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Remote light-controlled intracellular target
recognition by photochromic fluorescent
glycoprobes
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Development of powerful fluorescence imaging probes and techniques sets the basis for the

spatiotemporal tracking of cells at different physiological and pathological stages. While

current imaging approaches rely on passive probe–analyte interactions, here we develop

photochromic fluorescent glycoprobes capable of remote light-controlled intracellular target

recognition. Conjugation between a fluorophore and spiropyran produces the photochromic

probe, which is subsequently equipped with a glycoligand “antenna” to actively localize a

target cell expressing a selective receptor. We demonstrate that the amphiphilic glycoprobes

that form micelles in water can selectively enter the target cell to operate photochromic

cycling as controlled by alternate UV/Vis irradiations. We further show that remote light

conversion of the photochromic probe from one isomeric state to the other activates its

reactivity toward a target intracellular analyte, producing locked fluorescence that is no

longer photoisomerizable. We envision that this research may spur the use of photo-

chromism for the development of bioimaging probes.
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Optical imaging offers great opportunities to monitor and
analyze disease-related metabolites in live cells with a
high spatiotemporal resolution1–5. Recent advances

achieved in the development of fluorescence imaging techniques
and biosensing systems allow for the precise and rapid detection
of intracellular species for biomedical applications6–9. Ideally,
fluorescence probes are designed to selectively recognize a target
species in complicated biological systems. However, determina-
tion of a given analyte in a realistic biological milieu (such as in
cells and in vivo) with fluorescence is easily interfered by the
complexity of microenvironment (e.g., change of pH and salt
strength, and the existence of structurally complicated bioma-
cromolecules) and the inevitable background signals10–13. In
particular, fluorescence probes that rely on the emission intensity
change (fluorimetric) are prone to being suffered from these
issues. To circumvent this problem, several elegant approaches
have been proposed including the ratiometric sensing rationale
(emission shift upon selectively recognizing an analyte), which is
currently a method of choice for biosensing and bioimaging14–16.

Photochromism, as another blossoming sensing rationale, has
been increasingly employed for constructing smart sensors due to
their unique ability to reversibly shift between two isomeric states
in a remote light-controlled manner17–19. Upon an alternate
irradiation of ultraviolet (UV) and visible (Vis) light, both the
structure and reactivity of photochromores can be reversibly
tuned, leading to diversity in design of small-molecular probes20–
28. A “double-check” mechanism (i.e., the reversible in situ switch
between the two isomeric states) can be conducted with photo-
chromic probes to preclude false positive/negative signals.
Whereas conventional sensing systems work through the passive
interaction with an analyte, we envision that photochromism can
be used to elicit probe reactivity before analyte binding29. For
example, light can convert photochromic probes form one iso-
meric state (inert to analyte) to the other (reactive to analyte)
in situ, leading to sensing precision in a remote-controlled
manner. In addition, the remote light-control over photochromic
probes is mild and non-invasive with high spatiotemporal
resolution.

To prove our hypothesis, herein we developed photochromic
fluorescent glycoprobes for remote light-controlled recognition of
a target intracellular species produced both exo- and endogen-
ously. Shown in Fig. 1a is the principle by which to design the
photochromic glycoprobes. We first coupled a fluorophore
(naphthalimide that produces fluorescence signal) with a spir-
opyran (SP), which can be reversibly light-converted to mer-
ocyanine (MR). Then, the resulting conjugate was equipped with
a glycoligand (D-galactose (Gal)), producing SP-Gal to selectively
target a transmembrane glycoprotein receptor. After alternate
UV/Vis irradiations, the photochromic probes reversibly switched
between the SP (close) and the MR (open) state. The photo-
isomerization of the probe was interpreted by naphthalimide
fluorescence, which is reversibly switched (“off/on” via “UV/Vis-
light” irradiation) by Förster resonance energy transfer (FRET)
from naphthalimide to MR rather than SP (Fig. 1b). A fluores-
cence “blinking” effect could be observed upon the photo-
controlled off–on cycles for precise imaging. Besides, the remote
light-“activated” MR state can subsequently react with a target
species (sulfite ion [SO3

2−]), producing a “locked state” in which
the fluorescence remains constantly “on”. We further show that
the amphiphilic glycoprobes, which form micelles in water, can
assemble in live cells that express selective Gal receptors (Fig. 1c).
The selectively endocytosed glycoprobes have also proven to be
amenable for photochromic cycling in a specific organelle as well
as remote light-controlled recognition of intracellular sulfite.

Results
Photochromism and sulfite detection of SP-Gal in buffer
solution. The SP-Gal (Fig. 1a and Supplementary Fig. 18) and a
control compound SP-PEG (Supplementary Fig. 19) with a
polyethylene glycol (PEG), instead of Gal, were synthesized. SP is
a popular photochromic molecule, which can be light-converted
to the charge-separated zwitterionic MR structure after
photoisomerization19, 25, 29. A variety of photochromic probes
have been constructed based on SP since the zwitterionic isomer
(MR) offers a coordination site for various analytes, such as ions
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and biomolecules30–32. In addition, photoisomerization of SP
produces the MR isomer with an extended conjugated system,
which can serve as a FRET acceptor to tune the fluorescence of
closely coupled fluorophores33, 34. The double bond of the
hemicyanine-like motif of MR is also prone to undergoing
Michael addition reactions with nucleophiles, making possible the
development of reaction-based probes35–37. Bearing these points
in mind, the glycoprobes were synthesized through a simple
coupling of naphthalimide with SP, producing SP-Gal in good
yields. The fluorophore (naphthalimide) was coupled with D-
galactose to target a specific transmembrane glycoprotein recep-
tor, by a click reaction. The control compound (SP-PEG) was
synthesized in a similar way.

With the probes in hand, their photochromism was first tested
in an aqueous buffer solution by UV–Vis absorbance and
fluorescence spectroscopy (Fig. 2 and Supplementary Fig. 1).
After irradiation with UV light (365 nm), a gradually enhanced
absorbance peak of SP-Gal at 535 nm was observed, characteristic
of the formation of the MR-Gal isomer (Fig. 2a). The peak
remained unchanged after 7 min of irradiation, suggesting that
the probe reached a photostationary state. In parallel, the
fluorescence of SP-Gal at 532 nm decreased sharply by ca. 65%
after UV irradiation (Fig. 2b) because of FRET from naphtha-
limide donor to the MR acceptor33, 34. Then, we determined that
the fluorescence was recovered after a Vis light irradiation (530
nm for 5 min), which we ascribe to the reversible isomerization
from the MR state back to the initial SP state. The FRET
efficiency of MR-Gal was calculated to be 65.9% (E= 1−τ/τ0,
Supplementary Table 1). The light-controlled reversible absor-
bance (Fig. 2c) and fluorescence switch (Fig. 2d) could be realized
several cycles without obvious degradation in intensity. The

kinetics of photo-switching of both directions (ksp-mr= 0.024 s−1;
kmr-sp= 0.031 s−1; 2.6 mW cm−2 for UV irradiation at 365 nm
and 150 mW for visible light at 530 nm, Supplementary Fig. 2)
and the photochromic quantum yields (Φsp-mr= 5.78± 0.1%;
Φmr-sp= 14.41± 0.1%; the error bar represents s.d. (n= 3),
Supplementary Table 1) in aqueous solution were also
determined.

Then, the light-controlled recognition of SP-Gal for a
nucleophile was carried out in solution. Sulfite ion (SO3

2−) is
generated endogenously from L-cysteine and thiosulphate,
playing an important role in biological sulphur cycles in the
human body38. However, the existence of sulfite ions in the body
fluid above normal concentrations is linked to several human
diseases39. Considering their nucleophilic nature, Michael addi-
tion of sulfite to the hemicyanine moiety of MR-Gal may break
the π-conjugation, thereby changing the optical properties of the
probe. Furthermore, unlike common Michael addition probes,
hemicyanine is inert to biothiols (e.g., cysteine, homocysteine,
and glutathione), which can interfere with sulfite sensing in a
realistic biological environment37. We first determined that SP-
Gal without UV irradiation was not reactive to sulfite (Fig. 2g)
and a range of other biothiols (Supplementary Fig. 3a, b),
suggesting that the SP state is not reactive with the target analyte.
Then, SP-Gal was photo-isomerized (UV activation) to the MR-
Gal state prior to sulfite addition. We observed that the
characteristic merocyanine absorption band around 535 nm was
gradually decreased after adding increasing sulfite (Fig. 2e and
Supplementary Fig. 3e), while the fluorescence of the MR-Gal was
simultaneously increased (Fig. 2f, h and Supplementary Fig. 3e).
After treatment of the probe with sulfite, however, the resulting
fluorescence remained constantly “on” irrespective of the
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2− (from 0 to 100 μM). f The fluorescence change of MR-Gal (10 μM, in PBS buffer) with
SO3
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alternate UV/Vis irradiation (Supplementary Fig. 3c; the
absorbance spectrum also hardly changed under the same
condition as shown in Supplementary Fig. 3d), suggesting the
formation of the Michael adduct between MR-Gal and sulfite
(Fig. 1a). 1H NMR and mass titration clearly showed the
generation of a new compound MR-Gal-SO3

2−after treatment of
MR-Gal with sulfite (Supplementary Fig. 4). Kinetics studies on
MR-Gal with sulfite (Supplementary Fig. 5) suggest a first-order
reaction kinetics between MR-Gal and sulfite ion, which is in
accordance with previous reports on Michael addition based
sulfite detection with hemicyanine derivatives37. As a conse-
quence, the “constantly on” fluorescence was probably caused by
the formation of the Michael adduct, breaking the π-conjugation
of hemicyanine, and thus locking the FRET (Fig. 1b).

Targeted intracellular imaging and photochromism of SP-Gal.
Having tested the light-controlled optical performances of SP-Gal
in solution, the ability of the glycoprobes for targeted intracellular
photochromism was tested. A human hepatoma cell line (Hep-
G2) that highly expresses the asialoglycoprotein receptor (ASGPr,
selective for Gal) and two control cell lines (human cervical
cancer (HeLa) and human lung cancer (A549)) without ASGPr
expression were used (Supplementary Fig. 6d)40, 41. The cells were
treated with SP-Gal by using SP-PEG as a control. We deter-
mined that SP-Gal selectively imaged Hep-G2 rather than A549
and HeLa cells (Supplementary Fig. 6a, b), whereas the fluores-
cence of SP-PEG without the “Gal-antenna” was distributed in all
the cells used (Supplementary Fig. 6a and c). This suggests the
good specificity of SP-Gal equipped with a Gal “warhead” to
actively target the transmembrane receptor, and that the presence
of Gal largely diminishes the unselective cell internalization of the
glycoprobes. As shown in Fig. 1, SP-Gal incorporates a hydro-
philic PEG linker between the Gal-ligand and the hydrophobic
fluorophore/photochromore conjugate. This facilitates the for-
mation of amphiphilic micelles of SP-Gal in sub-micrometer size,
which is determined by both dynamic light scattering and
transmission electron microscopy (Supplementary Fig. 7a–d).
The formation of amphiphilic micelles may increase their binding

avidity for receptor proteins through multivalent carbohydrate-
receptor interactions42, and the hydrophilic galactosyl “shell”may
also protect the glycoprobes from being unselectively internalized
by cells without receptor expression40.

To prove the advantage of the presence of the PEG linkage, we
also synthesized a control glycoprobe with just a rigid triazole
linker that connects between the hydrophilic Gal and the
hydrophobic dye conjugate (Supplementary Fig. 20). We
determined that this compound exhibited an anomalous
morphology (Supplementary Fig. 7e–h) and showed a much
worse effect in selective cell imaging than SP-Gal (Supplementary
Fig. 8), suggesting the importance of the molecular design for
amphiphilic glycoprobes. To further prove the ASGPr-targeting
ability of SP-Gal, we used a sh-ASGPr cell line with a reduced
ASGPr expression level by shRNA transfection (Supplementary
Fig. 9c)41. We determined that the SP-Gal fluorescence was
largely decreased in sh-ASGPr with respect to Hep-G2 (Supple-
mentary Fig. 9a, b). In the meanwhile, pretreatment of Hep-G2
with increasing free D-galactose led to a gradual suppression of
the fluorescence of SP-Gal, suggesting that the selective
fluorescence imaging is based on Gal-ASGPr recognition
(Supplementary Fig. 9c, d). SP-Gal was determined to be barely
toxic to Hep-G2, even with a concentration 8-fold higher than
that used for imaging (Supplementary Fig. 10a).

Next, we set out to test the targeted intracellular photochro-
mism of the glycoprobes controlled by remote light. We
alternately irradiated the cell lines pretreated with SP-Gal or
SP-PEG by UV/Vis (365/530 nm) light, and then recorded the
resulting fluorescence intensity (Fig. 3). We observed a clear
fluorescence decrease/increase cycle upon UV/Vis irradiation of
SP-Gal/MR-Gal for Hep-G2 rather than HeLa and A549 (Fig. 3a,
c). In contrast, the photochromic switch of SP-PEG/MR-PEG was
observed in all the cell lines tested (Fig. 3b, d). This suggests that,
in addition to being selectively internalized, the photochromic
glycoprobes are capable of taking remote light orders for
intracellular photochromic actions. To preclude the damaging
effect of the light used, the cell viability was checked under
alternate UV/Vis irradiations. We determined that the cells with
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or without the photochromic glycoprobes were perfectly viable
for up to six cycles of photo-irradiation (Supplementary Fig. 10b),
demonstrating a low photo-toxicity of our photo-switching
procedure.

Photo-switchable imaging of lysosomes with SP-Gal. Since
ASGPr is responsible for trafficking endocytosed species to the
lysosome, we also used confocal laser scanning microscopy to
track the photochromic glycoprobes. Considering the acidic
nature of lysosome (pH 4.5–5.5), the photo-switching behavior of
SP-Gal was first examined under buffer solutions with different
pH (from pH 3.0 to 7.4). The results showed that the photo-
chromic actions were hardly influenced within this acidic pH
range (Supplementary Fig. 11). In addition, we tested the photo-
switching of our SP-Gal probe intracellularly with different pH.
We observed that the photo-switching of SP-Gal similarly func-
tioned well with an intracellular pH range of 4.0–7.0 (Supple-
mentary Fig. 12), which covers the pH range of lysosome. With
these promising results in hand, co-localization of SP-Gal in
lysosome was carried out. Co-localization of SP-Gal fluorescence
with that of a lyso-tracker showed that the photochromic gly-
coprobes were largely assembled in lysosome (Fig. 4, Merge;
Pearson’s correlation coefficient: 0.76). A subsequent UV/Vis
light irradiation assay showed that the SP-Gal fluorescence, as
localized in lysosome, could be tuned off (UV to MR-Gal) and on
(Vis back to SP-Gal) repeatedly (Fig. 4 (Focus) and Supplemen-
tary Fig. 13).

Photo-activated detection of exogenous intracellular sulfite.
Eventually, as a proof-of-concept, the remote light-controlled

SP-Gal Lyso-tracker Merge Focus
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UV
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UV

Fig. 4 UV/Vis cycling and co-localization of photochromic glycoprobes with lysosome tracker in Hep-G2 cells. The excitation wavelength was 405, 440,
and 577 nm and emission channel 420–460, 535, and 590 nm for Hoechst, SP-Gal and Lyso-tracker Red, respectively (the “Focus” column represents an
enlarged area of the “Merge” column as framed; the circles in the “Focus” column highlight the photochromic actions of SP-Gal in lysosomes). Scale bar for
all images in the Sp-Gal, Lyso-tracker and Merge groups is 40 μm. Scale bar for images in the “Focus” group is 20 μm
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conversion of SP-Gal to MR-Gal for sulfite recognition was car-
ried out in Hep-G2 cells. We first tested the biospecificity of MR-
Gal for sulfite with a variety of other metabolic nucleophiles. The
result showed that the MR-Gal fluorescence was barely changed
by unselective thiols and nucleophile species with concentrations
above their physiologic levels (Fig. 5). The sequential addition of
5 equiv. of sulfite significantly recovered the probe fluorescence,
demonstrating the specificity in reactivity of merocyanine for
sulfite (Fig. 5).

SP-Gal was first internalized by Hep-G2, and then the cells
were treated with UV irradiation for converting SP to the MR
state. We determined that, after addition of exogenous sulfite (by
treatment of cells with sodium sulfite), the decreased fluorescence
of MR-Gal increased spontaneously without visible irradiation
(Fig. 6, Group II). Notably, the increased fluorescence of MR-Gal
could not be further suppressed by UV irradiation, leading to a
constantly “on” fluorescence of the probe irrespective of alternate
light irradiations (Fig. 6, Group II). This phenomenon is contrary
to that observed for cells without sulfite, for which the UV/Vis
controlled reversible SP-Gal/MR-Gal photoisomerization was
available (Fig. 6, Group I). The locked fluorescence might suggest
the reaction of sulfite with the probe at the MR state, as similarly
shown by the solution-based experiments (Fig. 2f, g), producing
the “locked” MR-Gal derivative (i.e., the Michael adduct). A
subsequent analysis by high-performance liquid chromatography
showed that the Michael adduct of MR-Gal with sulfite was traced
in the lysate of Hep-G2 pretreated sequentially with SP-Gal, UV
irradiation and then SO3

2− (Supplementary Fig. 14). This

corroborates that the irreversible fluorescence enhancement was
a result of the addition of sulfite to MR-Gal in live cells, thereby
demonstrating the amenability of the photochromic glycoprobes
for remote light-controlled recognition of intracellular sulfite
ions.

To further test the intracellular stability of SP-Gal, we kept
Hep-G2 cells preincubated with SP-Gal in dark for 30 min with or
without the presence of sulfite (Supplementary Fig. 15). We
observed that the intracellular fluorescence of SP-Gal barely
changed with time (up to 30 min) in dark, irrespective of the
presence of sulfite. A subsequent UV irradiation of the cells
without sulfite generated MR-Gal, which was able to undergo the
photochromic cycling through alternate UV/Vis treatment
(Supplementary Fig. 15a, b). However, UV irradiation of the
cells with sulfite led to a quick fluorescence increase sponta-
neously, and then the probe became insensitive to light orders
(Supplementary Fig. 15c, d). These data suggest that the
photochromic glycoprobes can be kept inert (the SP-Gal state)
intracellularly even in the presence of the target molecule.

Photo-activated detection of endogenous intracellular sulfite.
Next, we tested whether the probe could react with endogenous
sulfite by pretreating the cells with lipopolysaccharide (LPS),
which can induce the inflammatory response of cells to produce
low-level sulfite endogenously (Fig. 6, Group III)43. We observed
that the photochromic fluorescence blinking of SP-Gal/MR-Gal
was much weakened in cells with endogenous sulfite produced by
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sulfite (Group II) and SP-Gal with endogenous sulfite (Group III) upon alternate UV/Vis irradiations, where I0 and I are the initial fluorescence intensity of
SP-Gal and that of the corresponding SP-Gal/MR-Gal/MR-Gal-SO3

2− state upon photo-cycling and sulfite reaction, respectively. For fluorescence imaging,
the excitation wavelength was 360–400 nm and 440 nm and emission channel 410–480 and 450–550 nm for Hoechst and SP-Gal/SP-PEG, respectively
(scale bar: 100 μm, which is applicable to all images; The error bar represents s.d. (n= 3))
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LPS. By a fluorescence calibration with MR-Gal (Supplementary
Fig. 16a), we determined that the sulfite concentration produced
by LPS simulation in the lysate of Hep-G2 was 0.865 μM, which
approximates that obtained by ion chromatography (0.70 μM,
Supplementary Fig. 16c). To further demonstrate the sensitivity of
our probe, the quantification of LPS-stimulated endogenous sul-
fite was also carried out with live cells. By a fluorescence cali-
bration with MR-Gal (Supplementary Fig. 16b), we determined
that the sulfite ion concentration produced by LPS simulation in
live Hep-G2 cells was 0.904 μM, which approximates that
obtained in cell lysate and by ion chromatography. The limit of
detection of our probe was checked under different concentration
ranges (Supplementary Fig. 17), and the results showed a good
linearity, which is within the reported sulfite level found in the
human serum and rat liver44–46. More importantly, the probe
could respond to a slight endogenous increase of sulfite con-
centration (below 1 μM) through LPS simulation of Hep-G2 cells
(Fig. 6, Group III). These results clearly suggest that the photo-
chromic glycoprobe developed can sensitively detect an abnor-
mally elevated sulfite level in a remote light-controlled manner.

To summarize, we have developed here a unique, remote light-
controlled fluorescent glycoprobe for sulfite ion based on the
finely tunable photochromism. The probe is equipped with an
antenna (galactose) to actively localize a cell with a selective
receptor. The selectively endocytosed probes can thereby operate
remote, alternate UV/Vis light orders intracellularly to reversibly
switch between two photoisomeric states, outputting a dynamic,
“blinking” fluorescence signal. Further, the remote light conver-
sion of the photochromic probe from one isomeric state to the
other activated its reactivity towards sulfite ion elicited both exo-
and endogenously, locking the fluorescence. This research sets the
basis for the development of a new generation of smart diagnostic
probes based on photochromic principles. Development of
photochromic probes for a broader range of other biologically
and pathologically important species is currently underway in our
laboratories.

Methods
Materials and instruments. Chemicals were used as received unless otherwise
indicated. All oxygen or moisture-sensitive reactions were performed under argon
atmosphere using the standard Schlenk method. All other reagents are of analytical
purity and used without further purification. Solvents used are of analytical grade,
except those for recrystallization and optical tests, which were distilled prior to use.
Thin-layer chromatography (TLC) was carried out on aluminum sheets coated
with silica gel 60 F254 (MERCK).1H NMR and13C NMR spectra were recorded
using Bruker AM-400 spectrometers. DMSO-d6, CDCl3 and D2O were used as
solvent. Absorption and fluorescence spectra were recorded using Varian Cary 500
and Varian Cary Eclipse, respectively. The UV (365 nm, 2.6 mW cm−2) and light-
emitting diode (LED) lamps M530L2 (Thorlabs; Norminal Wavelength 530 nm,
Bandwidth (FWHM) 33 nm, 150 mW) were used as light sources for UV and
visible light irradiation, respectively. Hep-G2 (HB-8065TM), HeLa (CCL-2TM) and
A549 (CCL-185TM) were obtained from ATCC (American Type Culture
Collection).

Photochromic kinetics in solution. Stock solutions of SP-Gal, SP-Gal 2 and SP-
PEG (1 mM) were prepared in DMSO. Test solutions of SP-Gal, SP-Gal 2 and SP-
PEG (10 μM) were prepared in phosphate buffered saline (PBS, 0.01 M, pH 7.4, 1%
DMSO). The light-controlled reversible fluorescence switches for glycoprobes were
carried out with a path length of 5 mm and an excitation wavelength at 450 nm by
scanning the spectra between 470 and 750 nm. The bandwidth for both excitation
and emission spectra was 5 nm. Unless otherwise mentioned, all the spectra were
recorded at 298 K. For a photochromic cycling, the solution was irradiated with UV
light (365 nm, 2.6 mW cm−2) in darkroom, and the fluorescence spectroscopy was
tested every 30 s until the peak retained unchanged. Then, the solution was
reversibly irradiated with Vis light (530 nm, 150 mW) in darkroom, and the
fluorescence spectroscopy was tested every 30 s until the peak retained unchanged.

Calculation of photochromic and fluorescence quantum yields. The fluores-
cence quantum yields of SP-Gal/MR-Gal were measured by Quanta-w F-3029
Integrating Sphere. The photochromic quantum yields were measured based on the

following equation:47

Φ ¼ m ´V ´ h ´ c ´NA

λ ´ d ´ P0 ´ εprod ´ 1� 10�A0ð Þ

where m is the slope of the linear fit from the time-dependent changes in
absorption at 530 nm during irradiation at 365 nm (ring-opening) and 530 nm
(ring-closing), respectively; V is sample volume, h×c×NA is a constant, P0 is the
irradiation intensity, λ is the excitation wavelength, A0 is the absorbance at exci-
tation wavelength, ɛprod is the extinction coefficient and d is the cuvette thickness.

Calculation of fluorescence lifetime and FRET efficiency. The fluorescence
lifetime of SP-Gal/MR-Gal were measured by Edinburgh Lifespec-Ps spectro-
fluorometer (FL920). The energy transfer efficiency was calculated according to the
following equation: E= 1−τ/τ0, where E is the energy transfer efficiency and τ and
τ0 are the fluorescence lifetime of the donor (naphthalimide) with and without the
energy acceptor (merocyanine), respectively48.

Fluorescence spectroscopy for sulfite detection. Stock solutions of SP-Gal and
SP-PEG (1 mM) were prepared in DMSO and then converted to MR-Gal and MR-
PEG under UV light (365 nm, 2.6 mW cm−2), respectively. Stock solution of 1 mM
of SO3

2− was prepared in PBS (0.01 M, pH 7.4). The fluorescence measurements
for glycoprobes were carried out with a path length of 5 mm and an excitation
wavelength at 450 nm by scanning the spectra between 470 and 750 nm. The
bandwidth for both excitation and emission spectra was 5 nm. Unless otherwise
mentioned, all the spectra were recorded at 298 K.

Statistical analysis. Results are expressed as mean± SD. Statistical analysis was
performed with GraphPad PRISM (GraphPad Software, Inc.) using Student’s
unpaired t-test. P-values <0.05 was considered statistically significant. All experi-
ments were repeated at least three times with representative data shown.

Cell culture. Hep-G2 and HeLa cells were maintained in a Dulbecco’s Modified
Eagle’s Medium (Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal
bovine serum (Gibco, Gland Island, NY, USA) and A549 cells were cultured in
Ham’s F-12 nutrient mixture supplemented with 10% fetal bovine serum in a
humidified atmosphere of 5% CO2 and 95% air at 37 °C.

Cell viability assay. Cells were plated on 96-well plates in growth medium. After
24 h, cells were treated with SP-Gal of different concentrations for 15 min. Then,
cells were gently washed with PBS once. After 72 h of incubation, 10 μL per well of
MTS/PMS (20:1, Promega, Corp.) solution was added to each well, followed by a
gentle shake. After incubation at 37 °C under 5% CO2 for 2 h, the absorbance of the
solutions was measured at 490 nm, using an M5 microplate reader (Molecular
Device, USA). The optical density of the result in MTS assay was directly pro-
portional to the number of viable cells.

Fluorescence imaging of cells. Cells were cultured in growth medium supple-
mented with 10% FBS. Then, cells (2.0 × 104/well) were seeded on a black 96-well
microplate with optically clear bottom (Greiner bio-one, Germany) overnight, and
then incubated with 20 μM of glycoprobes for 20 min. After three rinses in PBS, the
fluorescence was detected and photographed with an Operetta high content ima-
ging system (Perkinelmer, USA).

Establishment of the Hep-G2 knockdown stable cell line (sh-ASGPr). Plasmids
encoding ASGP-R1 specific shRNA was purchased from Santa Cruz Biotechnology,
Inc. (Santa Cruz, CA, USA). Lentiviral particles were generated according to the
manufacturer’s instructions. Briefly, cells were seeded in a six-well tissue culture
plate and were grown to 80–90% confluency in antibiotic-free normal growth
medium supplemented with FBS. Then, shRNA plasmid (3 μg) was cotransfected
with pCAG-VSVG (1.8 μg) and PAX2 (2.7 μg) into cells using 15 μL of lipofecta-
mine 2000 (Invitrogen, Carlsbad, CA, USA). After 6 h, the medium was changed to
fresh DMEM with 10% FBS. After 72 h, the lentivirus-containing supernatant were
collected, filtered, and then employed for analysis.

Photochromic tests in cells. Cells were cultured in growth medium supplemented
with 10% FBS. Then, cells (2.0 × 104/well) were seeded on a black 96-well micro-
plate with optically clear bottom (Greiner bio-one, Germany) overnight, and then
were incubated with 20 μM of glycoprobes for 20 min. After three rinses in PBS the
fluorescence was detected and photographed with an Operetta high content ima-
ging system (Perkinelmer, US). To test the intracellular photochromic cycling, the
96-well microplate was irradiated with UV light (365 nm, 2.6 mW cm−2) in
darkroom for 10 min, and then the fluorescence was detected and photographed
with the Operetta high content imaging system. Subsequently, the 96-well
microplate was reversibly irradiated with Vis light (530 nm, 150 mW) in darkroom
for 10 min, and then the fluorescence was detected and photographed with the
Operetta high content imaging system.
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Fluorescence spectroscopy for sulfite detection in cells. The probe was incu-
bated with Hep-G2 cells w/ or w/o SO3

2− for 0 (−), 10, 20, and 30 min (in dark),
and then was treated with UV irradiation. Following an incubation for another 10
min (in dark), the cells were treated with an alternate UV/Vis irradiation. For
fluorescence imaging, the excitation wavelength was 360–400 nm and 440 nm and
emission channel 410–480 nm and 450–550 nm for Hoechst and SP-Gal/SP-PEG,
respectively. To elicit endogenous sulfite, cells (HepG2, 25000) were seeded on a
black 96-well microplate with optically clear bottom (Greiner bio-one, Germany)
and then treated with lipopolysaccharide (LPS, 80 ng mL−1) for 24 h.

Confocal laser scanning microscopy. Hep-G2 cells were incubated sequentially
with SP-Gal (40 μM, 1% DMSO in PBS, pH 7.4) and Lyso-Tracker Red (1 μM, 1%
DMSO in PBS, pH 7.4) in an atmosphere of 5% CO2 and 95% air for 40 min at
37 °C. Then the cells on the microplate were rinsed by warm PBS and fixed by 4%
paraformaldehyde for 20 min at room temperature. After rinsing twice with PBS,
Hoechst 33342 (Invitrogen) (5 μg mL−1) was added to the cultures and incubated
for 40 min at 37 °C. After three rinses with warm PBS, the fluorescence was
detected and photographed with confocal laser scanning microscopy (Olympus,
Japan).

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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