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Abstract: Recognition of (1→3)-β-d-glucans (BGs) by invertebrate β-1,3-d-glucan recognition protein
(BGRP) plays a significant role in the activation of Toll pathway and prophenoloxidase systems in
insect host defense against fungal invasion. To examine the structure diversity of BGRPs for the
recognition of physiochemically different BGs, the binding specificity of BGRPs cloned from four
different insects to structure different BGs was characterized using ELISA. Recombinant BGRPs
expressed as Fc-fusion proteins of human IgG1 bound to the solid phase of BGs. Based on the
binding specificities, the BGRPs were categorized into two groups with different ultrastructures and
binding characters; one group specifically binds BGs with triple-helical conformation, while the
other group recognizes BGs with disordered conformations like single-helical or partially opened
triple helix. The BGRPs from the silkworm and the Indian meal moth bound to the BGs with a
triple-helical structure, whereas BGRPs from the red flour beetle and yellow mealworm beetle showed
no binding to triple-helical BGs, but bound to alkaline-treated BGs that have a partially opened
triple-helical conformation. This evidence suggests that the insect BGRPs can distinguish between
different conformations of BGs and are equipped for determining the diversity of BG structures.
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1. Introduction

Innate immune system is ubiquitously equipped in various organisms to recognize molecular
patterns on pathogens [1]. To accomplish host defense mechanisms in invertebrate, it is important
to discriminate the large number of potential pathogens from itself using a restricted number of
germ-line encoded receptors and binding proteins. Invertebrates have protective factors that recognize
various biological components of microbes. In particular, β-glucans act on the host glucan-binding
proteins to activate the prophenoloxidase system, and lead to the expression of various innate immune
related genes [2]. Insects possess unique pattern-recognition receptors, called PGRP and BGRP
against peptidoglycan (PG) and (1→3)-β-d-glucan (BG), respectively [3]. These recognition proteins
initiate activation of pro-phenoloxidase, which leads to melanin formation in addition to Toll and Imd
pathways [4]. The interaction of BGRP with BG and PGRP with PG activates serine proteases which
subsequently alternate the pro-phenoloxidase to the phenoloxidase [5]. This reaction system can be
applied for the detection of BG and PG using body fluid obtained from silkworm larvae [6]. However,
it does not distinguish the content of BG and PG in a test sample, because the fluid contains both BGRP
and PGRP [6].

The structural diversity of BGs has been reported. Water-soluble BGs generally possess
(1→6)-β-d-glucopyranosyl branches with various frequencies and lengths on the (1→3)-β-d-glucan
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main chain. The ultrastructure of the branched (1→3)-β-d-glucans, such as sonifilan from Schizophyllum
commune [7,8] and laminarin from Laminaria digitate [9], is the triple helix. The triple-helical conformation
can be transiently converted to single-strand random coiled or single-helical form, in other words
partially opened triple helix, by serial treatment with alkaline and neutralization [10]. It is hypothesized
that the innate immune system is able to recognize the structural diversity of the BGs [11]. Therefore,
we have isolated four kinds of BGRPs from different insects and examined the binding specificity
towards structure-differed BGs in this study. As a result, we have found the two classes of BGRPs,
from lepidopteran and coleopteran, bound to the triple-helical conformation and the single-strand
conformation of BGs, respectively. This evidence supports that innate immune systems in insects
survey different molecular patterns which occur in conformational alteration of polysaccharide.

2. Results

2.1. Evaluation of Direct Binding Activity of BGRP-Fc Proteins to Solid Phase BG by ELISA

It has been well documented that Sonifilan (SPG) and laminarin form a triple-helical ultrastructure
in physiological solution [7,8]. The triple-helical conformation can be altered by alkaline treatment to
random coiled, then partially opened, triple-helical conformation after neutralization with acid solution
for renature [9]. Although this conformational change is reversible, the partially open triple-helical
conformation remained for 35.5 h after the neutralization of the alkaline-treated laminarin [9]. Based
on the experimental conditions described in previous reports [8,9], we treated SPG and laminarin with
0.5 M NaOH and neutralized them to prepare conformationally different BGs.

2.1.1. Binding of BGRPs to Solid Phase of SPG

To examine the binding ability of BGRP-Fc to structurally different β-glucans, Sonifilan (SPG),
laminarin, and their alkaline-treated glucans, were tested by ELISA. Bombyx mori-derived BGRP
(BmBGRP) and Plodia interpunctera-derived BGRP (PiBGRP) showed significant binding to both SPG
and alkaline-treated SPG (AT-SPG) (Figure 1 upper).

There was no difference in the biding ability of BmBGRP to SPG and AT-SPG. However, PiBGRP
showed higher binding to SPG than AT-SPG. In contrast, Tribolium castaneum-derived BGRP (TcBGRP)
and Tenebrio molita-derived BGRP (TmBGRP) showed no binding to SPG but bound to AT-SPG
(Figure 1 lower).

2.1.2. Binding of BGRPs to Solid Phase of Laminarin

To confirm that these specificities might be resulted from the conformational difference of BG,
anoother BG, laminarin, which has lower MW and lower branching ratio of 1, 6-β-monoglucoside than
SPG, was applied to the binding assay. BmBGRP and PiBGRP bound well to undenatured laminarin
(Figure 2 upper). TcBGRP and TmBGRP showed no binding to laminarin, but significantly bound to
AT-laminarin as well as AT-SPG (Figure 2 lower).



Int. J. Mol. Sci. 2019, 20, 3498 3 of 14

Figure 1. Binding activity of β-1,3-d-glucan recognition protein (BGRP)-Fc to solid-phase of
(1→3)-β-d-glucans (BGs). Binding of BGRP-Fc to Sonifilan (SPG) (black circle) and alkaline-treated
SPG (AT-SPG) (open circle, dashed line) were measured. SPG and AT-SPG were coated on ELISA
plate at 1 µg/ml. Each sample concentration was measured by duplicate in an experiment. The data
show representative results performed at least twice. Absorbance of each sample was measured in
duplicate in the experiment. Data shown are representative of two independent experiments with
similar tendency. Statistical significance between native BG and AT-BG on ELISA plate were found to
be as follows: * p < 0.05, ** p < 0.01, *** p < 0.001, respectively.

Figure 2. Binding activity of BGRP-Fc to solid-phase of BGs. Binding of BGRP-Fc to laminarin
(black diamond) and AT-laminarin (open diamond, dashed line) measured by ELISA. Laminarin and
AT-laminarin were coated on ELISA plate at 10 µg/mL. Absorbance of each sample was measured in
duplicate in the experiment. Data shown are representative of two independent experiments with
similar tendency. Statistical significance between native BG and AT-BG on ELISA plate were found to
be * p < 0.05 and ** p < 0.01, respectively.
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2.2. Competitive Effect of Liquid Phase BGs in ELISA

We have reexamined the binding specificity of these BGRPs to liquid phase of BGs as competitors
against solid phase of conformationally different BGs.

2.2.1. Binding Difference of BGRPs to the Different Conformation of SPG in Liquid Phase

First, the effect of liquid phase of SPG and AT-SPG on BGRPs binding to SPG coated on ELISA
plate was examined. As shown in Figures 3 and 4, SPG or AT-SPG was immobilized on an ELISA plate.
In the liquid phase, SPG and AT-SPG competitively inhibited the binding of BmBGRP and PiBGRP
to solid phase SPG. In the case of BmBGRP and PiBGRP, binding to solid phase SPG was strongly
inhibited by SPG (Figure 3 upper). The binding of BmBGRP to AT-SPG was not strongly inhibited
by AT-SPG in the liquid phase, but strongly inhibited by SPG (Figure 4 upper). If it is assumed that
BmBGRP binds to BG with a triple-helical conformation, the triplex portion remained in solid phase
AT-SPG, and BmBGRP may bind to partially existing triple-helical conformation in the AT-SPG. It was
suggested that SPG in the liquid phase acted as an inhibitor for the binding of BmBGRP and PiBGRP.

On the other hand, TcBGRP and TmBGRP did not bind to the solid phase SPG, and the competitive
reaction could not be observed (Figure 3 lower). However, the binding properties on the AT-SPG
coated plate were observed well. The absorbance decreased with increasing concentration of AT-SPG
(Figure 4 lower). From these results, it was shown that BmBGRP and PiBGRP tend to bind to SPG, and
TcBGRP and TmBGRP tend to bind to AT-SPG.

Figure 3. Binding activity of BGRP-Fc to SPG and AT-SPG in the liquid phase. Competition with
liquid phase of SPG (black circle) and AT-SPG (open circle, gray line) in the BGRP-Fc (100 ng/mL)
binding to SPG (10 µg/mL). Tribolium castaneum-derived BGRP (TcBGRP)-Fc and Tenebrio molita-derived
BGRP (TmBGRP)-Fc failed to bind solid phase of SPG. Absorbance of each sample was measured in
duplicate in the experiment. Data shown are representative of two independent experiments with
similar tendency. Statistical significance between native BG and AT-BG in the liquid phase was shown
as ** p < 0.01.
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Figure 4. Binding activity of BGRP-Fc to SPG and AT-SPG in the liquid phase. Competition with liquid
phase of SPG (black circle, dashed line) and AT-SPG (open circle, dashed gray line) in the BGRP-Fc
(100 ng/mL) binding to AT-SPG (10 µg/mL). Absorbance of each sample was measured in duplicate in
the experiment. Data shown are representative of two independent experiments with similar tendency.
Statistical significance between native BG and AT-BG in liquid phase was shown as * p < 0.05, ** p < 0.01,
*** p < 0.001.

2.2.2. Binding Difference of BGRPs to the Different Conformation of Laminarin in Liquid Phase

Similar results were observed in the competition assay using laminarin and AT-laminarin.
(Figure 5). Particularly, in case of TcBGRP and TmBGRP, the binding inhibition with AT-laminarin in
liquid phase was observed in the binding against AT-laminarin (Figure 6).

Above results suggest the binding of BmBGRP and PiBGRP tend to be high on triple-helical BGs,
although TcBGRP and TmBGRP have higher binding ability to AT-SPG and AT-laminarin, which form
partially opened triple helical conformation.
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Figure 5. Binding activity of BGRP-Fc to laminarin and AT-laminarin in the liquid phase. Competition
with liquid phase of laminarin (black diamond) and AT-laminarin (open diamond, gray line) in the
BGRP-Fc binding to solid phase of laminarin (10 µg/mL). TcBGRP-Fc and TmBGRP-Fc failed to bind
solid phase of laminarin (10 µg/mL). Absorbance of each sample was measured in duplicate in the
experiment. Data shown are representative of two independent experiments with similar tendency.
Statistical significance between native BG and AT-BG in liquid phase was shown as * p < 0.05, ** p < 0.01,
*** p < 0.001.

Figure 6. Binding activity of BGRP-Fc to laminarin and AT-laminarin in the liquid phase. Competition
with liquid phase of laminarin (black diamond, dashed line) and AT-laminarin (open diamond, dashed
gray line) in the BGRP-Fc binding to solid phase of AT-laminarin (10 µg/mL). Absorbance of each sample
was measured in duplicate in the experiment. Data shown are representative of two independent
experiments with similar tendency. Statistical significance between native BG and AT-BG in liquid
phase was shown as * p < 0.05, ** p < 0.01, *** p < 0.001.
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2.3. Binding Kinetics of BGRPs to SPG and AT-SPG

The interaction of BmBGRP and TcBGRP with different conformers of SPG was recapitulated and
quantified using biolayer interferometry (BLitz). As shown in Figure 7, the base line of the sensor
tip without the analyte was around 0.1 after loading with Biotin-conjugated SPG- or AT-SPG on the
Streptavidin-coated surface. The control line was monitored by running with PBS containing 0.5% BSA.
A concentration-dependent increase in the binding of the BmBGRP with SPG was observed. In contrast,
interaction of TcBGRP with SPG-loaded sensor tip was quite lower than BmBGRP. However, the binding
of TcBGRP was significantly higher than BmBGRP in the case of interaction with AT-SPG-loaded sensor
tip (Figure 7). The affinity (KD) of BmBGRP toward SPG and AT-SPG was calculated to be 0.29 and
0.20 µM respectively. Rmax of BmBGRP to SPG and AT-SPG was 0.26 and 0.07, respectively (Table 1),
suggesting binding site for BmBGRP on SPG was reduced by alkaline-treatment. However, the KD of
TcBGRP toward SPG and AT-SPG was 1.77 and 0.71 µM respectively, suggesting affinity of TcBGRP
was improved by alkaline-treatment of SPG. These results suggest that TcBGRP tends to interact with
alkaline-denatured conformation of BG.

Figure 7. Binding affinity measurements of BmBGRP and TcBGRP to SPG or AT-SPG on BG-conjugated
biosensors. KD, Ka, and Kd were measured and calculated by the BLitz system. All experiments were
performed with at least two independent occasions in duplicate readings. The X-and Y-axis depicts the
time in seconds and the binding in nm, respectively.

Table 1. Binding kinetics of BGRPs to SPG- or AT-SPG.

β-Glucan BGRP Conc.
(nM)

KD
(µM)

Ka
(1/Ms)

Ka
Error

Kd
(1/s)

Kd
Error Rmax R

Equilibrium

SPG
Bm 5650 0.29 2.09 × 105 1.26 × 104 6.16 × 10−2 6.16 × 10−2 0.2626 0.2496
Tc 5747 1.77 7.28 × 104 1.42 × 104 1.29 × 10−1 1.29 × 10−3 0.09497 0.07264

AT-SPG
Bm 5650 0.20 3.40 × 105 3.59 × 104 6.79 × 10−2 6.79 × 10−2 0.07618 0.07358
Tc 5747 0.71 6.63 × 104 4.97 × 103 4.71 × 10−2 4.71 × 10−2 0.1853 0.1649

Binding of BmBGRP and TcBGRP to sensor chip conjugated with SPG or AT-SPG was monitored by Bio-Layer
Interferometry method. The binding of various concentration of BGRPs, from 339 nM to 5.7 µM, and dissociation
of BGRP from the SPG or AT-SPG was analyzed for 90 seconds in each period. The KD was calculated by
binding/dissociation kinetics at every concentration of BGRPs as shown in Figure 7. The Fitting-Global model using
every concentration of analyte for association and dissociation kinetics was applied. The Fitting 1:1 model fits one
BGRP analyte in solution binding to one binding site on the β-glucan surface. The data shown are representative of
the experiment conducted at least twice.
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3. Discussion

Although insects or invertebrate animals do not have the acquired immunity to the pathogens,
they are able to recognize the molecules on the pathogenic microorganisms by using pattern recognition
receptor molecules [1]. BG-binding proteins and BGRP are well-known pattern recognition receptor
molecules as applied in the Limulus amebocyte lysate (LAL) assay and silkworm larvae plasma (SLP)
reagent set (Wako Pure Chemical Industries, Ltd.) for detection of (1→3)-β-d-glucan [6,12]. Among
the recognition receptor proteins, BGRPs are well characterized molecules as their 3-D structure are
clarified by X-ray crystallography and NMR [13,14]. In this study, we have isolated four kinds of
BGRPs from different insects and examined the binding specificity towards structure-differed BGs.

BmBGRP and PiBGRP showed consistent higher binding to native BGs which have helix
conformation. This binding specificity was confirmed by reverse experiment using competitor
BGs in liquid phase prior to interacting with solid-phase BGs on ELISA plate. Binding ability of
BmBGRP and PiBGRP to alkaline-treated BG were also observed either in solid phase or liquid phase.
Even the alkaline-treated BGs partially possess helical conformation in the solution [11]. BmBGRP
and PiBGRP may bind to the scattering helical portion remaining in the AT-SPG and AT-laminarin.
In contrast, TmBGRP and TcBGRP had no binding ability to native BGs which have triple-helical
conformation. In the case of binding of TcBGRP and TmBGRP, these proteins bound to alkaline-treated
BGs, but not to native BGs even in solution and solid-phase. It was suggested that the Fc portion of
those BGRPs does not bind nonspecifically to BGs immobilized on the ELISA plate. Compared to
TcBGRP, TmBGRP seems to have a lower binding affinity for AT-SPG. The reason for this lower affinity
of TmBGRP towards AT-SPG is not clear. However, on solid phase, the binding pattern of TmBGRP to
AT-SPG was consistent to that observed on liquid phase. As shown in Figures 1 and 4, the maximum
absorbance was 0.35 with 1 µg/mL of AT-SPG and 1.1 with 10 µg/mL of AT-SPG. The difference in the
glucose branching ratio in the side chain between SPG and laminarin may affect the corresponding
reactivity to TmBGRP. Laminarin has one 1,6-linked branched glucose for every seven glucose residues
on the main 1,3-beta-glycosidic linkage [9]. However, SPG had one 1,6-linked side branch glucose for
every third glucose on the main 1,3-beta-glycosidic linkage [6]. Many side chain glucose residues on
AT-SPG may interfere with the interaction of TmBGRP with 1,3-glucan main chain.

It was reported that alkaline-treatment would form partially opened triple helical conformation
in BG [9,11,15]. Based on prior reports [8,9,11,15,16], we applied the alkaline-treatment to SPG and
laminarin, which exist in a triple helical conformation in neutral conditions. TmBGRP and TcBGRP did
not show any reactivity to native SPG and laminarin, but were reactive to alkaline-treated BGs. These
results strongly suggest that TmBGRP and TcBGRP failed to recognize tightly spiraled glucosyl-linkage
in the 1,3-β-d-glucan strands.

The conversion between helix and random coiled conformers can be mediated by different
chemical or physical treatments [15]. Treatment of the helix SPG with NaOH has been used to prepare
disordered forms [15,17]. Aketagawa et al. [18] suggested that treatment of SPG with NaOH alters the
triple-helix to single chains [17]. This mechanism implies that immediately after treatment with NaOH
the molecular weight should be one-third of the untreated glucan, however, experimental evidence
has shown that denatured SPG has the same molecular weight as untreated SPG [18]. An alternative
explanation that is consistent with the observations regarding molecular weight would be that NaOH
treatment results in a partially disordered the helix rather than completed strand separation.

It was reported that for glucans with different conformation but the same degree of polymerization,
the triple-helix is 100 to 1000 times less potent than the single-helix in activation of limulus coagulation
including factor G [18]. It was speculated that LAL activity would be dependent on the degree of
partial opening of the triple-helix after NaOH treatment. More stable conformers at different degrees of
strand opening with aniline blue and analyzed their relationship to LAL activation [11]. These studies
suggested, for both a low molecular weight and high molecular weight glucan, that conformations
with a higher degree of partial opening (single helix structure) were more effective in activating the
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LAL assay. It was demonstrated that there might be a gradient of activity between conformers with a
greater degree of opening and the triple-helix forms.

A report revealed that the ligand BG structure co-crystalized with PiBGRP was triple-helical
conformation [13]. This evidence consistent with the present study that PiBGRP preferentially binds to
triple helical conformation of BGs. Another report also supports the conformational dependency of
BmBGRP, because silkworm (Bombyx mori) larvae fluid showed higher sensitivity to the triple helical
BGs than alkaline-treated BGs in the melanin formation triggered by BG and BGRP interaction [16].

In the Surface plasmon resonance (SPR) analysis, the NaOH-treated laminarin showed impaired
affinity to β-GRP N-terminal protein from Bombyx mori [14], indicating that β-GRP N-terminal portion
binds the triple-helical structure of (1→3)-β-d-glucan. They studied the time-dependent recovery of
the binding affinity of NaOH-treated laminaran to β-GRP after neutralization and confirmed that
β-GRP preferably binds the refolded triple helical structure of laminarin [14].

In the present study, the binding specificity of BGRPs from Bm and Pi was similar to the former
study examined using with β-GRP N-terminal protein from Bombyx mori [14]. However, quite different
specificity was observed by TcBGRP and TmBGRP in this investigation. The TcBGRP and TmBGRP
showed less binding to native form of laminarin and SPG, and preferentially bind to NaOH-treated
laminarin and SPG possessing partially opened triple-helical conformation. In the BLitz analysis,
the binding kinetics of the BmBGRP and TcBGRP were examined by pre-loading SPG- or AT-SPG to
the biolayer interferometry sensor. The KD of BmBGRP toward SPG and AT-SPG was not changed,
but Rmax of BmBGRP to SPG was reduced from 0.26 to 0.07 in the interaction with AT-SPG (Table 1),
suggesting binding site for BmBGRP on SPG was reduced by alkaline treatment. On the contrary,
the KD of TcBGRP toward SPG and AT-SPG was 1.77 and 0.71 µM respectively, and Rmax of TcBGRP
to SPG and AT-SPG was increased from 0.09 to 0.18. These results suggest that NaOH-treatment of
triple-helical BG resulted in conformational change, which is a good target for TcBGRP.

A report revealed that the ligand BG structure co-crystalized with PiBGRP was triple-helical
conformation [13]. This evidence is consistent with the present study that PiBGRP preferentially binds
to triple helical conformation of BGs. Another report also supports the conformational dependency of
BmBGRP, because silkworm (Bombyx mori) larvae fluid showed higher sensitivity to the triple-helical
BGs than alkaline-treated BGs in the melanin formation triggered by BG and BGRP interaction [16].
Mammalian (1→3)-β-d-glucan receptor protein, Dectin-1, also binds the helical conformation of
BGs [19].

From the results of amino acid sequence alignment of the four BGRPs tested, the obvious different
amino acid residues are seven residues consisted of -DYFDGKNK- in TcBGRP and TmBGRP, while
PiBGRP and BmBGRP have -IKDG- instead. It is reported that the amino acid residues of Y78, G83,
G85, and R87 on PiBGRP interact with the glucose residues of triple-helical (1→3)-β-d-glucan [13].
These amino acid residues reside around -IKDG- on PiBGRP and BmBGRP, while TcBGRP [20] and
TmBGRP [21] have -DYFDGKNK- (Figure 8). The binding specificity of TcBGRP and TmBGRP to
opened helical glucans might be correlated with the stretched peptide portion sandwiched with Y78
and G85 of PiBGRP corresponding to Y85 and G96 of TcBGRP and TmBGRP (Figure 8).

Invertebrates utilize various binding molecules for (1→3)-β-d-glucans [2]. The preferential
higher reactivity to NaOH-treated (1→3)-β-d-glucan is demonstrated in the innate immune system
in horseshoe crab [17]. The LAL requires alkaline-treatment of test samples before measuring water
soluble (1→3)-β-d-glucans. LAL is less reactive to triple-helical BG [22]. Therefore, it is likely
that innate immune system against (1→3)-β-d-glucan may have diverse recognition in response to
conformationally different polysaccharides to accomplish host defense to various microorganisms.
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Figure 8. Sequence alignment of N-terminal domains of BGRP from Plodia interpunctella (P. interpunctella),
Bombyx mori (B. mori), Tenebrio molitor (T. molitor), and Tribolium castaneum (T. castaneum). The amino acid
residues surrounded by a dashed square are amino acid residues proximal to the helical β-glucan [13].

4. Materials and Methods

4.1. Insect larvae

Bombyx mori (Kinsho strain) and Tenebrio molitor were purchased from Kogensha Co., Ltd (Nagano,
Japan) and Asahi Pet (Yokohama, Japan), respectively. Plodia interpunctera, and Tribolium castaneum
were kindly supplied by Dr. Akihiro Miyanoshita and Dr. Taro Imamura, National Food Research
Institute (Tsukuba, Japan).

4.2. β-Glucans

Sonifilan (Schizophyllan, SPG) and laminarin from Laminaria digitata were purchased from Kaken
Pharmaceutical Co., Ltd (Tokyo, Japan) and Sigma-Aldrich (St. Louis, MO, USA). The laminarin
solution was prepared by solubilized in pyrogen-free distilled water at 10 mg/mL. For alkaline treatment,
the β-glucan neutral solutions, SPG and laminarin, were mixed with equal volume of 1 M NaOH, then
neutralized in diluting with 0.1 M Tris-HCl buffer (pH 8.0) to prepare 1 mg/mL of alkaline-treated
β-glucans, referred as AT-SPG and AT-laminarin, respectively. Biotinylated SPG (Biotin-SPG) was
prepared as described in [23].

4.3. Preparation of BGRP-Fc Molecules

We prepared recombinant carbohydrate recognition domain of BGRP conjugated with human
IgG Fc protein. The various BGRP cDNA from B. mori [24], T. molitor [21], P. interpunctera [13],
and T. castaneum [20] was amplified by PCR using KOD polymerase and specific oligonucleotide
primers listed in Table 2. These cDNAs were inserted into pDisplay vector (Invitrogen), which
was already ligated with human IgG1 Fc cDNA. The expression vectors were transduced into 293T
cells by using the Lipofectamine LTX (Invitrogen, Thermo Scientific, Waltham, MA, USA). BGRP-Fc
proteins were isolated from a culture supernatant of 293T cells. The protein concentration of the
recombinant BGRP-Fc proteins were determined by sandwich ELISA using anti-human IgG-Fc (Jackson
Laboratory, West Grove, PA, USA), horse radish peroxidase (HRP)-conjugated anti-Hemagglutinin
-tag monoclonal antibody (Santa Cruz, Dallas, TX, USA), and purified soluble dectin-1-Fc proteins
possessing Hemagglutinin-tag, as a capture antibody, a detection antibody, and standard protein,
respectively [25].
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Table 2. PCR primers for cDNA insert to Fc-fusion expression vector plasmids.

BGRP CRDs Primers Sequence

Bm Forward 5′-CCAGATCTTACGAGGCACCACCGGCCAC-3′

Reverse 5′-GCGGATCCGAATTCTACTCCTGGTGTTAT-3′

Pi Forward 5′-GAGGATCCCAGCCGCGTGCGCAGCAGTAC-3′

Reverse 5′-GACCTGCAGCCCTCGAGACTCGTGTCAGCCGG-3′

Tc Forward 5′-GCGGATCCGAGTTTGAAGTTCCGGATGCT-3′

Reverse 5′-GACCTCGAGCTAGACTTTTCTTTGTCTAGTAA-3′

Tm Forward 5′-GCCAGATCTTTTGAGGTGCCAGATGCTTTG-3′

Reverse 5′-GCCGGATCCGTGTTCTTGCGGTGGAGCCTT-3′

4.4. Preparation of BGRP-CRD

Hexahistidine-tagged carbohydrate recognition domains of BGRPs were prepared using cold
shock-promoted protein expression by E. coli BL21. The PCR products of N-terminal portion of BGRP
were inserted into multiple cloning sites of pCold-I (TaKaRa Bio Inc., Shiga, Japan). This vector is
capable of expressing a target protein at low temperature (15 ◦C) using a cold shock promoter cspA.
It was constructed by insertion of BGRP cDNAs into multiple cloning sites of a cold shock vector
pCold-I (TaKaRa Bio Inc., Japan). The construct was composed of the (His)6-tag and BGRP. For the
expression of Bombyx mori BGRP, a DNA fragment encoding Tyr1-Phe119 was cloned into pCold-I
vector. For P. interpunctella (Gln1-Glu117), T. castaneum (Glu1-Ser110), and T. molitor (Phe1-His126),
each expression plasmid was transformed into the E. coli strain BL21 (DE3). The transformed cells
were grown in LB medium at 37 ◦C and induced with 0.1 mM isopropyl β-d-thiogalactoside (Wako)
for 24 h at 15 ◦C. The harvested cells were suspended in a buffer containing 50 mM Tris-HCl (pH 8.0),
50 mM NaCl, and sonicated. After centrifugation, the supernatants were collected and applied to a Co
Sepharose column (Clontech, Mountain View, CA, USA) equilibrated with PBS (8 mM Na2HPO4, 1 mM
KH2PO4, 137 mM NaCl and 3 mM KCl, pH 7.4). After washing the column with PBS, the proteins were
eluted with PBS containing 500 mM imidazole. After dialysis against PBS containing 3 mM reduced
glutathione and 0.3 mM oxidized glutathione, the fused proteins were dialyzed with PBS.

4.5. Binding Assay of BGRP-Fc to β-Glucans by ELISA

SPG and AT-SPG, and laminarin and AT-laminarin were diluted with Tris-HCl buffered saline
(pH 8.0) at 1 and 10 µg/mL, then coated on a 96-well ELISA plate (Nunc maxisorp plate, Thermo
Scientific, Waltham, MA, USA) by incubating overnight at 4 ◦C. The unbound excess β-glucans
were washed off with PBS containing 0.05% Tween 20 (PBST), and the plate was covered with PBS
containing 0.5% BSA (BPBS) for 2 h at room temperature. After blocking, various concentrations of
BGRP-Fc proteins (0 to 100 ng/mL) were added on each well and incubated for 1 h at room temperature.
The bound BGRP-Fcs were detected with anti-human IgG Fc antibody conjugated with HRP, TMB
substrate solution (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD, USA), and 1 M Phosphate.
Absorbance at 450 nm after subtraction of OD630 was measured by microplate reader (Corona MTP-450,
Tokyo, Japan). Absorbance of each sample was measured in duplicate in the experiment. The data
shown are representative of the experiment conducted at least twice. The significance of the differences
between the means was assessed by the Student’s t-test.

4.6. Competitive ELISA Using Liquid Phase of β-Glucans

SPG and AT-SPG, and laminarin and AT-laminarin were diluted with Tris-HCl buffered saline
(pH 8.0) at 10 µg/mL, then coated on a 96-well ELISA plate (Nunc maxisorp plate, Thermo Scientific)
by incubating overnight at 4 ◦C. The unbound excess β-glucans were washed off with PBST, and the
plate was covered with PBS containing BPBS for 2 h at room temperature. In parallel, the β-glucans
solution (0 to 100 µg/) in BPBS were mixed with each BGRP-Fc for 1 h at room temperature. The
BGRP-Fc and β-glucan solution was added to the ELISA plate precoated with various β-glucans.
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The bound BGRP-Fcs to the solid phase of β-glucans were probed with anti-human IgG Fc antibody
conjugated with HRP. The enzyme activity was monitored by adding TMB substrate and 1 M phosphate.
Absorbance at 450 nm after subtraction of OD630 was measured by micro plate reader (Corona MTP-450,
Tokyo, Japan). Absorbance of each sample was measured in duplicate in the experiment. The data
shown are representative of the experiment conducted at least twice. The significance of the differences
between the means was assessed by the Student’s t-test.

4.7. Binding Affinity Studies

Measurements of the association and dissociation rates of the BGRP were carried out using the direct
binding of BGRPs to SPG-conjugated biosensors. The sensor chip was prepared by loading Biotin-SPG
on the Streptavidin-biosensor (Fortebio, Cat no. 18-5095). AT-SPG biosensor was prepared by loading
alkaline-treated and neutralized with 0.1 M Tris-HCl buffer (pH 8.0) of Biotin-SPG. Ligation of Biotin-SPG
to the Streptavidin-biosensor was monitored. All readings (KD, Ka and Kd) were generated using Blitz
system, and binding graphs were re-plotted using Microsoft Excel 2010. KD was calculated automatically
by the software where KD = Kd / Ka. Statistical error for Ka and Kd were calculated by the software based
on the replicate experiments. As the KD readings are calculated, they do not have statistical error. The
data shown are representative of the experiment conducted at least twice.

5. Conclusions

BGRPs from insects have at least two types of specificity to the conformationally different
(1→3)-β-d-glucans. BGRPs from Lepidoptera, BmBGRP, and Pi tend to interact with triple-helical
conformation. On the contrary, BGRPs from Coleoptera, TmBGRP, and TcBGRP preferentially bind to
alkaline-denatured ultrastructure. These results suggest that insect BGRPs can distinguish between
ultrastructural changes in (1→3)-β-d-glucans.
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Tm Tenebrio molita
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BPBS PBS containing 0.5% bovine serum albumin
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