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Phytoestrogens can impact on reproductive health due to their structural similarity to
estradiol. Initially identified in sheep consuming estrogenic pasture, phytoestrogens are
known to influence reproductive capacity in numerous species. Estrogenic pastures
continue to persist in sheep production systems, yet there has been little headway in our
understanding of the underlying mechanisms that link phytoestrogens with compromised
reproduction in sheep. Here we review the known and postulated actions of
phytoestrogens on reproduction, with particular focus on competitive binding with
nuclear and non-nuclear estrogen receptors, modifications to the epigenome, and the
downstream impacts on normal physiological function. The review examines the evidence
that phytoestrogens cause reproductive dysfunction in both the sexes, and that outcomes
depend on the developmental period when an individual is exposed to phytoestrogen.
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INTRODUCTION

The endocrine disrupting effects of phytoestrogens has been of emerging interest in both animal
production and human health. The full spectrum of effects on reproduction continue to be
elucidated. Initially of interest in human reproduction, the impact of phytoestrogens on
reproduction is becoming increasingly relevant in livestock production because several key
pasture species are estrogenic. The effects of estrogenic pasture on livestock reproduction are a
considerable economic and animal welfare issue.

Several species of subterranean clover (“sub clovers”) were incorporated into Australian livestock
grazing systems in the 19th century (1, 2). These sub clovers were widely adopted due to their
nutritive value as pasture legumes, their resilient characteristics such as the ability to remain
dormant over many seasons, their lower requirement for fertilizer than other pasture species, and
their persistence under grazing (1). As a result, sub clover pastures are well integrated into animal
production systems in Australia. Many of those species are now recognized to have high levels of the
isoflavone formononetin, which is metabolized to equol in the rumen. Equol causes a spectrum of
moderate to severe functional and morphological changes to the ewe reproductive tract (3–5) that
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has been termed “clover disease”. Although it is suspected that
clover disease continues to cause fertility and welfare issues in
sheep, investigation into it has been dormant since the 1990’s.

The female has been the focus of livestock research into
phytoestrogen effects on reproduction. Early investigations into
the disruptive effects of estrogenic clover described masculinized
genitalia, morphological changes to the cervix, and irregularities in
the duration of the estrous cycle (3, 4, 6, 7). While there have been
reports on the profound effects of phytoestrogens on male fertility
in several species (8–10) and in vitro (11), there has been very little
investigation into reproductive compromise in the ram.

The obvious solution to mitigate clover disease in sheep
production is pasture renovation to eliminate the sub clover
cultivars that are estrogenic. However, pasture renovation can
take several years, and does not guarantee that estrogenic sub
clover will not persist or re-emerge, given the resilient
characteristics of this species (1).

Though the known presentation of clover disease has changed
over time, with reduced severity compared to initial reports (4, 12,
13), an impact on sheep reproduction is likely still present (14).
With the expansion of research into the impacts of other endocrine
disruptors on reproduction (15, 16), new perspectives emerge on the
potential mechanisms behind how estrogenic pasture influences on
sheep reproduction. The first step toward prevention of the issue,
therefore, is to define the severity, nature, and distribution of clover
disease in commercial systems, to establish the mechanistic basis
behind the phenomenon, and to increase awareness of the potential
impacts of estrogenic sub clover within the industry. Accordingly,
this review examines phytoestrogens as endocrine disruptors in
sheep reproduction, with reference to known and postulated
mechanisms of phytoestrogens in both the sexes.
OVINE CLOVER DISEASE: THE FIRST
EVIDENCE FOR PHYTOESTROGENS AS
ENDOCRINE DISRUPTORS IN SHEEP

Ovine clover disease was first detected and described in Western
Australia in the 1940’s (17). Decades later, the disease was
attributed to the high formononetin content of several cultivars
of Trifolium subterraneum, a common pasture legume in sheep
production systems in Australia (3, 4, 6, 7, 18). In the rumen,
formononetin is converted to the estrogenic metabolite equol,
causing masculinized genitalia, morphological changes to the
cervix (Figures 1A, B), and irregularities in the duration of the
estrous cycle (3, 4, 6, 7). These changes are accompanied by a
reduction in the fertility rate, an increase in dystocia, an increase
in the number of stillborn lambs, and an increase in the incidence
of uterine prolapse after parturition (3, 17–19). Though these
studies were critical in identifying the role of estrogenic sub
clover in the compromise of sheep reproduction, the
mechanisms behind the disease are not fully understood.
Though the severe manifestations of clover disease appear to
have been eradicated, anecdotal reports indicate that more subtle
manifestations of sub-fertility have persisted when sheep graze
on sub clover cultivars that are estrogenic.
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Despite evidence that clover disease remains an issue in
Australian sheep production systems (14), there has been little
progress toward understanding the disease or developing solutions
that will mitigate the impact on ovine fertility. Investigations in
other species have revealed that phytoestrogens operate via diverse
pathways, including competitive binding to nuclear estrogen
receptors, that can result in both agonistic and antagonistic
actions, as well as by modifying the epigenome. While these
studies in other species confirm that exposure to phytoestrogens
has detrimental effects on reproduction, particularly during some
sensitive developmental periods, there remains a lack of
comprehensive evidence on the causal pathways.
A BRIEF OVERVIEW OF
PHYTOESTROGENS AND THEIR
PREDICTED MODES OF ACTION

New additions continue to be made regularly to the spectrum of
plant-derived estrogenic compounds that are known broadly as
phytoestrogens. The predominant classes of phytoestrogens are
isoflavones (daidzein, formononetin, genistein, glycitein), flavones
(luteolin), flavonoids (quercetin, kaempferol), coumestans
(coumestrol), stilbenes (resveratrol), and lignans (lariciresinol,
matairesinol, pinoresinol, secoisolariciresinol) (20, 21). When
they are consumed by an animal, many of these compounds can
be further metabolized by the gut microflora into estrogenic
metabolites. An example of particular relevance is the estrogenic
by-product equol, resulting from the breakdown of formononetin
in the mammalian digestive tract (22, 23).

The mechanism(s) that link phytoestrogens and reproduction
remain controversial, though several key pathways have been
proposed via which estrogenic compounds could operate.
Perhaps the most discussed pathway is the interaction of
phytoestrogens with estrogen receptors, albeit with a far lower
binding affinity than the endogenous ligand, 17‐b‐estradiol
(24, 25). In vertebrates, there are two main subtypes of nuclear
estrogen receptor, ERa and ERb (which are comprehensively
reviewed by 26). The biological functions of the two receptor
subtypes vary, as does their distribution between tissues, between
the sexes, and between species (27–29). When they are activated
by a ligand, the nuclear receptors ERa and ERb are thought to
act through either direct genomic modulation or indirect
signaling. In the former, when ligand binds to the estrogen-
receptor, the receptor dimerizes and binds to estrogen response
elements in the promoter region of specific genes, thereby
stimulating or repressing the transcription of that gene
(30, 31). Indirect signaling leads to changes in transcription
without a direct interaction with DNA (32, 33). Importantly,
phytoestrogens not only competitively bind with ERa and ERb,
but can promote transcription from this interaction (34, 35).

Many of estrogens actions occur after stimulation of ERa.
Stimulation of ERa is known to induce cellular proliferation,
including the priming of the uterus via uterine cell production
(36) and cancer progression, particularly in breast tissue,
reproductive tissues, and bone (37–39). Estrogen- ERa
April 2022 | Volume 13 | Article 880861
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binding is also able to induce estrogen-neuroendocrine
feedback in the hypothalamus (40, 41), and increase
transcription in most cell types (42). While ERb is often co-
expressed with ERa (26, 43), the stimulation of ERb is thought
to oppose the actions of ERa on gene expression (26, 31, 44–
46). Thus, the outcome of estrogen stimulation for a particular
cell will depend on the relative expression of ERa and ERb.
Both subtypes are involved in glucose (47–49) and lipid (50, 51)
homeostasis in the brain, liver, pancreas, heart, and skeletal
muscle (52). Most phytoestrogens have a higher binding affinity
for ERb than ERa (53), though that bias does not clearly
translate to predictable physiological outcomes in vivo in
mammalian systems. Notably, the expression of both receptor
subtypes is increased by increased estrogen exposure (26),
which may be a crucial mechanism behind the cumulative
pathology resulting from long-term phytoestrogen exposure
(3, 6). In the context of estrogenic pasture, an increase in
receptor expression could underly the clinical manifestations,
Frontiers in Endocrinology | www.frontiersin.org 3
whereby long-term phytoestrogen exposure confers permanent
infertility in the ewe, rather than the transient infertility that is
observed with short-term exposure.

In addition to actions mediated by ERa and ERb,
phytoestrogens can interact with the G protein-coupled
estrogen receptor (GPER). While ERa and ERb are nuclear
receptors, and therefore require their ligands to access the
nucleus, GPER is a membrane associated receptor that is
distributed across a multitude of tissues, at least in humans
and rodents (54–57). When it binds ligand, GPER operates
through non-genomic signaling, a comprehensive discussion of
which can be found in a recent review by Luo and Liu (54). Of
note, GPER is present in the reproductive tissues of both sexes,
including breast tissue (58–60), the testis (61), prostate (62),
ovary (63, 64), and endometrium (65, 66). Exogenous
estrogenic compounds, including genistein, bisphenol A, and
zearalenone, have a similar binding affinity for GPER as
they do for the nuclear estrogen receptors (67). Of interest,
A
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FIGURE 1 | A summary of the known and postulated sites of action of compounds from oestrogenic pasture that lead to compromised sheep reproduction.
(A) Endometrial thickening/edema. (B) Loss of cervical folds. (C) Excessive oestrogen-like actions in the neuroendocrine control of reproduction. (D) Follicle
development, quality and potentially ovulatory ability are reduced. (E) The interaction between spermatozoa and the female tract is altered. Loss of cervical crypts,
changes in mucus composition, and consistency and changes in the female immune response hinder sperm navigation of the female tract. (F) Sperm production
and quality is potentially reduced. (G) Exposure of both male and female gametes, and the ovine embryo, may cause differential developmental programming of the
subsequent generation.
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some phytoestrogens, including equol and genistein, have been
reported to have a greater binding affinity for GPER compared
to 17b-estradiol (68). Thus, these extra-nuclear estrogen
receptors may be a significant pathway through which
exogenous estrogens can exert endocrine-disruptive effects
through non-genomic, or indirect transcriptional pathways.

Phytoestrogens could also alter reproductive function via an
indirect effect on genome transcription (69) that is often referred
to as organizational effects. Modifications to the epigenome, such
as DNA methylation, non-coding RNA’s, and histone
modification, can influence the expression of the genome
without altering the DNA sequence (70, 71). There is evidence
that endocrine disrupting agents, and specifically exogenous
estrogenic compounds, alter the epigenome in several tissues.
For example, in neonatal rodents, coumestrol, genistein, and the
estrogenic metabolite equol induce hypermethylation in several
regions of the genome, including tissue-specific alterations in the
uterus, kidney, and pancreas (72–76), as well as broadly
increasing DNA methylation in the epigenome (73), in proto-
oncogenes (72), and in dermal tissue (74). In addition to the
endocrine disrupting actions of phytoestrogens, it is likely that in
utero exposure to estrogenic compounds is detrimental to
reproductive outcomes, given that gestation is an important
period of epigenetic remodeling. Phytoestrogens can cross the
blood-placenta barrier and infiltrate fetal tissues, including the
brain (77, 78). To date, the phenotypic consequences of the
epigenetic effects of phytoestrogen exposure have not
been investigated.

It is therefore possible that epigenetic modifications that
follow phytoestrogen exposure will have biologically relevant
effects on the ovine reproductive system. Epigenetic changes
that are induced by environmental factors, such as by assisted
reproductive technologies and climate, are known to modify
sperm function (79, 80), reproductive success in both male and
female (81, 82), and disease onset (83) across a range of
mammalian species. Moreover, these modifications can
persist through generations (83, 84). Targeted and broad
epigenetic modifications can influence the clinical severity of
other reproductive pathologies, such as varicocele (85),
polycystic ovary syndrome (86), and endometriosis (87).
Theoretically, epigenetic changes in the reproductive system
of sheep after exposure to phyto-estrogens could be at least
partially responsible for the wide variation in clinical
manifestations of clover disease, and could account for the
persistence of flock sub-fertility even after sheep are removed
from clover pasture.

Thus, the effects of phytoestrogens can be exerted via several
mechanisms and pathways. An understanding of the systemic
and direct mechanisms that lead from phytoestrogen exposure to
reproductive pathology will be essential to find solutions. The
developmental period during which an individual is exposed to
phytoestrogens is likely critical in the extent of reproductive
dysfunction. Developmentally sensitive periods include uterine
life, neonatal life, prior to and during puberty, and times
when estrogen has an essential biological role, such as
during the estrous cycle.
Frontiers in Endocrinology | www.frontiersin.org 4
THE TIMING OF PHYTOESTROGEN
EXPOSURE IS CRITICAL FOR
REPRODUCTIVE OUTCOMES

Maternal Exposure to Phytoestrogens
During Pregnancy, in the Neonate, and
Prior to the Onset of Puberty
Beneficial and detrimental outcomes on female fertility after
exposure to phytoestrogens have been reported. That apparent
contradiction is probably due to the timing, duration, and level of
phytoestrogen exposure, with consequences dependent on
whether the individual is exposed in utero, during the neonatal
and prepubertal periods, or during adult life.

The widespread use of soy-based infant formula, which is
now known to contain physiologically relevant concentrations of
the isoflavones genistein and genistin, has stimulated research on
phytoestrogen exposure during key developmental periods in
humans, and to a much larger extent in rodents (88, 89). Infants
that consume soy-based formula have circulating levels of
genistein that are 13,000 to 68,000-fold higher than the normal
biological concentration of estradiol in non-exposed infants in
the same age bracket (88). While the long term effects of
phytoestrogen exposure in human infants are not known, in
utero and neonatal exposure to genistein in rodents induces
morphological alterations in the reproductive tract, including
precocious vaginal opening (90), ovarian follicle atresia (91),
increased uterine fluid content (92), and hyperplasia of the
endometrium (92–94).

Given those outcomes in humans and rodents, it is plausible
that phytoestrogen exposure during the pre-pubertal period
could alter the onset of puberty in the ewe-lamb. The onset of
puberty in the ewe requires considerable modulation of the
hypothalamic-hypophyseal-gonadal axis and is subject to
complex interactions between endocrine, metabolic, and
genetic pathways (95–97). Prior to the change in amplitude
and frequency of the secretion of gonadotropin-releasing
hormone (GnRH) from the hypothalamus that defines the
initiation of ovine puberty, the hypothalamus of the pre-
pubertal ewe is highly sensitive to negative feedback from
estradiol. Estradiol, produced primarily from the pre-pubertal
ovary, inhibits GnRH secretion and the release of follicle
stimulating hormone (FSH) and luteinizing hormone (LH),
without which ovulation does not occur. Phytoestrogens, such
as equol, may exert a similar inhibitory effect in the ewe-lamb,
particularly when it is present in combination with other factors
that are known to delay puberty onset, such as poor nutrition,
inadequate exposure to short-day photoperiod patterns, or a lack
of social interaction (98).

Comparatively, in juvenile rodents, the effects of
phytoestrogens on markers of puberty onset appear to be
inconsistent , and depend on dosage (99, 100) . At
concentrations comparable with low level dietary exposure,
genistein induces hyperplasia of mammary tissue in the pre-
pubertal rat, but at concentrations comparable with high level
dietary exposure reduce both alveolar development (99, 100) and
April 2022 | Volume 13 | Article 880861
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the sensitivity of mammary tissue/gland to estradiol (101). In
rodents, in cases where sexual maturity is advanced by
phytoestrogen exposure, the estrous cycles are very irregular at
the commencement of puberty (102–104). While the mechanism
that leads to the oligomenorrhea is not known, several studies
support the notion that pre-pubertal exposure to estrogen-like
compounds, including genistein, alters hypothalamic kisspeptin
expression and leads to a lower density of kisspeptin expressing
neurons and fibers in the anteroventral periventricular and
arcuate nuclei (102, 105). Kisspeptin has a well-established role
in the timing of both puberty and the estrous cycle, playing a
critical role in estrogen feedback to the hypothalamus. Because
GnRH neurons do not express estrogen receptors, the
mechanism of steroid feedback remained a mystery until the
discovery of kisspeptin (106). The discovery that kisspeptin
neurons do express estrogen receptors, and that substances
released from kisspeptin neurons (including kisspeptin,
neurokinin B, and dynorphin) can stimulate GnRH neurons,
provided a mechanism for steroid feedback. Any lowering of the
activity of the kisspeptin signaling pathway can compromise the
normal steroid feedback to GnRH neurons (107–111).
Theoretically, a decrease in the stimulation of GnRH neurons
by kisspeptin could account for the delayed pubertal onset and
impaired ovulation that is observed after neonatal phytoestrogen
exposure (4, 102, 112–116). Investigation of the neuronal
circuitry that leads to GnRH release in phytoestrogen-exposed
ewe lambs may shed further light on not only whether puberty is
physiologically delayed, but also whether there are more
permanent effects on the hypothalamic-pituitary-gonadal axis.

In rats, phytoestrogen exposure during the fetal and early
neonatal stage is associated with long term alterations to the
estrous cycle after the exposed individuals reach puberty, with
prolonged suppression of ovarian cycling (117) and inhibition of
LH secretion (118). Neonatal exposure to genistein might create
a more hostile uterine environment that is less capable of
supporting embryo implantation (103, 119). In addition to
these reproductive consequences, in utero exposure to
estrogenic compounds also impairs immune function in rats
(120), increases the incidence of cancerous lesions in the uterus
(121, 122), and impairs the development of estrogen-sensitive
organs, particular secondary sex organs (123, 124).

Phytoestrogens Have Conflicting Effects
on Reproductive Function in Adult
Females
The effects of phytoestrogen exposure in the adult female remain
unclear, with a spectrum of effects reported across species,
ranging from beneficial to injurious. Adult mice exposed to
estrogen-like compounds, for example, develop irregular
estrous cycles, with more atretic follicles and an absence of
corpora lutea (90). In women, dietary isoflavone intake is
associated with an abnormally short luteal phase (125). More
broadly across species, phytoestrogens have been linked to
reproductive abnormalities, including an increase in uterine
weight in cheetahs (126), reduced fertility in rhinoceros (127),
and altered ova composition and estrous cyclicity in several bird
Frontiers in Endocrinology | www.frontiersin.org 5
species (112). In the context of clover disease, morphological
changes in the follicles, along with reduced fertility, have been
observed in mature ewes grazing estrogenic pasture, as outlined
further below. Briefly, exposed ewes present excessive numbers
of small to medium ovarian follicles with inadequate antrum
formation, increased uterine fluid and subacute inflammation of
the endometrium, and a reduction in the depth of cervical crypts
and cervical squamous metaplasia (3, 6, 13, 128).

In contrast, in adult humans, isoflavone has been reported to
have beneficial effects on fertility. In preconception cohort studies,
higher intake of isoflavone was associated with improved
fecundity and fertility (129, 130) and the re-instatement of
ovulation in anovulatory cycles (131). In women with polycystic
ovarian syndrome, supplementation with phytoestrogen extract of
Cimicifuga racimosa increased plasma progesterone and
endometrial thickness, suggesting that the phytoestrogens
facilitated ovulation (132). It should be noted that the
metabolites that are produced from phytoestrogens vary
between ruminant and monogastric species, which may partly
account for some of the species-specific outcomes of exposure to
phytoestrogens. Several isoflavones, and their metabolites, have
been suggested to have antioxidant effects and to mitigate
inflammation (for an extensive review, see 133). These
properties are likely responsible for the beneficial effects of
isoflavones in cancer models (134) and in some cases,
improvements in fertility. Reactive oxygen species (ROS) have a
dichotomous role in reproduction, whereby particular levels of
ROS are necessary for the processes of oocyte maturation,
ovulation (135), and for spermatozoa to undergo capacitation
and the acrosome reaction (136). Yet excessive levels of ROS are
detrimental to gamete function and quality (136–138). In many
cases, supplementation with antioxidants can improve gamete
function and fertility in vivo (139, 140) and in vitro (141–144).
Because phytoestrogens are known to reduce pro-inflammatory
cytokines in experimental models of encephalitis (145, 146), any
modulation of the immune response by phytoestrogens could
either promote or inhibit normal reproductive function. In the
female for example, non-specific inflammation can alter
endometrial receptivity, impair tissue repair and remodeling,
and affect trophoblast-endometrial interaction (147, 148).
A Meta-Analysis of the Effect of Phytoestrogen
Exposure on Ovulation in Sexually Mature Females
It is clear that the impact of phytoestrogens on reproduction
varies between studies, and that that variability is probably
caused by differences in the dose of phytoestrogens and the
timing of delivery. To tease apart the factors that determine the
outcomes of phytoestrogen exposure, we performed a meta-
analysis to clarify the impact of phytoestrogens on ovulation.
Our logic was that ovulation is a key determinant of female
reproductive performance. Major databases such as Pubmed,
Cochrane Library, Google Scholar, and ResearchGate were
searched using combinations of the following keywords:
phytoestrogens, ovulation, ovary, sheep, clover, clover disease,
isoflavones, coumestans, soy (i.e., not all terms were included in
every search). The search included articles with at least an
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abstract in English. The end date of the database search was
October 2020. Twenty-five studies were initially selected when
the abstract indicated that the data would be relevant. Seven
studies were selected for analysis after we applied the inclusion
and exclusion criteria that are listed in Table 1, and the
information and data extracted are listed in Table 2.

Statistical Analysis
The results of each study were considered as binary (ovulation or
no ovulation), and the odds ratio was used as the measure of
effect size. A random effect model, with the DerSimonian-Laird
(DSL) method (155), was used to evaluate the effect of
phytoestrogens on ovulation occurrence because the conditions
differed between studies. R studio software (156) was used for
this meta-analysis, with the packages rmeta and meta and the
function meta.DSL. For odds ratios, computations were carried
out on a log scale to maintain symmetry in the analysis.
Visualization of the results was done with the functions
summary and plot, which were used to confirm heterogeneity,
the individual odds ratios, and confidence intervals. A Funnel
plot was created to evaluate publication bias, with a test for
Frontiers in Endocrinology | www.frontiersin.org 6
funnel plot asymmetry, based on rank correlation or linear
regression methods (function metabias).

Results
The number of animals in the studies ranged from 4 to 99.
Laparoscopy was the most common method used to assess
whether ovulation had occurred [one outcome per study, with
the exception of Smith et al. (114)]. Four of the studies were
conducted in sheep, three of which were conducted in Western
Australia (7, 114, 149) and the fourth in Egypt (150). There was
no bias across the included studies (P = 0.8349, Figure 2).

The results exhibited a large heterogeneity between studies
(Figure 2), which can be primarily explained by differences in
study design, including mainly species and sample size.
However, the Woolf’s test for heterogeneity (X2) returned a
p-value of 0.3157, and a between-studies variance of 0.23.
Confidence intervals were notably wide, particularly for the
studies that had fewer subjects in each experimental
group (Figure 2).

Conclusions
It can be concluded that, depending on species, there remain
contradictions around the impact of phytoestrogens on ovulation.
It may be proposed that phytoestrogens inhibit ovulation in sheep,
because that outcome seemed to emerge clearly from the data in
the largest and the most statistically powerful of the studies.
Interestingly, other phytoestrogens, non-flavonoids, have been
reported to induce ovulation in women with polycystic ovarian
syndrome or with anovulatory cycles (132). The impact of
phytoestrogen on ovulation will be clarified only by further
studies that are designed to control other external factors that
can affect ovulation, such as metabolic status (157, 158).
TABLE 1 | Inclusion and exclusion criteria used in the meta-analysis.

Inclusion criteria
The phytoestrogen was a flavonoid
Ovulation was assessed by visualization of the corpus luteum/palpation (for
mammals)
The route of administration was oral

Exclusion criteria
There was no control group
The ovulation was assessed only by an increase in plasma progesterone
Numerical outcome data were not provided
The phytoestrogens were administered by injection
TABLE 2 | A summary of characteristics for studies included in the meta-analysis.

(First author, year) Abbreviation Treatment Control Detection of
ovulation

Species

Diet Number of
subjects

Diet Number of
subjects

(Adams et al., 1979)
(149)

ADAMS79B Pasture of Yarloop subterranean
clover for 3 years (isoflavones)

99 Non-estrogenic pasture 78 Laparoscopy Sheep
(Merino)

(Smith et al., 1979)
(114)

SMITH79A Lucerne pasture (coumestrol) for 2
months

80 Non-estrogenic grass
pasture

80 Laparoscopy Sheep
(Perendale)

SMITH79C Pelleted lucerne (coumestrol) for 3
months

49 Pelleted non-estrogenic
lucerne

49 Laparoscopy Sheep
(Perendale)

(Hashem and Sallam,
2012) (150)

HASHEM12 Berseem clover pasture for 50 days 6 Corn silage 6 Transrectal
ultrasonography

Sheep
(Barki X
Awassi)

(Adams et al., 1981)
(151)

ADAMS81 Yarloop subterranean clover pasture
for 3 years (isoflavones)

49 Non-estrogenic pasture 53 Laparoscopy Sheep
(Merino)

(Santhosh et al., 2006)
(152)

SANTHOSH06 Rhaphidophora pertusa (flavonoid)
covering one estrous cycle

4 Rice gruel during
entirety of estrous cycle

12 Rectal palpation Dairy cows

(Bennetau-Pelissero
et al., 2001) (153)

BENNETEAU01 Genistein-enriched diet for one year 19 Normal diet 19 Histology of
ovary

Rainbow
trout

(Li et al., 2014) (154) RONG14 Genistein-enriched diet from weaning
to week 7

6 Normal diet 6 Histology of
ovary

Mice
(C57BL/
6J)
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Male Reproductive Function
Estrogen was once considered a female hormone, but evidence
over the past few decades has shown that it is critical for normal
male reproductive development and function. In fact, estrogen
appears to be essential for normal male reproductive function
because mice with the ERa gene knocked out are sterile (159–
161). Negative feedback from estrogen contributes to the
activity of the hypothalamic-pituitary axis (162), and estrogen
signaling plays a role in fluid reabsorption in the epididymis
(163). Less is known about the effect of exogenous estrogenic
compounds in the male than in the female, though there are
several potential mechanisms for these agents to impact on the
spermatogenic cycle. In primates and mice, ERb is present in
Leydig cells, Sertoli cells, and in the nuclei of epithelial and
stromal cells throughout the reproductive tract, while ERa
seems primarily to be present in the accessory sex glands and
efferent ductules (164, 165). The disruption of ERa in male
mice results in compromised dynamics of fluid resorption in
the efferent ductules, an increase in the secretion of chloride
ions into seminal fluid, an increase in abnormal sperm
morphology, an inhibition of sodium transport in the testis
and ultimately reduced fertility (159, 160, 163). Phytoestrogens
that can bind to ER receptors would therefore be expected to
alter testicular function, sperm production, and sperm quality.

In man, phytoestrogen exposure has a spectrum of effects
(Table 3). Although the effects are generally more subtle than
the marked changes in females (4, 120, 126), those effects again
depend on timing, with exposure during sensit ive
developmental periods, particularly in utero, leading to
compromised reproductive function. Maternal isoflavone
intake has been linked to hypospadias in male infants (182,
183) and lower testicular steroidogenic activity in neonatal rats
(178). Similarly, as for the female, in the male conflicting results
have been reported for the effects of phytoestrogen exposure
Frontiers in Endocrinology | www.frontiersin.org 7
during adult life. Several studies have been reported no effect in
humans (166, 170), rodents (184–186), and rabbits (187), while
other studies in the same species have associated phytoestrogen
exposure during adult life with decreased sperm production,
lower blood testosterone concentration, and reduced testicular
weight (167, 168, 173, 174, 188, 189). These conflicting results
can probably be attributed to several differences between
studies , inc luding phytoestrogen dosage , route of
administration, length of exposure and, in the case of human
studies, demographic biases including variation in age,
ethnicity, and systemic health. Moreover, none of the studies
reported the concentration of phytoestrogens in the seminal
plasma. Thus it is not clear to what degree these compounds
can infiltrate the reproductive tract or whether other indirect
pathways are involved.

While the impact of phytoestrogen exposure on male
reproduction is poorly understood, in vitro work suggests
several isoflavones and flavonoids can influence the
functionality of spermatozoa. The exposure of ram
spermatozoa to physiological concentrations of equol in vitro
decreases sperm motility, increases ROS, increases membrane
fluidity, and increases DNA fragmentation (11). Genistein (8,
190, 191) and myricetin (192) have been reported to cause
premature capacitation and acrosome loss in human, boar, and
mouse spermatozoa, and inhibit the acrosome reaction in bull
spermatozoa. In contrast, other studies have reported that the
inclusion of isoflavones in vitro improves sperm viability and
function (193–195). One possible confounding factor is that
several isoflavones, including the widely tested genistein, can
act as an antioxidant and mitigate oxidative stress (196, 197),
thus improving sperm function. It is possible that the benefits
of the antioxidant action can, at certain concentrations,
mitigate any negative impacts from the estrogen-like actions
of phytoestrogens.
FIGURE 2 | The confidence interval for each study is given by a horizontal line, and the point estimate is given by a square whose height is inversely proportional to the
standard error of the estimate. The summary odds ratio is represented by a diamond with horizontal limits at the confidence limits and width inversely proportional to its
standard error (R documentation). An odds ratio higher than 1 means that the treatment is more effective than the control and vice versa (whereby 1 means null effect). In
the present analysis, the positioning of the summary odds ratio shows that phytoestrogen exposure in sexually mature females inhibits ovulation.
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CLOVER DISEASE: HAVE WE
OVERLOOKED A DETRIMENTAL IMPACT
ON THE INTERACTION BETWEEN
SPERMATOZOA AND THE FEMALE
REPRODUCTIVE TRACT?

Despite its categorization as a female oriented issue, mounting
evidence suggests that the subfertility and infertility that is
associated with clover disease is likely far more complex. Since
a 1960’s report that wethers on estrogenic pasture exhibited
Frontiers in Endocrinology | www.frontiersin.org 8
mammary development, lactation, and pathology of the
bulbourethral glands (198), there is little investigation into the
impact of phytoestrogens on ram reproduction. Similarly, there
is no information on how ram spermatozoa perform in the
female tract after phytoestrogen exposure in either, or both,
sexes. The profound effects of phytoestrogens on male fertility in
other species (Table 3) suggests strongly that phytoestrogen
impact on ram reproductive function may be a critically
overlooked component of clover disease. Of note, human
males exposed to estrogenic compounds at relatively high
dosages or duration have smaller seminiferous tubules and
TABLE 3 | The effect of phytoestrogen exposure on male reproductive function across several species and routes of exposure.

Species Phyto-
estrogen
or source

Route Period of
exposure

Effects on sperm
production and quality

Other changes to reproductive
capacity

Effects on endocrinology Reference

Human Soy Dietary Adult No effect No effect No effect (166)
Decreased concentration No effect N/A (167)
No effect No effect Decreased testosterone (168)

Daidzein,
genistein

Dietary Adult Low motile sperm count N/A N/A (169)
Decreased concentration
and motility, increased
abnormalities

N/A Increased infertility (10)

Oral Adult No effect No effect No effect (170)
Intraperitoneal
injection of
mother

Fetal Decreased concentration Low epididymal density and
quality, deteriorated testicular
architecture, reduced total pups
sired

Decreased testosterone (171)

Genistein Dietary Birth to
adulthood

Reduced cauda
epididymis sperm reserve

Penis underdevelopment, lower
epididymal weight

Decreased testosterone (9)

Neonate,
adult

N/A Abnormal testis, increased
inflammation of testis, increased
rates of infertility.

N/A (172)

Conception
to
adulthood

Decreased concentration
(epididymal)

Reduced haploid germ cells in
testis, decreased size of seminal
vesicle

N/A (173)

Soy Dietary Adult Increased abnormalities in
sperm morphology

N/A N/A (174)

Thai
Mucuna
seed
(isoflavone)

Dietary Adult Increased sperm
concentration

N/A N/A (175)

Rodent Pueraria
mirifica
(isoflavone)

Dietary Adult N/A Lipid peroxidation of epididymal
sperm was significantly increased

Disrupted steroid regulation of
epidydimis, significantly reduced
fecundity

(176)

Genistein,
daidzein,
glycitein

Oral Neonate No change No change No change (103)
Dietary Adult Decrease in the weights of

the left testicle, seminal
vesicle, sperm count

Decreased sperm motility Decreased testosterone
hormone, no change in plasma
estradiol

(177)

Lignans Dietary Adult Increased sperm
concentration

N/A Leydig cell number increase

Isoflavones
(soy)

Dietary Fetal Increased proliferation of
Leydig cells

N/A Reduced steroidogenesis in
adulthood

(178)

Dietary Fetal No effect on
gametogenesis

N/A No impact on testosterone (179)

Rabbit Soy,
lignans

Dietary Adult Decreased sperm
concentration

N/A Decreased libido, testosterone,
seminal plasma fructose. No
effects on number of offspring

(180)

Bat Coumestrol Dietary Adult N/A N/A Increased testicular weight, loss
of typical histological structure of
testis

(181)
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impaired spermatogenesis (199). Roosters and rats exposed to
estrogenic compounds have lower testosterone production
(200, 201), more oxidative stress, and reduced sperm function
(5). In the boar, estrogenic compounds cause premature
capacitation (202) and a stronger immune response to
spermatozoa in the female tract (203).

We propose that exposure to phytoestrogens could
compromise both the male and the female, as well as
interactions between spermatozoa and the female tract,
creating conditions within the female reproductive system that
are hostile, more so than usual, to spermatozoa. The exposure to
exogenous estrogens could drastically impair the ability of
spermatozoa to traverse the female tract and successfully
fertilize, which could partially account for the poor fertility in
sheep that graze estrogenic pasture (4, 204). The addition of
physiological concentrations of equol to ram spermatozoa in
vitro negatively alters sperm function, with decreased sperm
motility, increased ROS, increased membrane fluidity, and
greater DNA fragmentation compared to non-exposed ram
spermatozoa (11).

One obvious factor that will influence the interaction between
spermatozoa and the ewe reproductive tract is the morphological
changes to the female reproductive tract that are observed after
phytoestrogen exposure (3, 6, 128). Prolonged grazing of
estrogenic pasture has been found to induce a loss of crypts
and folds in the cervix of ewes (4, 6, 13). The crypts of the ovine
cervix represent “privileged pathways”, potential routes where
conditions of cervical mucous flow, composition, and viscosity
are conducive to the successful progression of spermatozoa
toward the oocyte (205, 206). Thus, the morphological
changes that are observed in female tract and in the sperm
physiology after exposure to phytoestrogens could synergize to
compromise the ability of spermatozoa to traverse the female
reproductive tract.

The ability of spermatozoa to navigate the female
reproductive tract is not merely a function of motility, but
rather involves dynamic interactions between the male gamete
and the tract environment. Particularly noteworthy in the
context of reproduction after animals are exposed estrogenic
compounds, is the role of ovarian steroids in the production and
composition of cervical mucous, and in the immune response
that is stimulated by the presence of the incoming spermatozoa
(205, 207). Exogenous hormones, such as those that are used to
synchronize the estrous cycle of ewes, are known to vastly alter
the composition of cervical mucous thereby impairing the
function of spermatozoa, leading to a reduction in fertility
(205, 207–210). Infertility in ewes that graze sub clover species
that are estrogenic could be partially due to changes in cervical
mucous that are induced by phytoestrogens. During the follicular
phase, the viscosity of the cervical mucous decreases in response
to rising estrogen concentrations, lowering the barrier to sperm
migration through the female reproductive tract. That change
optimizes the conditions in preparation for ovulation and
potential insemination (205, 207). Very early studies in sheep
showed that the viscosity of mucus was lower after chronic
exposure to estradiol and in ewes with clover disease (12, 211).
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However, the lower mucus viscosity in ewes with clover disease
was also correlated with reduced fertility (212). This suggests that
a factor other than viscosity, such as the biochemical
composition of mucus following long term phytoestrogen
exposure, is less favorable to sperm transport.

While exogenous estrogen is known to alter the female
immune response and the composition of seminal plasma in
the male (163), it is not known if phytoestrogens elicit similar
effects. When seminal plasma enters the female tract immune
cells are recruited and activated, releasing cytokines and
chemokines that play a role in the sperm selection process in
the female tract (213). In mammals, the magnitude of this
immune response varies in response to endogenous estrogen
(203), exogenous hormones (214), and specifically in sheep,
between breeds (205). There are reports of the production of
anti-sperm antibodies in the female reproductive tract after
insemination, though a predominant focus of immune studies
has been the known immunogenic properties of seminal plasma
(215, 216). Because some of the constituents of seminal plasma
have an immunomodulatory effect (215, 217), anything that
influences the composition of the seminal plasma could affect
the female immune response, with an impact on sperm survival.
Greater numbers of leukocytes in cervical mucus increases sperm
capacitation and the acrosome reaction (218). Because
leukocytes produce ROS at far higher levels than do
spermatozoa (219), the production of ROS might be the
underlying mechanism for the promotion of these events. It
will be worthwhile to investigate whether phytoestrogens alter
the composition of seminal plasma, and if that then modulates
the immune response that is mounted by the female
after copulation.

In summary, the combination of loss of privileged pathways for
sperm in the cervix, changes in the composition of cervical mucous,
and changes in the immune response of the female to spermatozoa
all represent possible mechanisms that could contribute to the
fertility issues that occur in sheep when they graze sub clover
(Figure 1). Investigation is warranted into male-female gamete
interactions after either sex is exposed to phytoestrogens.
CONCLUSIONS AND RECOMMENDATIONS
FOR FUTURE MANAGEMENT OF OVINE
CLOVER DISEASE

There are two clear rationale for further research into clover
disease; there are clear agricultural benefits to be gained, and
this syndrome in sheep presents a unique opportunity to
develop a model of the reproductive consequences of
phytoestrogen exposure, particularly during critical
developmental periods. The review of the known literature
points logically to several potential sites of action, and
mechanisms of action, of phytoestrogens on sheep
reproduction. This includes estrogen receptor binding,
genomic and epigenetic alterations and immune modulation,
at sites including the reproductive tract, brain and gametes of
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both the male and female. It is likely that a systemic interplay
between those factors is responsible for the spectrum of
pathological changes that are observed in ovine clover
disease, though that itself requires clarification. In our view, it
is necessary not only to understand the consequences of
exposure to phytoestrogens on gamete production in both
sexes, but also to understand how that exposure alters the
interaction of the gametes in the female reproductive tract. An
interesting avenue of research would be to explore the
physiological and genetic basis of individual susceptibility to
phytoestrogens. The identification and strategic breeding of
resilient animals is a logical start to address the issue, as well as
the removal from breeding of persistently sub-fertile
individuals and the early identification of susceptible flocks.
Frontiers in Endocrinology | www.frontiersin.org 10
Those strategies could be used in parallel with pasture
renovation to eliminate estrogenic clover.
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