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Probabilistic models of decision making under various forms of uncertainty have been

applied in recent years to numerous behavioral and model-based fMRI studies. These

studies were highly successful in enabling a better understanding of behavior and

delineating the functional properties of brain areas involved in decision making under

uncertainty. However, as different studies considered different models of decision

making under uncertainty, it is unclear which of these computational models provides

the best account of the observed behavioral and neuroimaging data. This is an

important issue, as not performing model comparison may tempt researchers to

over-interpret results based on a single model. Here we describe how in practice one

can compare different behavioral models and test the accuracy of model comparison

and parameter estimation of Bayesian and maximum-likelihood based methods. We

focus our analysis on two well-established hierarchical probabilistic models that aim

at capturing the evolution of beliefs in changing environments: Hierarchical Gaussian

Filters and Change Point Models. To our knowledge, these two, well-established models

have never been compared on the same data. We demonstrate, using simulated

behavioral experiments, that one can accurately disambiguate between these two

models, and accurately infer free model parameters and hidden belief trajectories

(e.g., posterior expectations, posterior uncertainties, and prediction errors) even when

using noisy and highly correlated behavioral measurements. Importantly, we found

several advantages of Bayesian inference and Bayesian model comparison compared

to often-used Maximum-Likelihood schemes combined with the Bayesian Information

Criterion. These results stress the relevance of Bayesian data analysis for model-based

neuroimaging studies that investigate human decision making under uncertainty.

Keywords: decision making, changing environments, change point models, Hierarchical Gaussian Filters,

Bayesian inference, maximum-likelihood estimate, Bayesian model comparison

1. INTRODUCTION

To efficiently operate and survive in our everyday environment it is essential to quickly adapt to any
unexpected changes that might occur. Numerous studies investigated computational principles and
neuronal mechanism that underlie human decision making in changing environments (Angela,
2007; Behrens et al., 2007; Doya, 2008; Summerfield et al., 2011; Payzan-LeNestour et al., 2013).
The large interest in this topic has led to the development of several behavioral models that
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can elucidate various features of human decision making under
uncertainty (Yu and Dayan, 2005; Nassar et al., 2010; Payzan-
LeNestour, 2010; Mathys et al., 2011; Payzan-LeNestour and
Bossaerts, 2011; Wilson and Niv, 2011; Wilson et al., 2013; Glaze
et al., 2015). The main premise of these models is the adaptive
representation of the state of the world that can compensate for
various sources of uncertainty in the environment (Bland and
Schaefer, 2012). In recent years several of these models have
been applied to model-based behavioral and neuroimaging data
analysis, which provided valuable insights into the underlying
computational processes and their neural mechanisms (Behrens
et al., 2007; Summerfield et al., 2011; Nassar et al., 2012; Iglesias
et al., 2013; Payzan-LeNestour et al., 2013; McGuire et al., 2014;
Vossel et al., 2014).

However, in a typical study, the authors focused on one
specific model that describes the evolution of beliefs and did
not consider alternative formulations that may equally well
describe decision making under uncertainty. The lack of model
comparisons in this field casts some doubt on whether one
can draw specific conclusions from the data, as there might
be an alternative, well-established model that explains the data
even better. An interesting question is whether there are specific
components in eachmodel that are not predicted by othermodels
and which can be used for disambiguating among models.
Critically, such model comparisons may tell us whether the
data allow for the identification of a particular model and its
computational mechanism. Importantly, for model comparison
the inference methods used should be accurate. Otherwise a
model comparisonmay not be sensible, as any difference between
models may also be caused by inaccurately inferred parameters.
Here we will investigate whether such accurate model selection
is possible when considering different models of decision making
under uncertainty.

To avoid making the analysis overly complex we focused
on two well-established models: (i) the Hierarchical Gaussian
Filters (HGF) (Mathys et al., 2011, 2014), and (ii) Change
Point Models (CPM) (Nassar et al., 2010). To our knowledge
these are the only two models that were applied multiple
times in behavioral and neuroimaging studies (Nassar et al.,
2012; Iglesias et al., 2013; Diaconescu et al., 2014; McGuire
et al., 2014; Paliwal et al., 2014; Vossel et al., 2014, 2015)
that investigated decision making in changing environments.
Although these models are well-established, to the best of our
knowledge and surprisingly, they have never been compared on
the same behavioral or neuroimaging data. Both models assume
a hierarchical, generative model of percepts, where different
hierarchical levels account for expected and unexpected changes
in the environment. Model inversion of these hierarchical
generative models results in delta-like learning rules with
adaptive learning rates. These learning rules define perceptual
models, that is, mapping of sensory stimuli to beliefs about the
current state of the world (Nassar et al., 2010; Mathys et al., 2011).

Importantly, we have re-formulated the CPM within the
framework of Bayesian variational inference that was also
used for deriving the HGF. This formulation of both models
within the same inference framework allowed us a direct
comparison of free model parameters and perceptual variables

(e.g., posterior expectation and uncertainty, and learning rates)
between different models and at different levels of the hierarchy.
Although we perform a comparative analysis on just two
behavioral models, the analysis presented here can be extended
to an arbitrary large number of behavioral models, as long as all
the models in the set can be formulated as a sequential decision
making process with probabilistically generated responses.

Using synthetic data, we have tested two different methods for
model inference andmodel comparison: (i) Maximum likelihood
estimate (MLE), which is used quite often in model-based data
analysis (Behrens et al., 2007; Summerfield et al., 2011; Wilson
et al., 2013) in spite of being known as inaccurate when applied
to fitting dynamical systems to noisy data (Horbelt, 2001; Judd,
2007); and (ii) Bayesian inference (BI), based on a recently
proposed meta-Bayesian framework, the so-called “Observing
the Observer” framework (Daunizeau et al., 2010a,b), which
is known to provide high accuracy for parameter estimation
and model comparison even for a large number of free model
parameters (Iglesias et al., 2013; Mathys et al., 2014; Vossel et al.,
2014).

In what follows we will demonstrate that, using a synthetic
experiment and simulated behavioral data, it is possible
to accurately infer free parameters of the two behavioral
models, and disambiguate between models (when constraining
experimental conditions to a set of values typically used in
behavioral experiments). Importantly, unlike the MLE method,
the BI method can accurately perform model comparison
and parameter estimation, independent of the duration of the
experiment (number of behavioral responses), or the amount of
noise (deviations from the optimal response) in the responses
of the simulated participants. Given these results, we conclude
that Bayesian inference and model comparison is essential for
analyzing and designing decision making experiments under
uncertainty.

2. RESULTS

In this section we will first briefly describe the two so-called
perceptual models, a response model, and the types of noisy
environments in which we generated sensory stimuli. To clarify
this procedure for the reader we show in Figure 1 an illustration
of the full process of generating stimuli, simulating behavioral
responses, and analyzing the generated data.

There are three steps of how we perform the analysis
(Figure 1-I). The first step of the experimental procedure consists
of generating sensory stimuli (observations) ot , i.e., we simulate
the experimental environment. The quantity ot can in practice
be related to an arbitrary feature of the real world stimuli [e.g.,
a position of a dot on a screen (Nassar et al., 2010, 2012; Wilson
et al., 2013), a location cue (Vossel et al., 2014) or an amount of
reward (Iglesias et al., 2013)]. In the second step, we simulate the
behavior of agents, e.g., a participant. To do this, we first present
the generated sequence of sensory stimuli OT to each of the
two perceptual models (simulated agents), where by perceptual
model we denote a specific mapping from observations to
posterior beliefs. This mapping is defined either using the HGF

Frontiers in Computational Neuroscience | www.frontiersin.org 2 April 2016 | Volume 10 | Article 33

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
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FIGURE 1 | Illustration of the experimental procedure: (I) Simulation of the two experimental environments (see Section 2.2 for details), (II) simulation

of behavioral responses of simulated agents from one of the two behavioral models given the generated sensory stimuli (see Section 2.3 for details),

and (III) the subsequent identification of the model that generated behavior using two different methodologies (see Section 4.2 for details). The colors

assigned to different experimental environments (blue and green) or behavioral models (yellow and violet) will be used throughout the paper when presenting the

results that are either conditioned on the experimental environment or on the behavioral models.

or CPMmodel. Using the simulated belief process (that simulates
how a participant may represent the presented sequence of
stimuli), we generate behavioral responses rt (Figure 1-II). The
behavioral responses are obtained using a response model that
maps posterior beliefs into responses. In the third step, given
the generated set of sensory stimuli and behavioral responses
we infer the corresponding parameters and trajectories of the
internal variables of the two models (Figure 1-III). In this final
step we make an inference about the hidden inference process,
i.e., what model the simulated participant used (either HGF or
CPM), and which parameter values best explain the data. We will
now describe in more detail all components of this analysis.

2.1. Brief Introduction of Perceptual
Models
HGF are based on the assumption that percepts in a dynamic
environment can be modeled as a hierarchy of coupled Gaussian
random walks (Behrens et al., 2007; Mathys et al., 2011, 2014).
This hierarchical representation can account for various forms of
uncertainty that can influence perception and decision making
(Yu and Dayan, 2005; Bland and Schaefer, 2012): The higher
levels of the hierarchy encode the volatility of the corresponding

state of the world and the speed at which the volatility changes.
The higher is the volatility, the bigger is the expected change in
the corresponding state of the world.

Although the hierarchy can in principle be extended to any
number of levels (Mathys et al., 2014), we will consider here
the simple case of a two-level HGF implementation, which is
typically used in experimental studies (e.g., Iglesias et al., 2013;
Vossel et al., 2014). The generative model is defined as

x
(2)
t = x

(2)
t−1 +

√
η · n(2)t ,

x
(1)
t = x

(1)
t−1 + e

x
(2)
t
2 · n(1)t , (1)

ot = x
(1)
t +

√
s · n(o)t .

Here o denotes observations, subscript t denotes discrete time
points (e.g., experimental trials), x(1) and x(2) the hidden states
at different levels of hierarchy (x(1) is associated with the hidden
state of the world and x(2) with the volatility of the hidden state);

n
(o)
t , n

(1)
t , and n

(2)
t denote i.i.d. random variables drawn from a

standard normal distribution.
To obtain the perceptual model one has to invert the

generative model given in Equation (1). The detailed description
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of the model inversion procedure was originally presented in
Mathys et al. (2011) and further extended to an arbitrary
number of hierarchical levels in Mathys et al. (2014). The
authors proposed a method for obtaining simple, delta-rule like,
update equations for the perceptual model using the variational
approximation. Here we will only show the final set of the update
equations that map percepts to posterior beliefs about the current
state of the world (for details see Section 4). The update equations
for posterior beliefs can be written as

µ
(1)
t = µ

(1)
t−1 + ǫ

(1)
t ; ǫ

(1)
t = α

(1)
t

[

ot − µ
(1)
t−1

]

,

α
(1)
t =

σ
(1)
t

s
;

1

σ
(1)
t

=
1

s
+

1

σ
(1)
t−1 + eµ

(2)
t−1

,

µ
(2)
t = µ

(2)
t−1 + ǫ

(2)
t ; ǫ

(2)
t = α

(2)
t δ

(2)
t ; α

(2)
t =

σ
(2)
t

2
w
(2)
t , (2)

1

σ
(2)
t

=
1

σ
(2)
t−1 + η

+
w
(2)
t

2

(

w
(2)
t + r

(2)
t · δ(2)t

)

,

δ
(2)
t =







σ
(1)
t +

(

ǫ
(1)
t

)2

σ
(1)
t−1 + eµ

(2)
t−1

− 1






,

w
(2)
t =

eµ
(2)
t−1

σ
(1)
t−1 + eµ

(2)
t−1

; r
(2)
t =

eµ
(2)
t−1 − σ

(1)
t−1

σ
(1)
t−1 + eµ

(2)
t−1

,

where µ
(1)
t denotes posterior expectations of the hidden state

x
(1)
t , ǫ

(1)
t precision-weighted prediction error, σ

(1)
t posterior

uncertainty, and α
(1)
t the learning rate at the first level of the

hierarchy. Equivalently, µ
(2)
t denotes posterior expectations of

the hidden state x
(2)
t , ǫ

(2)
t precision weighted prediction error,

σ
(2)
t posterior uncertainty, and α

(2)
t the learning rate at the second

level of the hierarchy. This implementation of the perceptual

model has six free parameters {µ(1)
0 , σ

(1)
0 , s, µ

(2)
0 , σ

(2)
0 , η}.

Change Point Models are based on the assumption that the
environment goes through periods of stability intermixed with
sudden and unpredictable changes in the hidden states of the
world. The original Bayes-optimal solution for the change-point
detection problem (Adams and MacKay, 2007) was adapted
and simplified in Nassar et al. (2010) in order to provide a
model that better describes human perception and decision
making in changing environments. In these simplified models
each observation ot is used to estimate the probability that a
change in the world occurred, where the change-point probability
modulates the learning rate; the more likely is the change, the
higher the learning rate will be. Here we will reformulate the
generative model used by Nassar et al. (2010) as a switching-
state-space model (see Section 4 for details), which allows for a
more general way of modeling sudden transitions in the state
of the world. By using the switching-state-space formulation of
the generative model we can derive the corresponding perceptual
model by applying the variational approximation to model
inversion. The advantage of this formulation is that the update
equations obtained via variational approximation are directly

comparable to the update equations of the HGF perceptual model
(Equation 2). Crucially, the update equations obtained from the
variational approximation are almost identical to the update
equations originally proposed in Nassar et al. (2010).

A generative model of a simple switching-state-space process
is defined as

x
(1)
t =

{

x
(1)
t−1 +

√
w1 · n(1)t , with probability 1− h,

√
w2 · n(1)t with probability h

(3)

ot = x
(1)
t +

√
s · n(o)t .

In analogy to the HGF in Equation (2), we will obtain
the perceptual model by applying variational Bayesian
approximation (for details see Section 4). The update equations
of the posterior beliefs are written as

µ
(1)
t = µ

(1)
t−1 + ǫ

(1)
t ; ǫ

(1)
t = α

(1)
t

[

ot − µ
(1)
t−1

]

, (4)

α
(1)
t =

σ
(1)
t

s
;

1

σ
(1)
t

=
1− �t

σ
(1)
t−1 + w1

+
1

s
,

�t =
N (ot; 0, s+ w2) · h

N

(

ot;µ(1)
t−1, σ

(1)
t−1 + w1 + s

)

· (1− h)

+N (ot; 0, s+ w2) h

,

µ
(2)
t ∝ ln

�t

1− �t
; ǫ

(2)
t ∝ µ

(2)
t − µ

(2)
t−1,

As in Equation (2), the subscript t denotes discrete time points,
µ(1) denotes posterior expectations (of x(1)), ǫ(1) precision
weighted prediction error, σ (1) posterior uncertainty, and α(1)

learning rate at the first level of the hierarchy. Note that the
change point probability �t has a similar effect on the learning

rate α
(1)
t as the volatility term µ

(2)
t of the HGF model. Hence, we

defined a re-parametrization of the change point probability �t

as

�t =
1

1+ e−a·µ(2)
t

; a > 0, (5)

where a denotes an arbitrary scaling constant. This
parametrization of �t allows a direct comparison of the
change point probability with the posterior estimates of volatility

µ
(2)
t in the HGF model. This implementation of the perceptual

models has also six free parameters {µ(1)
0 , σ

(1)
0 , s,w1,w2, h}.

Note that in both perceptual models in Equations (2) and
(4) the update of posterior expectations about the current
state of the world is regulated by adaptive learning rates. In
other words, the influence of the prediction errors on the
change of the expectations is adaptive and proportional to
the posterior uncertainty about the current expectations. This
adaptive learning is the key feature of both perceptual models that
allows for fast changes of beliefs in dynamic environments.

2.2. Simulation of Experimental
Environments
To investigate the properties of the two perceptual models
(CPM and HGF) we will emulate typical experiments in which
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participants are instructed to report their estimate of the true
state of an environmental feature (e.g., the true position of the
dot on a screen, the true orientation of the bars in an image;
Behrens et al., 2007; Summerfield et al., 2011; Nassar et al., 2012;
Iglesias et al., 2013; Diaconescu et al., 2014; McGuire et al., 2014;
Paliwal et al., 2014; Vossel et al., 2014, 2015), where the estimate
is obtained from a series of noisy observations.

As in the past experimental studies (e.g., Behrens et al., 2007;
Summerfield et al., 2011; Nassar et al., 2012; Iglesias et al., 2013;
McGuire et al., 2014; Vossel et al., 2014), we will introduce
two sources of uncertainty in our simulated environments. First,
the observations will be distorted by an observation noise, i.e.,

a standard normal deviate n
(o)
t is added to the true value x

(1)
t

of the hidden state, see Equations (1) and (3). Second, the

true state of the world x
(1)
t is subject to change, where we will

consider two mechanisms for generating the state change, which
correspond to the generative processes of the CPM and HGF
models. Hence, we will emulate two distinct environments: (i) A
switching environment in which at every time step the state of
the world can suddenly change with a low probability or follow,
with a high probability, a Gaussian random walk (see Equation 3
and Figure 2 for an example of a typical trajectory of the hidden
state). (ii) A diffusive environment in which the state of the world
follows a Gaussian random walk, in which the diffusion rate
depends on a volatility variable, which itself follows a random
walk (see Equation 1 and Figure 2 for an example of a typical
trajectory of the hidden state).

Using these two experimental environments for the analysis of
behavioral models allowed us to test: (i) whether the performance
of the simulated agent (participant) depends on the mechanism
used to generate sensory stimuli; (ii) whether the accuracy of
the model comparison and parameter inference depends on the
experimental environment used to generate the sensory stimuli.
If there are differences in accuracy, knowing these may be useful
for future experiments to generate stimuli that enable the best
available accuracy of model comparison.

In summary, the present, synthetic experimental study follows
a 2 × 2 factorial design with two experimental environments
(switching vs. diffusive) and two synthetic agents (CPM and
HGF) placed in these environments.

2.3. Simulating Participants Behavior
In a behavioral experiment participants typically first go through
a training session. The training allows participants to sufficiently
familiarize with the task so that any learning that might occur
during the main experimental session can be neglected. In other
words, participants have the opportunity to adjust their internal
model of the world to the experimental environment.

To emulate this training session we first optimized the
free parameters of the two perceptual models in both the
switching and the diffusive environment and then tested model
performance in the experimental sessions (newly generated
stimuli) of fixed duration. In real experiments, experimenters
typically assume that the environment has been learned by
participants accurately enough to not have an impact on
inference. Following this approach, we aimed at ensuring
that model comparison is done in the ideal setting that
the environments are learned appropriately. Therefore, we
performed a parameter optimization over a large number of
experimental blocks, i.e., we performed a very long training
session. In this way we ensured that the high accuracy of
model comparison is not caused by residual suboptimalities
in representing the task environment, which may induce large
differences in the behavior generated by the two models.

We optimized the parameters of each perceptual model by
maximizing the log marginal likelihood—i.e., minimizing the
surprise about the sensory stimuli—over a training session
consisting of N = 1000 experimental blocks, where each block
contained T = 100 trials (see Section 4 for details). To give the
reader an intuition about the differences in the time evolution of
posterior beliefs and the prediction errors of the two optimized
perceptual models, we show in Figure 3 the trajectories of the

FIGURE 2 | Evolution of hidden states and sensory stimuli: Typical trajectories of the hidden states x
(1)
t

(thick lines) and the stimuli (observations) ot

(red circles) in (left) switching and (right) diffusive environment. In the switching environment the hidden state x
(1)
t either follows (with probability h = 0.9) a

Gaussian random walk (diffusion rate w1 = 0.01) or corresponds to an i.i.d. random variable (with probability h = 0.1) drawn from a zero mean Gaussian distribution

with variance w2 = 10; see Equation (3) for details. In the diffusive environment the x
(1)
t follows a Gaussian random walk with diffusion rate dt = e

x
(2)
t , where x

(2)
t

denotes volatility. Importantly, x
(2)
t also follows a Gaussian random walk with diffusion rate η = 0.1. In both environments the observations are generated by adding a

standard normal deviate to x
(1)
t , that is, the observation are corrupted by the observation noise.
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FIGURE 3 | Evolution of internal model variables: Typical trajectories of (A) posterior expectations µ
(1)
t

, (B) learning rates α
(1)
t

, and (C)

precision-weighted prediction errors ǫ
(1)
t

for the CPM (yellow line) and HGF (dashed violet line) perceptual model (for details see Equation 4 and

Equation 2).

internal variables at the first level of the hierarchy (posterior
expectation µ(1) Figure 3A, learning rate α(1) Figure 3B, and
precision weighted prediction error ǫ(1) Figure 3C). Although
there are obvious differences in the learning rate trajectories
α(1) of the two perceptual models, the posterior expectations
µ(1) are highly correlated between different models. Hence, the
two perceptual models will generate very similar sequences of
behavioral responses, if we make behavioral responses directly
proportional to posterior expectations (see below). The more
similar is the sequence the more difficult will be the classification
of the behavior.

To quantify the similarity between the posterior expectations
obtained from the CPM and HGF models we estimated the
performance of bothmodels in each of the two environments.We
defined the model performance as the root-mean-square error

(RMSE) of the posterior beliefs µ
(1)
t from the true hidden state

of the environment x
(1)
t , hence

P2i =
1

T

T
∑

t=1

(

µ
(1)
i,t − x

(1)
t,i

)2
, i ∈ {1, . . . ,N}. (6)

Note that the better the model is performing the lower is the
RMSE Pi of the ith experimental block.

In Figure 4A we depict the distribution of RMSEs estimated
over a set of N = 1000 simulated experiments (T = 100),

for both the CPM and the HGF, in the two environments.
Note that the type of perceptual model with better performance
in a given environment corresponds to the model that
matches the generative mechanism of observations used in
that environment (e.g., CPM performs best in the switching
environment). Interestingly, as can be seen from Figure 4A, the
difference between median model performance in the diffusive
environment is not as large as the equivalent difference in the
switching environment. This indicates that the CPM is better
at adapting to slow changes than the diffusive model is in
adapting to fast changes. The same can be inferred from the
free-energy distribution (approximate marginal log-likelihood
of the perceptual model; see Section 4 for details) shown in
Figure 4B. Note that in the switching environment the median
free-energy is higher for the CPM (hence the surprise of the
CPM model about the sensory stimuli is lower), whereas in the
diffusive environment the median free-energy is higher for the
perceptual model based on the HGF. This relationship between
performance and free-energy is expected: As the variational free-
energy provides the lower bound on the marginal log-likelihood
(see Section 4), one expects a higher likelihood (lower surprise)—
hence better performance—for the sensory stimuli that was
generated from the same process that defines the corresponding
perceptual model.

To complete the generative model of behavior, we will assume
that behavioral response rt at trial t reflects the posterior
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expectation about the hidden state of an environmental feature
corrupted by some response noise, thus

rt = µ
(1)
t +

√
σrn

(r)
t ; n

(r)
t ∼ N (0, 1) , (7)

where σr denotes the variance of the response noise. Note that
this response model can be derived as an optimal response
under a quadratic loss function. This assumption is often used
in sensorimotor control and learning (Körding and Wolpert,
2004). To generate behavioral responses we will always use the
optimized parameter values (for each perceptual model and in
each environment) that were estimated from the long training
session.

As our goal is to test how accurately we can infer the free
model parameters for each model and how accurately we can

infer the trajectories of the internal perceptual variables (e.g.,µ
(1)
t ,

α
(1)
t , etc.) of the perceptual models, we will simulate two levels

of response noise variance σr ; a low noise level σr = 1 and a
high noise level σr = 5. In this way we can test the influence of
large response noise on the accuracy of the model comparison,
the inference of free model parameters, and the reconstruction of
the trajectories of the perceptual variables.

2.4. Response Likelihood
If in the simulated experiment we measure T observations and
the same number of responses, by using Equation (7) we can
define the response likelihood as

p (RT |OT, θm, σr) =
T

∏

t=1

N

(

rt;µ(1)
t

(

µ
(1)
t−1, ot, θm

)

, σr

)

, (8)

where RT denotes the set of measured responses during an
experimental block of duration T, OT denotes the set of stimuli
(observations) presented to a simulated participant, and θm the
set of free parameters of the corresponding perceptual model,
hencem ∈ {CPM,HGF}.

Although we consider here only a simple version of the
response model, it would be straightforward to extend it to
more complex situations and to consider a comparison between
different variants of the responsemodel (see Section 3 for details).

2.5. Inference of Free Parameters
Here we will test the reliability of the inference (estimate) about
the free parameters of the two behavioral models (see Table 1)
using two different approaches. We will compare one of the
most commonly used methods for fitting behavioral models, the
maximum likelihood estimation (MLE) (Behrens et al., 2007;
Wilson et al., 2013), to the Bayesian inference (BI) method
(Box and Tiao, 1992; Daunizeau et al., 2010b; Iglesias et al., 2013).

The MLE approach is based on finding the set of parameter
values that maximize the (log)likelihood of a behavioral model
(Equation 8). The maximum likelihood method is known to
fail when applied to the estimation of unknown parameters of
dynamical systems (Horbelt, 2001; Judd, 2007), as in these cases
the likelihood function typically has a complex multi-modal
form, which makes a numerical search for global maxima highly
extensive. In contrast, the BI based methods have been found to
be robust when inferring parameters even of highly non-linear
dynamical system and are known to be robust and accurate when
used in data analysis (Carlin and Louis, 1997; Woolrich et al.,
2009; Daunizeau et al., 2010a; Mathys et al., 2014; Lomakina
et al., 2015). Still, the limitation of the BI is that the estimate of
the exact posterior parameter distribution (posterior probability

TABLE 1 | Free parameters of the two behavioral models: Hierarchical

Gaussian Filter (HFG) and Change Point Model (CPM), see Equations (2)

and (4) for details.

Model type Perceptual parameters Response parameters

HGF µ
(1)
0 , σ

(1)
0 , s, µ

(2)
0 , σ

(2)
0 , η σr

CPM µ
(1)
0 , σ

(1)
0 , s, w1,w2, h σr

FIGURE 4 | Boxplot of the distribution of (A) the root-mean-squared error (RMSE) defined in Equation (6), and (B) variational free-energy defined in

Equation (30). Both quantities were estimated over N = 1000 simulated experiments for each type of perceptual model (CPM and HGF) with optimized parameters.

Note that the lower the RMSE is the better is the performance of the behavioral model. The boxes span the range from the 25th to the 75th percentile, black

horizontal lines denote the median, and whiskers span the range from 1.5 of the inter-quartile (IQR) range below the low quartile to the 1.5 IQR above the upper

quartile. Diamonds indicate the outliers.
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of parameter values) is analytically intractable. Hence, it is
typically necessary to apply an approximate inference method.
Here, we have selected a rather simple approach, the Laplace
approximation (LA) that constrains the posterior probability
to the normal distribution (Chickering and Heckerman, 1997;
Friston et al., 2007). Nevertheless, in spite of its simplicity, we
will demonstrate here several advantages, both for parameter
inference and model comparison, of the selected Bayesian
Inference-Laplace approximation (BI-LA) compared to the MLE
method. The details of both approaches can be found in the
Section 4 section.

To comprehensively test the reliability of the two inference
schemes we have simulated the behavioral responses of n = 1000
synthetic agents (i.e., simulated participants) for each behavioral
model and the response noise level. Each of these n agents
was exposed to four experimental conditions (two different
environments, and two different durations of the experiment).
The full set of free parameters of both perceptual models is
shown inTable 1. Note that in both cases the complete behavioral
model (the perceptual model plus the response model) has in
total seven parameters. In Figure 5 we present the distribution
of the posterior mode for five out of seven parameters (we
exclude the prior expectation µ0 and uncertainty σ0 for clarity,
the distribution for all parameters is shown in Figure S1) for
the low response noise level (σr = 1) and different experiment
durations T. Importantly, we did not find any obvious differences
in the accuracy of the parameter estimation between the low and
the high noise levels (see Figures S1, S3). The distribution of the
maximum likelihood parameter values obtained using MLE are

shown in Figure 6 (see Figure S2 for the complete set of plots).
One obvious result is that the median values obtained under
both the BI-LA and MLE method are not too different from the
true values. However, the variability of the expected parameter
values is much smaller when using Bayesian inversion scheme
compared to the MLE.

To demonstrate further that the BI-LA provides indeed amore
accurate estimate, compared to the MLE, we have computed the
RMSE for each parameter over the whole set of n estimates of the
parameter values. In addition, we estimated the probability that
the true parameter value falls within the interval spanning±2·std
(where std denotes standard deviation) from the estimated value
of each model parameter. The results of these “goodness-of-fit”
tests for the Bayesian inversion scheme are shown in Figure 7

and for the MLE method in Figure 8. We observe a strong
advantage of the BI-LA method compared to the MLE method,
as we found across all parameters lower RMSE. Lower RMSE
indicates that the estimated parameter value deviates less from
the true parameter value when the estimation is performed using
the BI-LA method compared to the MLE method. Furthermore,
in contrast to the MLE estimate, we find that using the BI-LA
method the true parameter value has the measured probability
P95% ≈ 0.95 to be within the theoretically determined 95%
probability interval. As we assume that the posterior parameter
distribution corresponds to the normal distribution, this match
of the two probabilities indicates that a normal distribution
is indeed a good approximation for the posterior parameter
probability; with few exceptions (see the Figures S3, S4 for the
complete analysis).

FIGURE 5 | Parameter inference with the BI-LA method: Boxplot of the distribution of the mode of the posterior free parameter probability (see

Equation 58) estimated over n = 1000 synthetic agents in the low response noise condition (σr = 1). The red circles indicate the true parameter value. The

boxes span the range from the 25th to the 75th percentile, black horizontal line within each box shows the median, and whiskers span the range from 1.5 of the

inter-quartile (IQR) range below the low quartile to the 1.5 IQR above the upper quartile. Diamonds indicate the outliers.
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FIGURE 6 | Parameter estimation with the MLE method: Boxplot of the distribution of the maximum likelihood parameter estimate (see Equation 61)

estimated over n = 1000 synthetic agents in the low response noise condition (σr = 1). The red circles indicate the true parameter value. The boxes span the

range from the 25th to the 75th percentile, black horizontal line within each box shows the median, and whiskers span the range from 1.5 of the inter-quartile (IQR)

range below the low quartile to the 1.5 IQR above the upper quartile. Diamonds indicate the outliers.

FIGURE 7 | Estimation accuracy for the BI-LA method: Colored bars above the zero line (black solid line) show the root-mean-square error (RMSE) of

the posterior mode over n = 1000 synthetic agents in the low response noise case (σr = 1). The bars below the zero line denote the probability P95% that the

true parameter value is within two standard deviations from the posterior mode. The red dotted line marks the 0.95 probability level.
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Marković and Kiebel Comparative Analysis of Adaptive Learning Models

FIGURE 8 | Estimation accuracy for the MLE method: Colored bars above the zero line (black solid line) show the root-mean-square error (RMSE) of

the parameter estimate over n = 1000 synthetic agents in the low response noise case (σr = 1). The bars below the zero line denote the probability P95%
that the true parameter value is within two standard deviations from the maximum likelihood value. The red dotted line marks the 0.95 probability level.

2.6. Model Comparison
In this section, we will test how reliably we can infer the
behavioral model that has generated the observed behavior given
the known set of sensory stimuli presented to a simulated
participant. To perform model selection we have used a well-
established method for Bayesian model selection in group
studies (Stephan et al., 2009; Rigoux et al., 2014). The method
is used to estimate the posterior model probability over a
group of participants, given the model log-evidence estimated
from behavioral data of each participant within the group.
Importantly, this approach takes into account random effects
on the estimated model log-evidence; hence it provides robust
estimates of the posteriormodel probability even for approximate
and noisy estimates of the model log-evidence.

As the number of participants in behavioral experiments is
often only around 20 participants (e.g., Behrens et al., 2007;
Summerfield et al., 2011; Vossel et al., 2014), we will assume here
that the model comparison is estimated from a group of k = 20
participants. We sampled N = 10,000 groups of 20 simulated
participants (agents) from the same pool of n = 1000 simulated
participants (per experimental condition) that was used above to
assess the accuracy of posterior parameter inference (Figures 5–
8). Note that all the behavioral responses of k agents are generated
by the same generative model. Using the generated behavioral
responses of agents—and the known set of sensory stimuli—we
estimated the model (log)evidence for each of the two model
candidates, using either the MLE or BI approach. When using
Bayesian inference we have approximated the model evidence
using the Laplace approximation (LA). For the MLE approach
we have approximated the model evidence using the Bayesian

Information Criterion (BIC). Note that for the MLE approach
one obtains the same estimate of the posterior model probability
with Aikake’s Information Criterion (AIC), as both behavioral
models have the same number of free parameters.

The confusion matrices for model selection are shown
in Figure 9, for the BI-LA based model selection, and in
Figure 10 for MLE-BIC based model selection. Note that in
both environments we find overall more accurate classification
of the observed behavior when the model selection is based
on BI-LA compared to the one based on the MLE-BIC. For
the diffusive environment, we observe that the MLE-BIC based
comparison displays lower classification accuracy for low T and
high response noise. Under the same conditions, the BI-LA based
model selection provides higher accuracy.

2.7. Correlation Analysis
So far we have demonstrated that BI-LA, compared to MLE,
provides a more accurate estimation of model parameters and a
more accurate model classification across various experimental
conditions. However, it is still unclear if the parameter
estimation is accurate enough to be relevant for disambiguating
between models in a typical model-based neuroimaging analysis.
A model-based neuroimaging analysis is used to infer the
involvement of different brain areas for a given behavioral
task (e.g., Behrens et al., 2007; O’Doherty et al., 2007). Hence,
it is essential to accurately estimate the trajectories, over
trials, of the internal perceptual variables, such as posterior
expectations (µ(1), µ(2)) learning rates (α(1), α(2)), and precision-
weighted prediction errors (ǫ(1), ǫ(2)). These internal variables
are typically used as parametric regressors in model-based
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FIGURE 9 | Confusion matrix for the model inference based on the Laplace approximation of model evidence (see Equation 57): The columns of the

matrix represent the inferred behavioral model and the rows of the matrix represent the true behavioral model that has generated the data.

FIGURE 10 | Confusion matrix for the model inference based on BIC approximation to the model evidence (see Equation 60): The columns of the

matrix represent the inferred behavioral model and the rows of the matrix represent the true behavioral model that has generated the data.

fMRI studies (e.g., Behrens et al., 2007; Iglesias et al., 2013;
Vossel et al., 2015). A significant correlation (corrected for
multiple comparisons) of blood oxygen level dependent (BOLD)
responses in a given brain voxel with any of these regressors
would indicate that the activity measured in that voxel represents
an aspect of the computational process related to that internal
variable.

Thus, the question is, how accurately can we estimate the
hidden trajectories of the internal variables of the two perceptual
models? To test this we have estimated the correlation coefficients
between simulated trajectories and trajectories estimated from
the fitted model parameters. The idea here is that a high
correlation indicates that the simulated trajectory compares well
to the corresponding inferred trajectory.

In Figure 11 we show the results of the correlation analysis
for the behavioral data generated using the HGF model in
the two experimental environments. Both plots show the
distribution of correlation coefficients estimated over the n =
1000 agents in each experimental condition (taken from the
same set of behavioral data used in previous sections). The
inferred trajectories are obtained by fixing the parameter values
to the mode of the posterior distribution or to the MLE.
The results show that a high correlation between inferred
and simulated trajectories, independent of inference method,
is on average achieved only if the correct model is used to
estimate the trajectories of internal variables (e. g. compare
the median value of the correlation coefficient for the learning
rate α(1) in Figures 11A,C with the median value for α(1) in
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FIGURE 11 | Correlation analysis in the switching (A–B) and diffusive (C–D) experimental environment for the behavior simulated using the HGF model:

Distribution of the correlation coefficient between simulated and inferred trajectories of perceptual variables. (A,C) Correlation coefficient (CCHGF ) for the

cases when behavior was inferred using the HGF and generated using the HGF; (B,D) Correlation coefficient (CCCPM ) for the cases when behavior was inferred using

the CPM and generated using the HGF. The presented distribution is a combined estimate over the conditions with the low and the high response noise.

Figures 11B,D). This shows that, as with the behavioral analysis,
one can expect that a model-based neuroimaging analysis will
be sensitive enough to disambiguate between the two models,
just based on the usual correlation analysis. However, note that
for specific parameters like the posterior expectations µ(1) and
precision weighted prediction error ǫ(1) at the first level of
the hierarchy, we find high correlations, even if the perceptual
model is different from the model that generated behavior.
This is expected, because as optimized perceptual models have
a rather similar performance (see Figure 4), one would expect
posterior expectations and corresponding prediction error to
be highly correlated between different perceptual models (see
Figures 3A,C). This correlation should also be captured by the
inferred trajectories of perceptual variables.

When comparing the BI-LA based estimate of the correlation
coefficients with the MLE based estimate (left and right columns
of Figure 11) one notices higher median values and lower
variances (compare α(1), µ(2), and ǫ(2) in the left and the right

column of Figure 11) of the correlation coefficients estimated
from the trajectories inferred using the BI-LA approach. To
quantify the difference in the estimates of the correlation
coefficients caused by the inference method, we have computed
the probability that a correlation coefficient of the MLE based
estimate is larger than the median value of the correlation
coefficient for the BI-LA based estimate. In Figure 12 we
present the estimated exceedance probabilities of the correlation
coefficients. When the behavioral model that generated behavior
and the one used to infer the trajectories of perceptual
variables are matched we find consistently higher median
correlation values for the BI-LA based estimate (see Figure 12A).
Interestingly, a similar but less pronounced relation, is found for
the cases when the generating behavioral model and the one used
for the inference do not match (see Figure 12B). This suggests
that using the BI approach for model-based neuroimaging
analysis can be helpful even in the situations when the generative
model of percepts is misspecified. Similar conclusions can be
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FIGURE 12 | Probability that the MLE based method provides a higher correlation than the median correlation of the BI-LA based method in the two

experimental environments for the behavior simulated using the HGF model: (A) Exceedance probability PHGF of the MLE based estimate when

behavior was inferred using the HGF and generated using the HGF; (B) Exceedance probability PCPM of the MLE based estimate when behavior was

inferred using the CPM and generated using the HGF. Values below a probability of 0.5 indicate that the BI-LA based median correlation is higher than the MLE

based median correlation.

drawn from the equivalent correlation analysis results for the
behavior generated using the CPMmodel (see Figures S5, S6).

3. DISCUSSION

We performed a comparative analysis of two well-established
behavioral models for decision making under uncertainty, in
a changing environment. The behavioral models were either
based on the Hierarchical Gaussian Filter (HGF) (Mathys et al.,
2011, 2014) or on the CPM (Nassar et al., 2010). We have
demonstrated that by using an approximate Bayesian inference
method and Bayesian model comparison one can substantially
improve the estimation accuracy of free model parameters and
trajectories of perceptual variables (under the specified range of
experimental conditions) when compared to estimation based
on MLE. Importantly, when using Bayesian model comparison
we can disambiguate between the models with high accuracy
independent of the experimental conditions and measurement
noise. Furthermore, approximate Bayesian inference provides
accurate inference of the free parameters of the behavioral models
that define the time evolution of hidden belief states. These
results point at the relevance of Bayesian inference methods
for computational-experimental research in perceptual decision
making and are in agreement with the findings of recent
studies that performed similar comparison of different inference
methods (Mathys et al., 2014; Lomakina et al., 2015).

Importantly, the methodology presented here is easily
extendable to alternative behavioral models, and should be
easily applicable to actual experiments. The identification of
the precise mechanism that guides human decision making

under uncertainty has several important implications for future
studies. First, it would improve the confidence in the results and
conclusions derived frommodel based analysis (Nassar andGold,
2013) of both behavioral and neuroimaging data. Second, the
identification of such a mechanism will provide a more robust
generalizability of these simple behavioral models to related but
more complex tasks (e.g., tasks that require a generalization of
behavioral models to higher dimensions). Third, the mechanism
of the identified models will provide constraints on the possible
neuronal implementation of these phenomenological decision
making models.

In what follows we will discuss in more detail possible
improvements and extensions to the estimation methods
presented here, and potential implications of our findings for
the design and model-based neuroimaging data analysis of
experimental studies.

3.1. Alternative Parameter Estimation
Methods
Here the Bayesian estimation of the posterior parameter
distribution was based on the Laplace approximation. The
Laplace approximation provides one of the computationally
most efficient ways to estimate the model evidence and find
approximate posterior distribution of free model parameters.
However, more elaborate inversion methods do exist, which
could provide even higher accuracy in parameter inference.
The comparative analysis of several of these inversion schemes
has been presented in two recent studies (Mathys et al., 2014;
Lomakina et al., 2015), which can be used as a starting point
when deciding which of the approximate Bayesian methods to

Frontiers in Computational Neuroscience | www.frontiersin.org 13 April 2016 | Volume 10 | Article 33

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
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apply to estimation of model parameters and model evidence
in a model based analysis of experimental data. The highest
accuracy in parameter estimation may be achieved by methods
based on Markov Chain Monte Carlo (MCMC). These provide
high accuracy at the expense of computational efficiency.

3.2. Extensions of Model Comparison
Methods
The importance of accurate estimation of model evidence (based
on approximate marginal log-likelihood) for accurate model
comparison has been stressed before (Penny, 2012). Still, one
can think of several modifications which can improve the model
selection independent of the approximation method used to
estimate the model evidence. Such improvements are especially
important for studies that rely on small number of participants,
and measure only a small number of trials. Aside from the
obvious point of increasing the number of participants, one can
measure additional aspects of behavior (e.g., response time and
pupil diameter) that can be related to different internal variables

of the perceptual model, e.g., the posterior uncertainty σ
(1)
t or

the learning rate α
(1)
t . Indirect measurements of the internal

states that influence the belief process would provide additional
constraints on the underlying process that drives behavior, hence
it would make, in principle, model selection more accurate.
In addition, one could optimize the experimental design in a
way that allows for better differentiations of behavioral models
(Lewi et al., 2009; Daunizeau et al., 2011). For example, one
might present to participants explicitly those sequences of stimuli
that one would predict to induce distinct responses between
behavioral models. Critically, with the techniques presented here,
one can identify, before the experiment, the best candidates for
these most revealing stimuli sequences.

3.3. Implications of the Correlation Analysis
The results of correlation analysis (see Figures 11, 12) further
stress the relevance of BI methods and model comparison
for the neuroimaging studies that rely on model-based
analysis of neuroimaging data [e.g., functional magnetic
resonance imaging (fMRI), magnetoencephalography (MEG),
or electroencephalography (EEG)]. The more accurate is the
parameter estimation and model classification, the higher will
be the correlation between the inferred belief trajectories and
the trajectories that truly generated behavior (provided that the
true model is among the models considered). For identifying the
computational roles of specific brain areas it is essential that the
inferred belief trajectories correlate strongly with the underlying
neuronal activity, that is, that the inferred computational process
is as close as possible to the computational processes that are
implemented in the underlying neuronal network. However,
as the trajectories of some of the internal variables at the
first level of the hierarchy (posterior expectations µ(1) and
precision weighted prediction error ǫ(1)) show strong correlation
even across different models and for less accurate MLE based
approach, one could expect that previous model-based studies
that looked for neural correlates of these quantities (e.g., Iglesias
et al., 2013; Vossel et al., 2015) would still hold even if an

alternative model is shown to be more appropriate. Importantly,
we would expect that a subsequent identification of appropriate
behavioral model would improve the localization of different
aspects of the decision making process to specific brain areas.

3.4. Alternative Perceptual and Response
Models
Although we focused here on two possible approaches to
modeling perception in a changing environment, in practice
several extensions and alternative formulations of perceptual
models could also be considered: (i) instead of approximate
inference one could formulate the update equations using exact
inference (Behrens et al., 2007); (ii) the simple Change Point
Model presented here could be extended to include arbitrary
many learning rate values (Wilson et al., 2013); (iii) representing
higher levels of the hierarchy with Dirichlet processes would
allow online learning of the discretization levels (Quinn and
Karny, 2007; Qian and Aslin, 2014); (iv) adding additional levels
of the hierarchy for online learning of the hazard rate and drift
rate (Wilson et al., 2010; Mathys et al., 2014).

Beside alternative perceptual models one could also consider
extensions to the response model and additional behavioral
responses that could be used to further improve the parameter
inference and the model comparison in the presence of the
response noise. For example, by measuring pupil diameter or
asking participants to report their confidence about the response
they made, one could relate these quantities to the posterior

uncertainty σ
(1)
t or the learning rate α

(1)
t (Nassar et al., 2012).

In addition, one could extend the relation between the measured
behavioral response and hidden belief states by taking into
account possible causes for deviation of behavioral responses
from an optimal response (Acerbi et al., 2014). Finally, one of the
most interesting extensions of the response models is to include
measured neuronal responses within the response model, and
use them directly as additional evidence about the underlying
computational mechanism (Friston and Penny, 2003; Rosa et al.,
2010).

3.5. Conclusion
In summary, we have shown that rigorous analysis of behavioral
data using Bayesian inference methods can in practice allow us
to disambiguate between two well-established models of how
humans make decisions in changing and noisy environments, in
both behavioral and neuroimaging studies.

4. METHODS

4.1. Derivation of Perceptual Models
4.1.1. HGF Based Perceptual Model
Starting from the generative model given in Equation (1), we can
write the observation likelihood, and the transition probabilities
at the two levels of the hierarchy as

p
(

ot|x(1)t

)

= N

(

ot; x(1)t , s
)

, (9)

p
(

x
(1)
t |x(1)t−1, x

(2)
t

)

= N

(

x
(1)
t ; x(1)t−1, e

x
(2)
t

)

(10)
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p
(

x
(2)
t |x(2)t−1

)

= N

(

x
(2)
t ; x(2)t−1, η

)

, (11)

where N (x;µ, σ) denotes a normal distribution of variable x
with mean µ and variance σ . The full generative model is then
obtained as

p
(

ot, x
(1)
t , x

(2)
t , x

(1)
t−1, x

(2)
t−1|Ot−1

)

= p
(

ot|x(1)t

)

p
(

x
(1)
t |x(1)t−1, x

(2)
t

)

p
(

x
(2)
t |x(2)t−1

)

p
(

x
(1)
t−1, x

(2)
t−1|Ot−1

)

,

(12)

where p
(

x
(1)
t−1, x

(2)
t−1|Ot−1

)

denotes prior probability of hidden

states given the set of past observation Ot−1 = (ot−1, . . . , o1).

Integrating out x
(1)
t−1 and x

(2)
t−1, from the full generative model,

gives us a compact form of the generative model that depends
on a predictive distribution, which is obtained as

p
(

x
(1)
t , x

(2)
t |Ot−1

)

= (13)
∫ ∫

dx
(1)
t−1dx

(2)
t−1p

(

x
(1)
t , x

(2)
t , x

(1)
t−1, x

(2)
t−1|Ot−1

)

.

From the compact generative model we write the posterior
probability over hidden states as

p
(

x
(1)
t , x

(2)
t |Ot

)

=
p
(

ot, x
(1)
t , x

(2)
t |Ot−1

)

p (ot|Ot−1)
. (14)

As the exact solution for the posterior probability is analytically
intractable, we will use the variational approximation to derive
the update equations for posterior beliefs shown in Equation (2).
The detailed recipe for the derivation procedure can be found in
Mathys et al. (2011, 2014), here we will go briefly over the main
steps.

In variational inference the joint posterior distribution is
simplified with the variational distribution, which assumes that
posterior probabilities of different states are independent from
each other. Thus, we write

p
(

x
(1)
t , x

(2)
t |Ot

)

≈ q
(

x
(1)
t |λ(1)t

)

q
(

x
(2)
t |λ(2)t

)

. (15)

This factorization allows us to write a lower bound to the
marginal log-likelihood as

ln p (ot|Ot−1) ≥
〈

ln p
(

ot, x
(1)
t , x

(2)
t |Ot−1

)〉

q
(

x
(1)
t

)

q
(

x
(2)
t

) (16)

+ H
[

q
(

x
(1)
t

)]

+H
[

q
(

x
(1)
t

)]

,

where we omitted λ
(1)
t and λ

(1)
t for readability, and where H

[

q
]

denotes differential entropy of q. The right hand side of the

inequality is called the variational free-energy F
(

λ
(2)
t , λ

(2)
t

)

.

By maximizing the free-energy functional with respect to

q
(

x
(1)
t |λ(1)t

)

and q
(

x
(2)
t |λ(2)t

)

one obtains the approximate

posterior distribution (Equation 15). Using variational calculus
one can demonstrate that the maximum is obtained for

q
(

x
(1)
t |λ(1)t

)

∝ e
I
(

x
(1)
t

)

, (17)

I
(

x
(1)
t

)

=
〈

ln p
(

ot, x
(1)
t , x

(2)
t |Ot−1

)〉

q
(

x
(2)
t |λ(2)t

) ,

q
(

x
(2)
t |λ(2)t

)

∝ e
I
(

x
(2)
t

)

, (18)

I
(

x
(2)
t

)

=
〈

ln p
(

ot, x
(1)
t , x

(2)
t |Ot−1

)〉

q
(

x
(1)
t |λ(1)t

) ,

where I
(

x
(1)
t

)

and I
(

x
(2)
t

)

denote variational energy of the

hidden states at the first and the second level of the hierarchy,
respectively.

We will assume that the normal distribution can be used
to represent the approximate posteriors on both levels of the
hierarchy, that is, we assume that for accurate inference it
is sufficient to keep track only of posterior expectations and
uncertainty, hence

q
(

x
(1)
t |λ(1)t

)

= N

(

x
(1)
t ;µ(1)

t , σ
(1)
t

)

, (19)

q
(

x
(2)
t |λ(2)t

)

= N

(

x
(2)
t ;µ(2)

t , σ
(2)
t

)

. (20)

Thus, λ
(q)
t =

(

µ
(q)
t , σ

(q)
t

)

for q ∈ {1, 2}. Having simplified

the approximated posterior distribution as a product of normal
distributions we can go one step back and compute the predictive
distributions (Equation 13) by setting the approximate posterior
as a prior in the next time step. Thus, the predictive distributions
become

p
(

x
(1)
t |x(2)t ,Ot−1

)

= N

(

x
(1)
t ;µ(1)

t−1, σ
(1)
t−1 + ex

(2)
t

)

(21)

p
(

x
(2)
t |Ot−1

)

= N

(

x
(2)
t ;µ(2)

t−1, σ
(2)
t−1 + η

)

, (22)

Hence, the compact form of the generative model is expressed as

p
(

ot, x
(1)
t , x

(2)
t |Ot−1

)

= (23)

N

(

ot; x(1)t , s
)

N

(

x
(1)
t ;µ(1)

t−1, σ
(1)
t−1 + ex

(2)
t

)

N

(

x
(2)
t ;µ(2)

t−1, σ
(2)
t−1 + η

)

.

To establish the dependence of posterior beliefs λ
(1,2)
t on prior

beliefs λ
(1,2)
t−1 we substitute Equation (23) into Equation (17) and

Equation (18) and obtain

q
(

x
(1)
t |λ(1)t

)

∝ e
I
(

x
(1)
t

)

, (24)

I
(

x
(1)
t

)

≈
〈

ln p
(

ot, x
(1)
t , x

(2)
t |Ot−1

)〉

p
(

x
(2)
t |Ot−1

) ,

I
(

x
(1)
t

)

≈ −
1

2







(

ot − x
(1)
t

)2

s
+

(

x
(1)
t − µ

(1)
t−1

)2

σ
(1)
t−1 + eµ

(2)
t−1






+ const,
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q
(

x
(2)
t |λ(2)t

)

∝ e
I
(

x
(2)
t

)

, (25)

I
(

x
(2)
t

)

=
〈

ln p
(

ot, x
(1)
t , x

(2)
t |Ot−1

)〉

q
(

x
(1)
t |λ(1)t

) ,

I
(

x
(2)
t

)

≈ −
1

2







σ
(1)
t +

(

µ
(1)
t − µ

(1)
t−1

)2

ex
(2)
t + σ

(1)
t−1

+ ln
(

ex
(2)
t + σ

(1)
t−1

)

+

(

x
(2)
t − µ

(2)
t−1

)2

σ
(2)
t−1 + η






+ const.

where I
(

x
(1)
t

)

and I
(

x
(2)
t

)

denote the variational energy of the

hidden states at the first and the second level of the hierarchy,
respectively. Note that to avoid the circularity problem we first

estimate I
(

x
(1)
t

)

given the predictive distribution p
(

x
(2)
t |Ot−1

)

and then estimate I
(

x
(2)
t

)

given the approximate posterior

estimate q
(

x
(1)
t |λ(1)t

)

. In other words, we assume that the beliefs

are first updated on the lower level of the hierarchy, and then this
information propagates to the level above.

As we have assumed that the approximate posterior

distributions q
(

x
(1)
t |λ(1)t

)

can be expressed as normal

distributions (see Equations 19 and 20) the posterior
expectations at each level of the hierarchy are obtained as
the modes of the corresponding variational energies, hence

µ
(q)
t = argmax

x
(q)
t

I
(

x
(q)
t

)

, (26)

where q ∈ {1, 2}. As the posterior expectations µ
(1)
t and µ

(2)
t

correspond to the maxima of the corresponding variational
energy, we can obtain these maxima by applying the Newton’s
method, hence

µ
(q)
t = ρ∗ − ∂

x
(q)
t x

(q)
t
I
(

ρ∗) ∂
x
(q)
t
I
(

ρ∗) , (27)

where ρ∗ denotes an arbitrary value. By setting ρ∗ to the

corresponding prior expectations µ
(1)
t−1 and µ

(2)
t−1 and defining

posterior uncertainty as

σ
(q)
t =

[

−∂x(q)x(q) I
(

µ
(q)
t−1

)]−1
, (28)

we obtain the update equations shown in Equation (2).
Finally, having computed the posterior distributions

q
(

x
(1)
t |λ(1)t

)

and q
(

x
(2)
t |λ(2)t

)

, we can estimate the marginal

log-likelihood of the current observation ot conditioned on all
the past observations Ot−1 as

ln p (ot|Ot−1, θ) ≈ Ft(θ) =
∫

q
(

x
(2)
t |λ(2)t

)

I
(

x
(2)
t

)

dx
(2)
t (29)

+ H
[

q
(

x
(1)
t

)]

+H
[

q
(

x
(1)
t

)]

≈ −
1

2
ln s−

1

2

σ
(1)
t +

(

ot − µ
(1)
t

)2

s

−
1

2
ln

(

σ
(1)
t−1 + eµ

(2)
t

)

−
1

2

σ
(1)
t +

(

µ
(1)
t − µ

(1)
t−1

)2

σ
(1)
t−1 + eµ

(2)
t

−
1

2
ln

(

σ
(2)
t−1 + η

)

−
1

2

σ
(2)
t +

(

µ
(2)
t − µ

(2)
t−1

)2

σ
(2)
t−1 + η

−
1

2
ln 2π + 1+

1

2
ln σ

(1)
t σ

(2)
t .

where θ denotes the set of fixed parameters of the

perceptual model
{

µ
(1)
0 , σ

(1)
0 , s, µ

(2)
0 , σ

(2)
0 , η

}

. For the given set

of observations OT , the total surprise (negative marginal log-
likelihood) is obtained as

− ln p (OT |θ) = −
T

∑

t=1

ln p (ot|Ot−1, θ) ≈ −
T

∑

t=1

Ft(θ). (30)

Hence minimizing surprise about the stimuli presented during
an experimental block of length T corresponds tomaximizing the
sum of variational free-energy with respect to set of parameters θ .
Starting from some prior parameter p(θ) distribution we obtain
the optimal parameter values over N experimental blocks of
length T as

θ∗ = argmax
θ

[

ln p (θ) +
N

∑

n=1

T
∑

t=1

F
(n)
t (θ)

]

. (31)

In other words, we assume here that the participants, being
exposed to N training sessions, would adjust the parameters of
their internal representation of the experimental environment in
a Bayes optimal fashion.

4.1.2. Change Point Models
Starting this time from the generative model given in
Equation (3), we write the observation likelihood, and transition
probabilities at different levels of the hierarchy as

p
(

ot|x(1)t

)

= N

(

ot; x(1)t , s
)

, (32)

p
(

x
(1)
t |x(1)t−1,Ht = 1

)

= N

(

x
(1)
t ; x(1)t−1,w1

)

p
(

x
(1)
t |x(1)t−1,Ht = 2

)

= N

(

x
(1)
t ; 0,w2

)

p (Ht|Ht−1) = p (Ht) =
(

1− h
)δ1,Ht hδ2,Ht .

For this case the full generative model becomes

p
(

ot, x
(1)
t ,Ht, x

(1)
t−1|Ot−1

)

= p
(

ot|x(1)t

)

p
(

x
(1)
t |x(1)t−1,Ht

)

p
(

x
(1)
t−1|Ot−1

)

p (Ht) , (33)
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where we omitted the prior probability p (Ht−1|Ot−1) as the
transition probability p (Ht|Ht−1) = p (Ht), that is, the transition
probability is independent of prior probability. Similar to the

derivations in the previous section, integrating out x
(1)
t−1 gives us

the compact form of the generative model that we use to obtain
the posterior probability as

p
(

x
(1)
t ,Ht|Ot

)

=
p
(

ot, x
(1)
t ,Ht|Ot−1

)

p (ot|Ot−1)
. (34)

Similar to the computations of the posteriors for the HGF,
we face here the analytical intractability of the exact posterior
distribution. Hence, we will again simplify the posterior
distribution with a variational distribution, that is,

p
(

x
(1)
t ,Ht|Ot

)

= q
(

x
(1)
t |λ(1)t

)

q (Ht|�t) , (35)

where

q
(

x
(1)
t |λ(1)t

)

= N

(

x
(1)
t ;µ(1)

t , σ
(1)
t

)

, (36)

q (Ht|�t) = (1− �t)
δ1,Ht �

δ2,Ht
t . (37)

We will again use this simplified form of the posterior
distribution to define the predictive distributions as

p
(

x
(1)
t |Ht = 1,Ot−1

)

= N

(

x
(1)
t ;µ(1)

t−1, σ
(1)
t−1 + w1

)

, (38)

p
(

x
(1)
t |Ht = 2,Ot−1

)

= N

(

x
(1)
t ; 0,w2

)

. (39)

To estimate the update equations and obtain delta like learning
rules equivalent to the ones originally presented in Nassar et al.
(2010) we will slightly change the procedure that we followed
above for deriving update equations of the HGF. We will
first start by computing the update equations for the change
point probability �t . Note that Ht is a discrete variable, hence

if we integrated out x
(1)
t from the posterior distribution in

Equations (34) and (35), we would obtain the following relation

q (Ht|�t) = p (Ht|Ot) =
p (ot|Ht,Ot−1) p (Ht)

p (ot|Ot−1)
(40)

where observation likelihoods p (ot|Ht,Ot−1) for Ht = 1, 2
become

p (ot|Ht = 1,Ot−1) = N

(

ot;µ(1)
t−1, σ

(1)
t−1 + w1 + s

)

, (41)

p (ot|Ht = 2,Ot−1) = N (ot; 0, s+ w2) , (42)

Hence we can express the variational probability q (Ht|�t) as

q (Ht|�t) =
[

p (ot|1,Ot−1) (1− h)
]δ1,Ht

[

p (ot|2,Ot−1) h
]δ2,Ht

p (ot|1,Ot−1) (1− h)+ p (ot|2,Ot−1) h
.

(43)

By comparing this expression with the assumption about
the functional form of the variational distribution shown in
Equation (37), we obtain the change point probability as

�t =
N (ot; 0, s+ w2) h

N

(

ot;µ(1)
t−1, σ

(1)
t−1 + w1 + s

)

(1− h)

+N (ot; 0, s+ w2) h

. (44)

Having obtained one of the factors of the approximate posterior
we can apply the same relation between the variational energy
and variational distribution as before (see Equation 24), thus

q
(

x
(1)
t |λ(1)t

)

∝ e
I
(

x
(1)
t

)

, (45)

I
(

x
(1)
t

)

=
〈

ln p
(

ot, x
(1)
t ,Ht|Ot−1

)〉

q(Ht |Ot−1)
,

= (1− �t) ln p
(

ot, x
(1)
t |Ht = 1,Ot−1

)

+ �t ln p
(

ot, x
(1)
t |Ht = 2,Ot−1

)

.

Using the definition of conditional probability we can express

p
(

ot, x
(1)
t |Ht = 1,Ot−1

)

as

p
(

ot, x
(1)
t |Ht = 1,Ot−1

)

= p
(

x
(1)
t |Ht = 1,Ot

)

p (ot|Ht = 1,Ot−1) . (46)

As only the conditional posterior p
(

x
(1)
t |Ht,Ot

)

is a function of

x
(1)
t we obtain the following relation

q
(

x
(1)
t |λ(1)t

)

∝ p
(

x
(1)
t |Ht = 1,Ot

)1−�t

p
(

x
(1)
t |Ht = 2,Ot

)�t

.

(47)
If we assume for now that the conditional posterior

p
(

x
(1)
t |Ht,Ot

)

can be expressed as a normal distribution,

that is,

p
(

x
(1)
t |Ht,Ot

)

= N

(

x
(1)
t ;µ(1)

t |Ht, σ
(1)
t |Ht

)

, (48)

we obtain that

q
(

x
(1)
t |λ(1)t

)

= N






x
(1)
t ;

1−�t

σ
(1)
t |1

µ
(1)
t |1+ �t

σ
(1)
t |2

µ
(1)
t |2

1−�t

σ
(1)
t |1

+ �t

σ
(1)
t |2

,

[

1− �t

σ
(1)
t |1

+
�t

σ
(1)
t |2

]−1


 . (49)

Given that the conditional predictive distributions (Equations 38
and 39) are indeed normal distributions, it is trivial to show that
the condition posterior will also be a normal distribution. We
obtain the conditional posterior expectations as

µ
(1)
t |Ht =







µ
(1)
t + σ

(1)
t |Ht

s

(

ot − µ
(1)
t

)

, if Ht = 1,

σ
(1)
t |Ht

s ot , if Ht = 2,

(50)
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and conditional posterior uncertainty as

σ
(1)
t |Ht =











s
(

σ
(1)
t−1+w1

)

s+w1+σ
(1)
t−1

, if Ht = 1,

s
s
w2

+1
, if Ht = 2,

(51)

where we will assume that w2 ≫ s, hence σ
(1)
t |2 ≈ s. Substituting

Equations (50) and (51) gives us the update equations for
the CPM shown in Equation (4). Note that the procedure that
we used to derivation of the update equation of the CPM is
closely related to the Bayesian forgetting method that is typically
applied to the online parameter estimation of the non-stationary
processes (Kulhavỳ and Zarrop, 1993; Payzan-LeNestour, 2010).

For the CPM the surprise (negative marginal log-likelihood)
of the current observation can be computed exactly as

− ln p (ot|Ot−1, θ) = − ln
[

N

(

ot;µ(1)
t−1, σ

(1)
t−1 + w1 + s

)

(1− h)+N (ot; 0, s+ w2) h
]

, (52)

where θ denotes the set of fixed parameters of the perceptual

model {µ(1)
0 , σ

(1)
0 , s,w1,w2, h}. As before the optimal parameter

values of the perceptual model are obtained by minimizing
total surprise over N experimental blocks of duration T under
some prior assumptions p (θ) about the parameter values (see
Equations 30 and 31).

4.2. Model Evidence and Parameter
Estimation
To simulate behavioral responses we have used a simple
formulation of the response model (see Equation 7) for which the
corresponding response likelihood over T responses is defined as

p (RT |OT, θm, σr,m) =
T

∏

t=1

N

(

rt;µ(1)
t

(

µ
(1)
t−1, ot, θm

)

, σr

)

,

(53)
where RT denotes the set of responses during an experimental
block of duration T, OT denotes the set of stimuli (observations)
presented to a simulated participant, and θm the set of free
parameters of either HGF (m = 1) or CPM (m = 2).

The Bayesian model comparison is based on computing the
model evidence for each model m that is defined as the marginal
probability of the joint distribution of responses and free model
parameters. Thus, model evidence is obtained as

p (RT |OT,m) =
∫

p (RT |OT, ρ,m) p(ρ)dρ, (54)

where we use ρ to denote the full set of free model parameters
(the parameters of the perceptual plus the response model), and
where p (ρ) denotes prior probability. As the integral on the right
hand side is invariant under parameter transform we have used
the following representation of the free model parameters

ρ = φ(x) =











x , for x = µ
(1)
0 , µ

(2)
0 ,

ln x , for x = s,w1,w2, η, σ
(1)
0 , σ

(2)
0 ,

ln x
1−x , for x = h.

(55)

This re-parametrization of model parameters allowed us to
express both prior and posterior parameter probability as a
multivariate normal distribution. For the free model parameters
we have set the prior distribution to

p(ρ) =
∏

x

N
(

φ(x);µ(x), σ (x)
)

, (56)

where

µ(x) =















0 for x = µ
(1)
0 , µ

(2)
0 , s,w1, σ

(1)
0 , σ

(2)
0

−2 for x = η

7 for x = w2

−3 for x = h

and

σ (x) =
{

5 for x = µ
(1)
0 , µ

(2)
0 , s,w1,w2, η, σ

(1)
0 , σ

(2)
0

2 for x = h

The reason for using different prior assumption for w2, h,
and η is that we had specific prior assumptions about these
parameters, specifically we expected that w2 ≫ s, that h <

0.5, and that η < 1. Nevertheless, this allowed for modest
improvement of the inference accuracy of these three parameter
values.

In the case of the Bayesian estimation of model evidence we
will apply the Laplace approximation to the integral on the right
hand side of Equation (54). Hence, we approximately estimate
the model log-evidence as

ln p (RT |OT,m) ≈ ln p
(

RT, ρ∗|OT,m
)

+
1

2
ln |2πS

(

ρ∗) |, (57)

where

ρ∗ = argmax
ρ

ln p (RT, ρ|OT,m) ;

S−1 (ρ) = −
∂2 ln p (RT, ρ|OT,m)

∂ρ2
. (58)

Under the Laplace approximation the posterior probability
of model parameters is then expressed as the multivariate
normal distribution centered at ρ∗ and with covariance S(ρ∗),
that is,

p (ρ|RT,OT,m) = N
(

ρ; ρ∗, S(ρ∗)
)

. (59)

For the maximum likelihood parameter estimation we
have considered the BIC as an approximation to the
model evidence [the BIC is actually derived from the
Laplace approximation itself (Wit et al., 2012)]. Hence,
in this second variant we obtain the model evidence
as

ln p (RT |OT,m) ≈ ln p
(

RT |ρ∗,OT,m
)

−
d

2
lnT, (60)
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where d denotes the number of free parameters,
and ρ∗ denotes the maximum of the log-likelihood,
that is

ρ∗ = argmax
ρ

ln p (RT |ρ,OT,m) . (61)

Similar as for the Laplace approximation the uncertainty
of the parameter estimate, denoted with ρ∗, is
obtained as

σ−1
ρ = −

∂2 ln p (RT |ρ,OT,m)

∂ρ2

∣

∣

∣

∣

ρ=ρ∗
. (62)

Finding the maxima of either log-likelihood or the joint
probability distribution is analytically intractable, as both
functions normally have multiple modes. Hence, we have
performed only numerical estimation both of the position
of the maxima and of the second derivatives around the
maxima. For numerical optimization of objective functions (log-
likelihood or log-joint probability) we have used an open-source
implementation of the CMA-ES algorithm (Hansen, 2006, 2015),
whereas for the numerical estimation of the Hessian (second
derivative around the mode) we have used an open-source
library for numerical differentiation (Brodtkorb and D’Errico,
2015).
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