thr variant affected the 
gene interplay with a G protein and resulted in inhibition of 
the CX3CL1–CX3CR1 signaling. Complementary experi-
ments on HEK293 cells transfected with Ala55Thr-express-
ing vector demonstrated a reduction in Akt phosphoryla-
tion-mediated signaling upon CX3CL1 treatment [159]. A 
characterization of microglia-like cells derived from patients 
with schizophrenia demonstrated the presence of two unique 
inflammatory phenotypes within these cells [160]. It is note-
worthy that one out of the significantly abundant clusters 
was distinguished by higher expression of CX3CR1. In 
another study, Zhang et al. [161] showed that CX3CR1 tran-
script level was increased in the anterior cingulate cortex 
of suicide completers with schizophrenia when compared 
to the subjects affected by this condition who died of other 
causes. However, when the investigated cohort was analysed 

holistically and compared to controls, the mRNA expression 
of the receptor was unchanged in this brain structure (as well 
as in the dorsal lateral prefrontal cortex). These postmortem 
data emphasized the importance of accurate characteristic 
of examined groups in terms of symptoms of the disease 
and anamneses. Nonetheless, the latest articles implicate 
that the disruption in the CX3CL1–CX3CR1 signaling in 
schizophrenia may be limited to a shift in the ligand produc-
tion. Hill et al. [162] described diminished protein release 
of CX3CL1 with no change in the level of CX3CR1 in the 
postmortem dorsolateral prefrontal cortex from individu-
als with this disorder. The decline in the expression of the 
ligand was not accompanied by the difference in ADAM10 
production, suggesting that the lower level of CX3CL1 
was not caused by the altered cleavage conducted by this 
sheddase. Additional analysis of the samples from patients 
with schizophrenia revealed a subtle but significant nega-
tive correlation between CX3CL1 protein level and lifelong 
antipsychotic dose. This association implies the possibility 
that chronic medication with antipsychotics may contribute 
to the reduced production of this chemokine [162]. In the 
same study, no discrepancies between control subjects and 
those affected by schizophrenia were found in terms of the 
transcript expression of neither CX3CL1 nor CX3CR1 in the 
orbitofrontal cortex. The observations regarding the protein 
and mRNA levels of the CX3CL1–CX3CR1 dyad were unre-
lated to such contributory factors as body mass index, serum 
C-reactive protein release, alcohol consumption, prescribed 
antidepressants or mood stabilizers, death by suicide and a 
subtype of schizophrenia (undifferentiated or paranoid). As 
noted by the authors, sex had an effect only on the CX3CL1 
production in the control group as males were characterized 
by higher levels of the ligand than females [162].

Experimental data

One of the approaches to investigate schizophrenia-like dis-
turbances in animals involves the maternal immune acti-
vation (MIA) paradigm [163, 164] (Table 2). Most often, 
MIA is generated by the administration of immunostimu-
lants, for example, lipopolysaccharide (LPS) [165–169] or 
polyinosinic:polycytidylic acid (Poly I:C) [170, 171] to preg-
nant females of rodents. Current evidence showed alterations 
in the CX3CL1–CX3CR1 system in male offspring of MIA-
treated Wistar rat dams [172]. The changes were present 
already in the early life of animals when an increase in the 
hippocampal Cx3cl1 expression and CX3CR1 level, as well 
as cortical CX3CL1 production, was observed in descend-
ants prenatally exposed to LPS. At the same time, MIA with 
Poly I:C elevated CX3CL1 level in the frontal cortex and 
decreased CX3CR1 release in the hippocampus of young 
rats. The disturbances of the CX3CL1–CX3CR1 axis were 
accompanied by alterations in the expression of microglial 
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markers and the profile of cytokines released in the brains 
of juveniles in both MIA models [172]. Along with these 
results, the MIA-subjected offspring displayed multiple 
behavioral schizophrenia-like disturbances (e.g., PPI defi-
cits and an aggressive phenotype) in adulthood. These mal-
functions depended on the immunostimulant used and were 
accompanied by a reduction in hippocampal and a raise in 
cortical CX3CL1 levels in LPS- and Poly I:C-exposed ani-
mals, respectively [172]. In another article from this research 
group [173], the expression of the Cx3cl1–Cx3cr1 dyad was 
not affected, while the protein levels of CX3CL1 in the hip-
pocampus and CX3CR1 in the frontal cortex were down-
regulated after MIA with LPS in adult offspring without 
a deficit in PPI. The additional acute challenge with LPS 
later in life, according to the “two-hit” hypothesis of schizo-
phrenia, decreased levels of hippocampal CX3CL1 in rats 
with altered PPI and cortical CX3CR1 in animals without 
such behavioral deficiency [173]. In similar experimental 
conditions, yet applying MIA with Poly I:C, the mRNA 
expression of both Cx3cl1 and Cx3cr1 was reduced in the 
hippocampus of adult descendants without PPI deficit [174]. 
Simultaneously, the protein levels of the CX3CL1–CX3CR1 
pair were upregulated in the frontal cortex of these animals. 
The additional injection of Poly I:C in adulthood decreased 
cortical Cx3cr1 expression and increased hippocampal 
CX3CL1 level in offspring without impairment in PPI [174]. 
The results came from the experiments on Sprague-Dawley 
rats, which suggests that the different strains exert notable 
effects on the outcome of examinations in MIA models. 
Abnormalities in CX3CR1 levels have been also measured in 
microglia isolated from brains of mice subjected to prenatal 
Poly I:C injection [175, 176]. Mattei et al. [175] presented 
the diminished mRNA expression of the receptor in these 
cells obtained from the hippocampus of male offspring. The 
alteration was accompanied by deficits in social behavior 
and PPI (in part of animals) as well as working memory 
impairment [175]. In contrast, flow cytometry revealed that 
the cells of female descendants prenatally challenged with 
MIA were characterized by a significantly bigger popula-
tion of microglia expressing CX3CR1 [176]. The change 
did not persist until adulthood and preceded deficits in PPI 
as those were noted only in the later stage of a female’s life. 
As postulated by the authors, these observations may indi-
cate intensified synaptic processes occurring in response to 
Poly I:C administration. Furthermore, MIA did not influence 
PPI and led to a lasting decrease in CX3CR1 level in male 
offspring as the reduction was detected both in adolescence 
and adulthood [176]. Hui et al. [177] showed data, where 
prenatal immune challenge with Poly I:C in mice resulted 
in partly sex-dependent behavioral schizophrenia-like distur-
bances (for instance increased repetitive behavior, anxiety, 
reduced sociability and deficits in PPI) but no disturbances 
in Cx3cl1 and Cx3cr1 gene expression in brains of offspring Ta
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were identified. A significant, although preliminary obser-
vation in the context of schizophrenia-associated abnor-
malities implementing the MIA model with Poly I:C was 
also provided by Estes et al. [178] in their preprint article. 
In the frontal cortex of male offspring mice, the Cx3cr1 
expression was oscillating throughout development with a 
decrease in mRNA levels at birth and postnatal day 14 (P14) 
and an increase at P7 and P60. It showed that the expres-
sion of the receptor gene was particularly up-regulated at 
the beginning of synaptogenesis (P7) and declined during 
the peak of this process and spine formation (P14). These 
age-specific changes in the Cx3cr1 transcript level implicate 
MIA-induced microglial dysfunctions that trigger alterations 
in cortical networks [178]. The evidence seems to support 
the reports on impaired anatomical and functional connec-
tivity in the cerebral cortex of patients with schizophrenia 
[179–181]. Consistent results were described by Garré 
et al. [182]. MIA with Poly I:C in mice caused dendritic 
spine loss, impairments in learning-dependent dendritic 
spine formation and deficits in learning tasks which were 
mediated by CX3CR1-highly expressing monocytes via 
TNF-α-dependent mechanisms. Recently, Bordeleau et al. 
[183] reported a different approach in inducing MIA and 
showed that exposure to a high-fat diet resulted in maternal 
systemic inflammation and simultaneously decreased the 
mRNA expression of Cx3cr1 in the hippocampus of male 
offspring mice.

Further evidence regarding the involvement of the 
CX3CL1–CX3CR1 pair in the pathogenesis of schizophre-
nia has been contributed by multiple studies on genetic mod-
els with a knockout of the receptor gene. Zhou et al. [184] 
applied a social isolation model of the disease in Cx3cr1-
deficient mice and examined the schizophrenia-related 
behaviors. Unlike control animals exposed to the procedure, 
the knockouts did not display deficits in PPI. Moreover, the 
CX3CR1 level was up-regulated in the medial prefrontal 
cortex, hippocampus and nucleus accumbens of the isolated 
wild-type mice, suggesting that the receptor might partici-
pate in the examined schizophrenia-like behaviors [184]. 
Another feature observed for Cx3cr1−/− animals was a tran-
sient reduction of microglia during the early postnatal period 
that resulted in impaired synaptic pruning [185]. The authors 
stated that the lack of the receptor gene caused a decrease 
in synaptic transmission, attenuation of functional brain 
connectivity, intensified repetitive behavior and deficits in 
social interaction. Squarzoni et al. [186] suggested that a 
mild shift in neocortical positioning of microglia depicted 
in mice lacking the Cx3cr1 gene could contribute to defects 
in postnatal synaptogenesis and cortical networks. Besides, 
Cx3cr1 knockouts exhibited reduced baseline connectivity 
from the prefrontal cortex to the dorsal hippocampus dur-
ing the habituation phase in the social interaction test [187]. 
This report seems to be particularly relevant in the context 

of data in the suffering from schizophrenia for whom sorely 
impaired connectivity between the hippocampus and the 
prefrontal cortex was shown [188, 189].

The current study by Lebovitz et al. [190] revealed that 
antibiotics-driven maternal microbiome dysbiosis (MMD), 
which is considered a model of neurodevelopmental disor-
ders including schizophrenia, led to social impairments in 
male offspring. The deficiency coincided with an increased 
protein level of CX3CR1 in the prefrontal cortex of those 
mice. The application of Cx3cr1GFP/GFP knockout animals 
allowed to demonstrate that MMD-reared descendants 
developed the changes in behavior due to dysfunction of the 
CX3CL1–CX3CR1 signaling and disrupted synaptic mod-
eling. Notably, the presence of a gut commensal bacterium 
strain, Lactobacillus murinus HU-1, was sufficient to prevent 
social alterations and microglial activation in MMD-affected 
offspring [190]. Experiments in a pharmacological model 
of schizophrenia-like cognitive deficits induced by repeated 
ketamine administration showed the effect of cannabidiol 
(CBD) on the Cx3cr1 transcript level [191]. As presented by 
the researchers, the CBD treatment caused the up-regulation 
of the receptor expression in the prefrontal cortex of male 
offspring of Sprague-Dawley rats. Therefore, the evidence 
implies that the CX3CL1–CX3CR1 axis might be crucial in 
the disease course and could provide a new target for future 
therapy.

Conclusions

The literature data from reports in patients concerning the 
role of the CX3CL1–CX3CR1 axis in the pathogenesis of 
schizophrenia remain inconsistent and, thus, difficult to 
unambiguously interpret. More information has been pro-
vided by the studies in animal models of the disease (e.g., 
implementing MIA); however, those are often confounded 
with the discrepancies in experimental conditions, including 
species or strains of animals, a protocol of immunostimu-
lant administration or even paradigm of behavioral examina-
tions. Nevertheless, all of the observations shed a light and 
increasingly implicate the involvement of CX3CR1 and its 
ligand in mechanisms underlying schizophrenia. To date, the 
particular interest in the CX3CL1–CX3CR1 system seems 
to indirectly result from its extensive role in maintaining 
the homeostasis of processes in the CNS that are often indi-
cated as disturbed in the course of that disorder (Fig. 2). 
Yet, further research is needed to a profound understand-
ing of the exact contribution of this signaling pathway in 
schizophrenia.
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