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Effects of sampling effort on 
biodiversity patterns estimated 
from environmental DNA 
metabarcoding surveys
Erin K. Grey  1, Louis Bernatchez2, Phillip Cassey3, Kristy Deiner  4, Marty Deveney5, 
Kimberly L. Howland6, Anaïs Lacoursière-Roussel2, Sandric Chee Yew Leong7, Yiyuan Li8, 
Brett Olds9, Michael E. Pfrender  8,11, Thomas A. A. Prowse3,12, Mark A. Renshaw9 &  
David M. Lodge4,10

Environmental DNA (eDNA) metabarcoding can greatly enhance our understanding of global 
biodiversity and our ability to detect rare or cryptic species. However, sampling effort must be 
considered when interpreting results from these surveys. We explored how sampling effort influenced 
biodiversity patterns and nonindigenous species (NIS) detection in an eDNA metabarcoding survey of 
four commercial ports. Overall, we captured sequences from 18 metazoan phyla with minimal differences 
in taxonomic coverage between 18 S and COI primer sets. While community dissimilarity patterns were 
consistent across primers and sampling effort, richness patterns were not, suggesting that richness 
estimates are extremely sensitive to primer choice and sampling effort. The survey detected 64 potential 
NIS, with COI identifying more known NIS from port checklists but 18 S identifying more operational 
taxonomic units shared between three or more ports that represent un-recorded potential NIS. Overall, 
we conclude that eDNA metabarcoding surveys can reveal global similarity patterns among ports 
across a broad array of taxa and can also detect potential NIS in these key habitats. However, richness 
estimates and species assignments require caution. Based on results of this study, we make several 
recommendations for port eDNA sampling design and suggest several areas for future research.

Global biodiversity surveys are crucial for understanding the impacts of changes in climate and human activity 
but can be logistically difficult to standardize across many taxa and sites. Port ecosystems are hotspots of harmful 
aquatic invasions1 and subject to changes in coastal land use and global shipping patterns influenced by trade pol-
icies, infrastructure development, and climate-driven changes in sea ice, salinity, and temperature. Currently our 
knowledge of patterns and processes driving invasions in these ecosystems is limited due to challenges associated 
with traditional survey methods (e.g., SCUBA, settlement plates, plankton tows, and benthic trawls), including 
difficulties in port access and low capture rates for cryptic or rare species. Thus, few comprehensive port surveys 
exist, and those that do are mainly limited to larger organisms1.
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Environmental DNA (eDNA) metabarcoding surveys have proven useful for many ecosystems and could 
potentially overcome the limitations of traditional port surveys. Aquatic eDNA can be shed from feces, scales, 
gametes, or other extra-organismal sources of DNA suspended in water2. Sampling eDNA requires collec-
tion of water in the field, which can be used to metabarcode a broad suite of species using general primers and 
high-throughput sequencing. Recent studies in coastal marine ecosystems have demonstrated the efficacy of this 
method to describe biodiversity3. For example, Thomsen et al.4 and Yamamoto et al.5 detected higher fish richness 
with eDNA metabarcoding compared to traditional methods, Kelly et al.6 demonstrated a link between eel-grass 
metazoans and coastal urbanization with eDNA metabarcoding, Ardura et al.7 used eDNA metabarcoding to 
track species transport in ballast water, and Borell et al.8 used eDNA metabarcoding to identify three invasive 
invertebrates in Bay of Biscay ports. Clearly, eDNA metabarcoding shows great promise for understanding biodi-
versity and detecting species transported by shipping.

Standardized port eDNA metabarcoding surveys could greatly increase our understanding of biodiversity in 
these dynamic, globally-connected habitats. However, developing a standardized protocol that is applicable glob-
ally is challenging because ports vary considerably in size, complexity, hydrodynamics, physical structures, and 
benthic substrates. Variation in eDNA sampling collection, extraction, and sequencing methods can complicate 
comparison of samples from different projects9. Even when sampling methods are identical, an increase in sam-
pling effort almost inevitably yields more species collected10. Sampling effort variation can therefore confound 
comparisons of species richness and community similarity even among studies using similar methods11 and, if 
not adequately considered, prevent accurate understanding of global biodiversity.

This study’s goal was to apply an eDNA metabarcoding survey method for metazoans (multicellular animals) 
to ports and determine how primer set and sampling effort influences global biodiversity patterns and nonindig-
enous species (NIS) detection. We sampled eDNA from surface waters in four ports with inexpensive and quick 
collection methods, and used two universal metazoan primer sets, 18 S and COI, to make the survey taxonom-
ically broad. To optimize sampling effort for future port surveys, we explored how eDNA collection effort and 
sequencing depth influenced biodiversity metrics. Lastly, we evaluated the ability of each primer set to detect both 
known and un-recorded potential NIS. Our results support multiple recommendations for standardizing eDNA 
metabarcoding sampling effort in future port eDNA metabarcoding surveys.

Results and Discussion
A total of 146 eDNA samples were collected across four ports. The number of samples per site and the number 
of sites differed among ports (Fig. 1) for logistical reasons. At Chicago, USA, 20 samples were taken at one site 
on 20 November 2013 from a dock. In Churchill, Canada, 20 samples were taken at one site on 13 August 2015 

Figure 1. Map of sites sampled for this study. Maps were generated with the ggmap package version 
2.6.136 in R programming language version 3.2.237 using map tiles by © Stamen Design, under CC BY 3.0. 
(https://creativecommons.org/licenses/by/3.0/), with data by OpenStreetMap, under CC BY SA (https://
creativecommons.org/licenses/by-sa/3.0/). This figure is not covered by the CC BY license.

https://creativecommons.org/licenses/by/3.0/
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from a beach near a dock at slack high tide. In Singapore, 40 samples were taken at two sites on 11 July 2014 from 
docks (n = 20 per site) during flood tide. In Adelaide, Australia, 66 samples were taken at low tide at 7 sites on 3 
July 2014 from a boat, with four sites sampled within two meters of a dock and three sites sampled in the middle 
of the channel (n = 9 or 10 per site). Churchill eDNA samples had slightly different collection, DNA extraction, 
and sequencing protocols than those from other ports, but all sample sequences were trimmed, clustered, and 
assigned to taxa using the same bioinformatics pathway (see Supplementary Methods).

Taxonomic Coverage of Primer Sets. Clustering and filtering yielded 8,525 18 S and 11,872 COI molec-
ular operational taxonomic units (MOTUs) across all samples, of which 13% of 18 S (1,117) and 39% of COI 
(4,605) MOTUs were assigned to a metazoan phylum (metMOTUs; see Supplementary Table S1 for sample and site 
sequencing summaries). No-template control filtering removed reads from 52 18 S and 245 COI metMOTUs from 
all field samples. Cooler blank filtering removed three reads from two COI metMOTUs from Chicago samples, six 
reads from one 18 S and 15 reads from 5 COI metMOTUS from Singapore samples, and 43 reads from three 18 S 
and 30,846 reads from 18 COI metMOTUs from Adelaide samples (the latter read count being dominated by com-
mon dust mite Dermatophagoides pteronyssinus). All 11 mock species were sequenced and correctly assigned in the 
COI data, while only three mock species were sequenced and none correctly assigned in the 18 S data.

COI primers produced more metMOTUs, but many of these had weak taxonomic assignments. Pooling 
metMOTUs across all ports and using only those with assignments with > 90% sequence coverage and identity 
yielded 795 18 S metMOTUs spanning 18 phyla and 600 COI metMOTUs spanning 11 phyla (Fig. 2). While 
COI lacked 7 minor phyla (Brachiopoda, Ctenophora, Entoprocta, Hemichordata, Nematoda, Nemertea, and 
Placozoa) and had relatively more Chordate metMOTUs than 18 S, both primer datasets were dominated by 
Arthropoda metMOTUs and had similar proportions for Annelida, Cnidaria, Mollusca, Porifera, and Rotifera.

Overall, the COI primers successfully retrieved all mock fish species and yielded more metMOTUs than 18 S, 
which is similar to the findings of Borrell et al.8. However, many of the COI metMOTUs had low quality taxo-
nomic assignments. After filtering metMOTUs based on assignment quality, the taxonomic coverage for the 18 S 
primer set was higher than that of COI, indicating a trade-off between metMOTU abundance and assignment 
quality in these primers. Despite the differences, relative metMOTU abundances in major metazoan phyla were 
similar with both primer sets.

Variation in Sequencing and eDNA Collection Effort. Sequencing effort differed among samples, but 
general patterns were apparent (see Supplementary Figures S1 and S2 and Tables S2 and S3 for with-sample rare-
faction curves and richness estimates). Churchill, Chicago, and Singapore Woodlands were sequenced at the shal-
lowest depth for both primers (average <50,000 reads per sample), while other sites averaged ~75,000–190,000 
reads per sample. Within-sample rarefaction curves did not plateau in Churchill samples (<20,000 reads per sam-
ple) but began to plateau at ~25,000 reads in Chicago and Singapore Woodlands samples and ~100,000–150,000 
reads in samples from all other sites. An average of 80.8% and 78.6% of Chao1 estimated metMOTUs were recov-
ered per 18 S and COI sample, respectively, with Churchill samples having the lowest completeness (74% and 73% 
of Chao1 estimate for 18 S and COI, respectively).

Variation in eDNA collection effort existed among sites as well. 18 S sample rarefaction curves plateaued at 
Chicago, Churchill and both Singapore sites at 5–15 samples while COI curves plateaued at 15–20 samples at 
these sites (Fig. 3). Adelaide curves, which had only 9 or 10 samples each, did not plateau in either 18 S or COI 
curves. Aggregation of metMOTUs within samples, as indicated by sample curves falling below read curves, was 
apparent in Singapore Yacht 18 S, Singapore Yacht COI, Singapore Woodlands COI, and Chicago COI curves 
(Fig. 3). This pattern, typically attributed to spatial aggregation of species in traditional surveys, could here be 
due to either spatial aggregation of metazoan eDNA in port surface waters or variation in PCR reactions among 
samples. Further experimentation is needed to tease apart these non-exclusive factors.

Biodiversity Patterns. Dissimilarity ordinations consistently showed that samples grouped by port, with 
samples from each port forming a unique cluster in all datasets (Fig. 4). Adelaide and Singapore clusters were 
closer to each other than to Chicago, and the Churchill cluster, which followed different protocols, was closest to 
Chicago in all ordinations. Within sites, 18 S dissimilarities were larger than COI dissimilarities, but the overall 
pattern between sites was consistent. Samples from the two Singapore sites, located on opposite sides of the island, 

Figure 2. Proportion of metazoan MOTUs in each phylum for the 18 S (black) and COI (grey) datasets.
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were distinct from each other with no overlap in any ordination. Adelaide seaward sites (Container Channel, 
Container Dock 1, Container Dock 2) formed a cluster unique from the four upriver sites (Fuel Channel, Fuel 
Dock, Marina Channel, Marina Dock) in the 18 S but not the COI ordination. Samples from sites within the two 
Adelaide clusters were intermixed with each other, suggesting that eDNA is well-dispersed at the scale of about 
500 m-1 km. Also consistent across datasets was a significant positive correlation between Adelaide site dissimi-
larities and geographic distance (Fig. 5; 18 S un-rarefied r = 0.56, p = 0.02; COI un-rarefied r = 0.77, p < 0.01; 18 S 
rarefied r = 0.58, p = 0.02; COI rarefied r = 0.74, p < 0.01), which was expected given the estuarine gradient of 
this river port.

Unlike community similarity patterns, site metMOTU richness estimates were inconsistent across barcodes 
and sampling effort (Fig. 6). Un-rarefied richness estimates were generally higher than those from rarefied data, 
except in three cases (Singapore Woodlands 18 S, Adelaide Container Dock1 18 S, and Chicago COI). Of 11 sites, 
un-rarefied and rarefied 95% confidence intervals overlapped at only four sites in the 18 S dataset and one site 
in the COI dataset, with notable differences in the COI estimates at the Singapore Yacht and all Adelaide sites. 
Richness rankings among the non-Churchill sites varied between barcodes and methods, but ranking correlations 
were significant in all cases (18 S un-rarefied and rarefied Spearman ρ = 0.83, p = 0.001; COI un-rarefied and rar-
efied ρ = 0.55, p = 0.05; un-rarefied 18 S and COI ρ = 0.94, p =  < 0.001; rarefied 18 S and COI ρ = 0.62, p = 0.03). 
Churchill COI richness estimates were much higher than the other sites, perhaps due to differences in eDNA 
collection (e.g., the use of glass-fiber filter membranes in Churchill versus cellulose nitrate membranes in other 
ports), extraction (e.g. use of phenol chloroform for Churchill versus chloroform for other samples), or amplifi-
cation protocols (e.g. use of a single annealing temperature for Churchill COI amplifications versus a touchdown 
program for other amplifications) at this site (Supplementary Methods).

Figure 3. Rarified metMOTU accumulation curves by reads and samples for each site. Solid black line denotes 
COI read rarefaction, grey line denotes COI sample rarefaction, dark blue line denotes 18 S read rarefaction, and 
light blue line denotes 18 S sample rarefaction. Read curves were plotted on the x-axis using the average number 
of reads per sample. Errors bars represent 95% confidence intervals.
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Overall, we found that community dissimilarity patterns and dissimilarity-distance correlations were robust 
to barcode and sampling effort (Figs 4, 5), while site metMOTU Chao2 richness estimates were not (Fig. 6). The 
latter finding is consistent with Haegeman et al.12. who found that reliable bacterial MOTU richness estimates are 

Figure 4. Ordination of (a) 18 S un-rarefied (b) COI un-rarefied, (c) 18 S rarefied, and (d) COI rarefied datasets 
and using non-metric multidimensional scaling of Chao dissimilarity estimates. Samples are colored by site and 
ordination stress values are given on each plot.

Figure 5. Between-site Chao dissimilarity by over-water distance for seven Adelaide sites. Linear regression 
lines for each primer-rarefaction combination are shown. Mantel tests were significant at the p ≤ 0.02 level for 
each of the four dissimilarity by distance correlations (see text).
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challenging due to spurious singletons, unknown underlying MOTU abundance distributions, and the reliance 
of non-parametric estimators on singleton frequencies. Although we attempted to correct for spurious singletons, 
site metMOTU richness estimates were still variable among our datasets, indicating that they are not robust to the 
sequencing and collection effort variation in this study.

NIS Detections. This survey detected several known and un-recorded potential NIS, but some assignment 
similarity metrics were weak, particularly in the COI dataset (see Supplementary Tables S4 and S5). In Chicago, 
seven known NIS were detected: two with 18 S (quagga mussel Dreissena rostriformis and copepod Eurytemora 
affinis) and five with COI (white perch Morone Americana, common carp Cyprinus carpio, Asian clam Corbicula 
fluminea, copepod Eurytemora carolleeae, and European earthworm Lumbricus rubellus), all with high sequence 
similarity (coverage = 100%, identity >97%) except D. rostriformis (coverage = 100%, identity = 89%). In 
Adelaide, 11 known NIS or cryptogenic species were detected: five with both primer sets (ascidian Styela plicata, 
green crab Carcinus maenus, hydrozoans Plumularia setacea and Coryne eximia, Senhouse mussel Musculista 
senhousia, and polychaete Hydroides “elegans”), one with only 18 S (ascidian Ciona inestinalis), and four with only 
COI (bryozoans Tricellaria occidentalis and Watersipora arcuata, Chameleon Goby Tridentiger trigonocephalus, 
Mediterranean mussel Mytilus galloprovincialis). All Adelaide 18 S and six COI NIS assignments were strong 
(>99% coverage and identity) while four COI assignments were weak ( < 95% coverage or identity).

Un-recorded potential NIS included eight 18 S metMOTUs found in all ports, and 25 18 S and 13 COI met-
MOTUs found in three ports. All-port 18 S metMOTUs consisted mostly of plausible NIS, including five roti-
fers (two of which, Synchaeta pectinata and Cephalodella forficula are cosmopolitan), a cosmopolitan hydroid 
(Bougainvilla muscus), a cosmopolitan flatworm (Microstomum lineare), and human. The 25 three-port 18 S 
metMOTUs spanned 9 phyla and many had cosmopolitan distributions. Except for one sponge assignment 
with low similarity (Spongionella cf. foliascens) all of the three-port 18 S assignments had coverages >98.5% and 
identities > 95%. In the COI dataset, the 13 three-port metMOTUs spanned five phyla and generally had weak 
assignments (coverage <90% or identity <90%), with three exceptions: the feral pig Sus scrofa (coverage and 
identity = 100%), cladoceran Macrothrix sp. HE-364 (coverage = 100%, identity = 99%), and sponge Haliclona 
aculata (coverage = 100%, identity = 99%). All three of these taxa have cosmopolitan distributions; however, S. 
scrofa is also a common laboratory contaminant13.

Overall, many plausible NIS were identified by comparing assignments to port NIS checklists or by investigat-
ing assignments found in three or more ports. More recorded NIS were detected with COI (14) than with 18 S (8), 
but more metMOTUs shared between three or more ports, which represent potential but currently un-recorded 
NIS, were found with 18 S (33 with 18 S versus 13 with COI). However, several assignments were likely erroneous 
with low sequence coverages or identities, particularly in the COI dataset. Further, 18 S is well known to be more 
conserved among many metazoan clades14, indicating that metMOTUs shared between three or more ports may 
truly be different species. Further testing of universal metazoan barcodes against well-curated sequence databases 
and port species checklists is sorely needed to better determine the benefits and drawbacks of each barcode.

Figure 6. Site metMOTU Chao2 richness estimates at 20 samples from the (a) 18 S dataset and (b) COI dataset. 
Grey bars represent estimates from the un-rarefied, singleton-adjusted dataset and white bars from the rarefied 
dataset. Error bars represent 95% confidence intervals. *Churchill samples were collected and sequenced using 
a different method and so cannot be compared to the other sites.
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Summary and Recommendations. In summary, we detected eDNA from at least 18 metazoan phyla in 
ports and our analyses give us confidence that the methods used here can reliably estimate community dissim-
ilarity patterns and identify plausible NIS without the extensive fieldwork and taxonomic expertise required by 
traditional surveys. Although richness estimates and some taxonomic assignments are unreliable, we conclude 
that eDNA metabarcoding can potentially transform our understanding of port biodiversity in the face of global 
change. For example, applying this survey to more ports over time could reveal changes in port species compo-
sition dissimilarities, allowing us to tease apart the effects of climate and shipping on biodiversity in these key 
hotspots of invasion and other anthropogenic change.

Based on our results, we make the following recommendations for future port eDNA metabarcoding surveys 
and research:

 1. Protocols: Standardize eDNA collection, extraction, and sequencing protocols to maximize biodiversity 
pattern inference across sites. Here we used two sets of protocols, one for Churchill and one for the other 
three ports (see Supplementary Methods), which prevented direct comparison of biodiversity metrics be-
tween Churchill and the other ports. Further research and conversation among practitioners is needed to 
determine the optimal set of protocols for port eDNA surveys. We suggest that both sets of protocols used 
here provide a good starting point for these efforts.

 2. Primer Choice: For biodiversity estimation, both the COI and 18 S primer sets yielded similar taxonomic 
breadth and dissimilarity patterns (Figs 2, 4 and 5), so either or both could be effective for this aim. To 
optimize NIS detection, we recommend using multiple primers, as the two primers in this survey detected 
different NIS (Supplementary Dataset S3). For eDNA surveys targeted at specific NIS that are known be-
forehand (which was not the case in this study), species-specific quantitative or digital droplet PCR assays 
will be more sensitive than metabarcoding15.

 3. Sequencing Depth: Sequencing depth recommendations vary depending on the purpose of the survey. 
For community dissimilarity estimation, read depths of 10,000 and 40,000 reads per sample are needed for 
the 18 S and COI primers used in this study, respectively. For species richness estimates or NIS detection, 
sequencing each sample at a depth of 150,000 reads will yield ~80% of estimated richness in most samples 
for both primer sets (Supplementary Dataset S2). The depth needed for less diverse sites or more specific 
primers is probably lower, but this should be evaluated beforehand by over-sequencing a few samples.

 4. eDNA Sample Collection Effort: Given the observed heterogeneity of metMOTUs across samples within 
some sites (Fig. 3), we recommend collecting at least 9 × 250 mL samples per site to estimate community 
dissimilarity and 15 samplers for metMOTU richness estimation, with samples taken about every 2–4 
meters in a site. Further research is needed to determine how much of this heterogeneity is due to PCR 
variation versus spatial aggregation of eDNA.

 5. Number of Sites within a Port: Multiple sites will need to be sampled to capture the full biodiversity of a 
port (Fig. 4). Based on a dissimilarity by distance analysis for seven Adelaide sites (Fig. 5), we recommend 
that sites be located about 0.5–1 km apart.

 6. Species Assignment Accuracy: Species assignments can be informative but should be treated with caution 
(see Supplementary Dataset S3) given known errors and omissions in sequencing and reference libraries. 
Any potential NIS detected with eDNA metabarcoding should therefore be confirmed with traditional sur-
veys or species-specific qPCR or ddPCR surveys. Additional species lists for ports (and many other coastal 
habitats) and more complete and accurate sequence databases would enable better evaluation of eDNA 
metabarcoding survey accuracies.

Methods
eDNA Collection, Extraction and Amplicon Sequencing. eDNA collection, extraction and amplicon 
sequencing protocols differed between Churchill and the other ports (Supplementary Methods). For all ports, a 
sample consisted of 250 mL of surface water. Samples from Chicago, Adelaide, and Singapore were stored on ice 
immediately after collection and eDNA was captured in the lab by filtering through cellulose nitrate membranes 
(47 mm diameter, 0.45 µm pore-size) within 8 hours of collection. Churchill samples were filtered immediately in 
the field with a syringe and glass-fiber membranes (25 mm diameter, 0.7 µm pore-size). After filtration, all mem-
branes were stored in a sterile microtube with 700 µl of Longmire’s buffer16.

DNA was extracted from the Chicago, Singapore, and Adelaide samples using a chloroform protocol. 
Amplicon sequencing included an initial 50 μL PCR using primers with 5′ tail sequences corresponding to part 
of the Nextera® adaptors and a second PCR to attach library specific indices and remaining Nextera® sequences. 
DNA was extracted from the Churchill samples using a QIAshredder (Qiagen) and phenol-chloroform protocol. 
Churchill amplicon sequencing involved one PCR with three 24 μL replicates per sample using barcode primers 
tailed on the 5′ end with the entire Nextera® adaptors.

Both protocols amplified the same two barcode sequences [a 313 bp COI fragment using the MlCOIintF17 and 
jgHCO219818 primers and a ribosomal 18 S gene fragment (~ 378 bp) using the 18S_574F and 18S_952R prim-
ers19] and sequenced on an Illumina MiSeq platform (Illumina, San Diego) using a paired-end MiSeq Reagent Kit 
V3 (sequence length = 300 bp) following manufacturer’s instructions.

Bioinformatics and Contamination Controls. Raw sequence reads were filtered based on their quality, 
merged, and clustered into molecular operational taxonomic units (MOTUs) at 97% similarity20 (Supplementary 
Methods). MOTUs were assigned to taxa in the NCBI NR database with two different approaches: SAP v1.9.321 and 
the BLAST function in Geneious v9.1.522. For all analyses we used only MOTUs that were assigned to the metazoan 
phylum (metMOTUs) by either assignment method, using the SAP assignment when the two methods disagreed.
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Following recommended eDNA control protocols23, we used cooler blanks as field controls; for laboratory con-
trols, we used mock communities and no-template controls at each step of extraction and PCR (Supplementary 
Methods). To remove contaminate MOTUs from the data, we subtracted contaminant reads from field sam-
ples24 as follows: mock MOTU read counts were subtracted from each field sample in the same sequencing run, 
cooler blank MOTU read counts were subtracted from each field sample transported in the same cooler, and 
no-template MOTU read counts were subtracted from all field samples.

Variation in eDNA Collection and Sampling Effort. Differences in eDNA sampling effort can occur 
at several stages25. We explored two types of effort that could differ among samples taken with the same proto-
col: sequencing effort, which is the number of reads generated per sample, and eDNA collection effort, which 
depends on the volume of water collected, metMOTU diversity, and spatial distribution of eDNA in the site26. To 
investigate variation in sequencing effort, we generated read rarefaction curves for each sample to determine if 
and when curves plateaued; the latter indicating all metMOTUs in the sample were sequenced. To estimate the 
sequencing completeness of each sample, we divided the number of observed metMOTUs by the Chao1 rich-
ness estimate27 for metMOTUs for that sample. We explored variation in eDNA collection effort among sites by 
plotting site-specific rarefied sample curves for each site to observe if and when curve plateaued. To investigate 
spatial aggregation of metMOTUs within a site, we plotted rarefied pooled read curves for each site along with the 
rarefied sample curves. Sample curves will increase more slowly than read curves when metMOTUs are aggre-
gated within samples, with greater aggregation yielding a relatively slower increase in sample curves28. Sample 
rarefaction curves, sample Chao1 estimates, site sample rarefaction curves, and site read rarefaction curves were 
calculated with the R package vegan29, using the rarecurve, estimateR, specaccum (method = “random”), and spe-
caccum (method = ”rarefaction”) functions respectively.

Biodiversity Metrics. When sampling effort differs among samples or sites, two common approaches for 
comparing biodiversity metrics exist: 1) rarefy the data to the lowest effort, or 2) use non-parametric estimates 
that are robust to unequal sampling efforts. The rarefaction approach is compatible with many biodiversity met-
rics but often requires omission of a substantial amount of data. Non-parametric estimators are more robust to 
effort variation, but they can be biased at low effort levels and yield wide confidence intervals11. To explore how 
sequencing and collection effort influenced biodiversity patterns in this survey, we compared non-parametric 
community dissimilarity and richness estimates from un-rarefied data (where sequencing and collection effort 
varied among samples and sites) to those from rarefied data (where all samples had the same number of reads 
and all sites had the same number of samples). We rarefied by selecting 9 samples (the lowest sample number per 
site) with the highest read counts for each site, and then randomly selected reads without replacement from each 
sample up to the lowest observed read count (lowest read count 18 S = 9,081, COI = 40,401). This comparison 
allowed us to infer the effect of sequencing and collection effort on non-parametric biodiversity metrics and to 
determine if these metrics are robust across barcodes and effort levels.

We then compared three biodiversity patterns across primer and un-rarefied/rarified datasets: between-sample 
community dissimilarity, correlation between site dissimilarity and geographic distance, and site metMOTU rich-
ness. We estimated between-sample dissimilarities using the Chao dissimilarity index, which is similar to the 
Jaccard index except that it accounts for unseen metMOTUs shared between samples30, and visualized these 
dissimilarities with non-metric multidimensional ordination (NMDS). We evaluated the correlation between site 
Chao dissimilarities and over-water distance in Adelaide, a river port with 7 sites distributed along several kilom-
eters (Fig. 1), with a Mantel test and visualized the correlation by plotting site dissimilarity by distance and adding 
linear regression lines for each primer set-rarefaction combination. Chao dissimilarities and NMDS ordinations 
were calculated using the vegan functions metaMDS and ordiplot, respectively. To calculate Adelaide site Chao 
dissimilarities we pooled reads from all samples in a site and used the vegan function vegdist.

To estimate metMOTU richness, we first adjusted the number of singletons (number of metMOTUs with 
one read per site) in each un-rarefied sample to correct for spurious sequences using the algorithm provided in 
Chiu and Chao31. We estimated metMOTU richness at 20 samples using the estimateD function in the R package 
iNEXT32,33, setting Hill number q = 0. A one-tailed Spearman rank correlation tested for concordance between 
site richness rankings between the different barcodes and between un-rarefied and rarefied datasets.

Because Churchill samples were filtered, extracted, and amplified differently than those from the other ports 
(Supplementary Methods), we did not compare its metMOTU richness with that of other ports. However, we did 
compare relative dissimilarity between Churchill samples and other ports.

Nonindigenous Species (NIS) Detection. In addition to revealing global biodiversity patterns, eDNA 
metabarcoding may also detect NIS in ports. However, errors and omissions in reference databases34 or sequences 
require caution for any species assignment. To assess this survey’s ability to identify NIS, we checked species 
assignments from Chicago and Adelaide against NIS species lists for these ports (Chicago: Great Lakes Aquatic 
Nonindigenous Species Information System www.glerl.noaa.gov/res/Programs/glansis; Adelaide: Wiltshire et al.35).  
Next, we evaluated our ability to detect unrecorded NIS by evaluating metMOTUs found in three or more ports, 
as species were unlikely to have dispersed naturally to at least one of any three ports in this study. For both 
analyses, we assessed whether an assignment was a true NIS based on percent of the metMOTU sequence that  
overlapped with the assignment sequence (% coverage), the extent to which the metMOTU and the assignment 
have the same nucleotides at the same positions (% identity), and the known global distribution of the species 
derived from the World Register of Marine Species (www.marinespecies.org) or the IUCN Red List (www.iucn-
redlist.org).

http://www.glerl.noaa.gov/res/Programs/glansis
http://www.marinespecies.org
http://www.iucnredlist.org
http://www.iucnredlist.org
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Data Availability
Raw sequences for all samples have been deposited in NCBI’s Sequence Read Archive (SRA, http://www.ncbi.
nlm.nih.gov/), with Chicago, Singapore and Adelaide sequences under BioProject PRJNA3955904 and Churchill 
sequences under BioProject PRJNA388333. Filtered MOTU data and R scripts for biodiversity analyses are freely 
available on Dryad at https://doi.org/10.5061/dryad.40782nd.
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