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T-cell prolymphocytic leukemia (T-PLL) is the most common mature T-cell leukemia. It is a
typically aggressively growing and chemotherapy-resistant malignancy with a poor
prognosis. T-PLL cells resemble activated, post-thymic T-lymphocytes with memory-
type effector functions. Constitutive transcriptional activation of genes of the T-cell
leukemia 1 (TCL1) family based on genomic inversions/translocations is recognized as
a key event in T-PLL’s pathogenesis. TCL1’s multiple effector pathways include the
enhancement of T-cell receptor (TCR) signals. New molecular dependencies around
responses to DNA damage, including repair and apoptosis regulation, as well as
alterations of cytokine and non-TCR activation signaling were identified as perturbed
hallmark pathways within the past years. We currently witness these vulnerabilities to be
interrogated in first pre-clinical concepts and initial clinical testing in relapsed/refractory T-
PLL patients. We summarize here the current knowledge on the molecular understanding
of T-PLL’s pathobiology and critically assess the true translational progress around this to
help appraisal by caregivers and patients. Overall, the contemporary concepts on T-PLL’s
pathobiology are condensed in a comprehensive mechanistic disease model and
promising interventional strategies derived from it are highlighted.
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INTRODUCTION

T-cell prolymphocytic leukemia (T-PLL) is an aggressive peripheral T-cell malignancy (1) and
represents the most common mature T-cell leukemia inWestern countries (incidence ≈ 2.0/million/
year) (2). Patients suffering from T-PLL typically present with exponentially rising white blood cell
counts, (hepato-) splenomegaly, and small-node lymphadenopathy. CNS involvement has been
described as a severe clinical manifestation in a minority of T-PLL (<5% of cases) (3, 4). The rapidly
expanding and chemotherapy-refractory course is reflected by a median overall survival from
diagnosis of less than 3 years (5, 6). Up to now, the humanized CD52-antibody alemtuzumab is the
only substance that induces acceptably high response rates, (in >80% of patients at first line).
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Notably, nearly all patients relapse within 2 years after
alemtuzumab, with very limited options to salvage (4, 7).

First described in 1973 (8), the diagnosis of T-PLL was mainly
based on cytomorphological characteristics (6). In the following
decades, the pathogenetic concept of T-PLL was centered around
cytogenetic abnormalities. Inversions or translocations of the
TCL1A locus are the most common chromosomal aberrations
and are central in establishing the diagnosis of T-PLL (9). Within
the last 5-7 years, genomic and epigenomic studies have
remarkably expanded our pathogenetic understanding of T-
PLL. More recently, molecular hallmarks around perturbed
responses to DNA damage, including repair and apoptosis, as
well as alterations of cytokine signaling and epigenetic
deregulations, were identified as exploitable dependencies.
Here, we condense these novel advances in a comprehensive
mechanistic disease concept and highlight promising
interventional strategies that are being derived from it.
CELL OF ORIGIN CONCEPTS

In >95% of T-PLL, aberrant constitutive expression of the proto-
oncogenes TCL1A or MTCP1 by inversions or translocations are
observed that juxtapose the TCL1A (at 14q32.1) or MTCP1 (at
Xq28) loci to the 14q11.2 locus and by that under control of highly
active TRA gene enhancer elements. This prevents physiological
downregulation of TCL1A orMTCP1 and is considered the initial
event of T-PLL’s leukemogenesis (10). Both oncogenes have
shown their oncogenic potential in transgenic mouse models
(11–13). Under physiological conditions, expression of the
TCL1A oncogene is silenced in CD4/CD8 double-positive (dp)
thymocytes (14, 15). At this stage, rearrangements of the TRA
locus, encoding for the T-cell receptor (TCR) a-chain, take place
(16). Whole-genome sequencing and breakpoint analyses
identified that all T-PLL had a breakpoint involving
recombination signal sequences (RSS) of the J region of the TRA
locus. On the opposite side of the inversion/translocation,
breakpoints were more variable, but also involved classical or
cryptic RSS (17). In accordance with the finding that virtually all
T-PLL express the surface TCR complex (18), the other allele of
the analyzed T-PLL cases showed legitimate TRA rearrangements,
leading to the expression of a functional TCR (17). Together, these
findings suggest, that the aberrant TRA-TCL1A/MTCP1
rearrangements occur during the opening of the TRA locus at
the CD4/CD8 dp thymocyte stage in a RAG1/2 dependent manner
(17), followed by legitimate recombination of the locus on the
other allele. High TCL1A expression is associated with genomic
instability (19), thereby forming the basis for additional genomic
hits driving oncogenesis (9, 10). However, whether the illegitimate
rearrangement is the first hit in the pathogenesis of T-PLL is
uncertain. A preceding mono-allelic deletion or mutation of ATM,
which are highly recurrent in T-PLL cells, is possible as well. This
is supported by a high incidence of T-PLL in patients with
germline ATM defects as well as its involvement in the
regulation of monoallelic cleavage and genomic stability during
TRA recombination (20).
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STRUCTURAL GENOMIC ABERRATIONS

Complex karyotypes (≥3 structural or numerical cytogenetic
aberrations) are seen in ~70% of T-PLL and were associated
with a poorer prognosis (21). T-PLL genomes usually show
complex somatic DNA copy number alterations (CNA) in
array-based profiling (10, 21, 22). Generally, losses of
chromosomal regions are more frequent than gains. These
somatic CNA usually affect hundreds of genes in a patient and
are not closely associated with altered expression of the
respective genes, indicating additional modes of transcriptional
dysregulation beyond CNA. Besides the above-described
aberrations affecting genes of the TCL1 family, genomic losses
of chromosome 11q and gains of chromosome 8q are most
recurrently observed. Losses affecting chromosome 11 involve
the tumor suppressor ATM (11q22.3) as the minimally deleted
region (6, 10, 19, 21–30). This is implicated in T-PLL
development by dysregulation of proper DNA damage repair
as highlighted by more complex karyotypes in ATM deleted cases
(10). The genomic region encoding for the downstream effector
of ATM, p53, is only disrupted in a minority of T-PLL (10).
Gains of chromosome 8q can mainly be attributed to a trisomy of
8q, resul t ing from isochromosomes (8)(q10) (29) .
Overexpression of the proto-oncogene MYC (8q24.21) is not
strictly associated with the presence of 8q gains and vice versa.
Other genes like AGO2 at 8q24.3 are more frequently involved in
these 8q amplifications. Overexpression of AGO2, which
centrally regulates RNA interference, may additionally
contribute to T-PLL development (10).

At lower frequencies, genomic losses of chromosomes 6q, 8p,
12p, 13q, and 22q as well as genomic amplifications of 6p and
22q are observed in T-PLL cells (10, 21–23, 27). Up to now, the
underlying target genes of these structural aberrations and their
functional contributions have not been fully revealed. First
promising concepts could derive from a systems biology
approach (31). Genome-wide gene expression and copy
number profiles of T-PLL patients could be utilized to learn a
T-PLL specific gene regulatory network (32). Such a network
would allow to predict potential impacts of individual CNA on
known cellular signaling pathways or treatment response
signatures by network propagation (32), as demonstrated for
oligodendrogliomas (33) and prostate carcinomas (34). Thus,
more intensified efforts on integrating available genome-wide
data could help to identify new potential driver candidates and
their downstream targets in T-PLL.
THE MUTATIONAL PROFILE OF T-PLL

Besides the highly prevalent structural lesions involving the
oncogenes TCL1A, AGO2, and MYC, as well as in the tumor
suppressor ATM, various single-nucleotide variants (SNVs) were
linked to the molecular pathogenesis of T-PLL cells (10, 26, 35,
36). Generally, SNVs occur at similar rates in T-PLL as in other
hematologic and solid tumors (10). Most of these primarily somatic
SNVs seem to accumulate during T-PLL’s leukemogenesis in the
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context of high levels of oxidative damage and in the absence of
efficient repair mechanisms to counteract these hazards (10).
Fittingly, ATM, the central apical regulator of DNA integrity,
shows high rates of damaging SNVs, in addition to the above-
described partial inactivation by mono-allelic losses (10, 24, 26, 35–
38). These missense, nonsense, or frameshift mutations of ATM
mainly cluster within its FAT or PI3K domains (10).

Other frequently mutated genes in T-PLL are CHEK2,
SAMHD1, and MSH, which are also involved in DNA damage
repair mechanisms, which further supports a concept of T-PLL’s
incompetence in safeguarding mechanisms of repair or cell death
execution (10, 26, 35, 36). Remarkably, SAMHD1 and ATM
belong to the small fraction of genes, whose mutations show
variant allele fractions (VAFs) of more than 80% (10, 35),
suggesting acquisition of these lesions early in leukemogenesis.

Within the last decade, genomic aberrations affecting the
JAK/STAT signaling pathway emerged as an additional hallmark
of T-PLL (10, 26, 35, 36, 38–42). The JAK3 gene shows the
highest frequency of such gain-of-function mutations, followed
by STAT5 and JAK1 (43). These primarily missense mutations
target the conserved pseudokinase (JAK1, JAK3) or SH2 domains
(STAT5) in most T-PLL cases. Notably, SNVs affecting
components of the JAK/STAT signaling pathway occur at
relatively low VAFs, indicating their rather sub-clonal
character (10). However, the central role of deregulated JAK/
STAT signaling is substantiated by genomic losses of genes that
encode for negative regulators of this pathway (e.g.DUSP4, SOCS
genes) (43). Together with the high frequency of JAK/STAT gene
mutations, basal phosphorylation of distal STAT5 is observed in
virtually every T-PLL case (10, 43). In addition, the WNT as well
as the Notch signaling pathways, are disturbed by SNVs in a
minority of T-PLL cases (10, 26). Rare mutations further involve
cell cycle regulation (e.g. CDC27) and apoptosis regulation (e.g.
BCLAF1) (10).
THE TRANSCRIPTOMIC LANDSCAPE

Analyses of the transcriptome of T-PLL cells have been
performed intensively in bulk RNA samples, either by gene
expression arrays or by RNA sequencing (RNA-seq). In line
with rearrangements of the chromosome 14q, TCL1A was the
most upregulated gene in virtually every cohort (10, 35, 42, 44).
The other TCL1 family members, TCL1B and MTCP1, showed
additional overexpression, although to a lower extent (10). In
agreement with the gains at chromosome 8q, the proto-oncogene
MYC as well as the miR-processing regulator AGO2 showed
overexpression on mRNA level (10, 42). Highlighting the
importance of deregulated JAK/STAT signaling in T-PLL,
downstream targets of this pathway (e.g. BCL2L1) showed a
significant upregulation (42).

Among the genes with the most significantly altered
expression were those involved in TCR/cytokine signaling.
Prominent examples are downregulated CTLA4 and SLAMF6.
They are central mediators of immune signal transduction and
regulation of lymphocyte activation and we implicate their loss in
Frontiers in Oncology | www.frontiersin.org 3
the activated T-cell phenotype of the T-PLL cell (10, 18, 22).
Moreover, potential underlying causes for the inability of T-PLL
cells to undergo cell death upon DNA damage were identified in
their altered transcriptome: Pro-apoptotic genes (e.g. GIMAP5,
various Caspases) were significantly downregulated (10, 22).
Transcriptome studies can also be utilized to identify
individualized treatment options for T-PLL patients. In a first
case study, RNA-seq data were integrated with exome-seq and ex
vivo single-drug sensitivities, establishing a customized platform on
individual predictions of responses to drug combinations (39).
THE MIR-OME OF T-PLL CELLS

Recently, the miR-ome of T-PLL cells was analyzed by small
RNA-seq in two independent cohorts (44, 45). T-PLL cells
showed a global miR expression signature of ~35 significantly
deregulated miRs, resembling the miR expression profile of TCR-
activated healthy T-cells (45). By combining the small RNA-seq
with transcriptome sequencing data, regulatory networks
involving cell survival signaling and DNA repair pathways
were uncovered. In both cohorts, the miR-141/200c cluster
showed the strongest upregulation among all miRs and
separated T-PLL cases into two major subgroups with normal
vs. upregulated expression. Preliminary data revealed a role of
this cluster in TGF-b signaling (44) as well as in cell cycle
regulation (45). Further perturbations of miR expression
include overexpression of miR-223-3p and miR-181a/miR-181
as well as downregulation of the miR-21 and the miR-29 cluster.
The functional consequences of these deregulations have yet to
be demonstrated in T-PLL. Nevertheless, based on the expression
of miR-200a-3p, miR-223-3p, and miR-424-5p, a first overall
survival score for T-PLL (miROS-TPLL) was established and
might improve clinical stratifications (45).
EPIGENETIC ALTERATIONS

Gene set enrichment analyses of T-PLL transcriptomes identified
pathways of epigenetic regulation as significantly altered (10).
These findings were additionally highlighted by a high incidence
of mutations in epigenetic modifiers (e.g. EZH2, TET2, KMTs)
(10, 26, 35, 36). However, systematic analyses of DNA-
methylation, profiles of histone modifications, and states of
chromatin accessibility have not yet been published. First data
in a small cohort of T-PLL implicate massive epigenetic
reprogramming, as shown by genome-wide alterations of
chromatin states at promoters and active enhancers identified
via H3K4me3 and H3K27ac ChIP-seq (46). These alterations
correlated with changes in expression of frequently deregulated
genes (e.g. TCL1A, MYC, EZH2, AGO2), presenting additional
ways of their deregulation beyond the described genomic
aberrations. Vice versa, a role of TCL1A/MTCP1 activation
and/or ATM inactivation in epigenetic disturbances is also
conceivable (47, 48).
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THE MICROENVIRONMENT OF
T-PLL CELLS

Besides (epi)genetic changes, the dependence of leukemic cells
on signals from microenvironmental sources for proliferation
and survival has been shown for various entities, including T-cell
neoplasms (49). Such interactions are mediated by adhesion
molecules, cell surface ligands, chemokines, cytokines, and
their respective receptors (50). So far, little is known about the
(specific) micromilieu of T-PLL cells and how they shape it.
Upregulation of cytokines (e.g. TNF, IL-8), cytokine receptors
(e.g. CD25 (IL-2Ra), CD122 (IL-2Rb), CD124, or CD127), as
well as of chemokine receptors (e.g. CCR3 and CCR4) provide
first hints of a deregulated crosstalk between T-PLL and
bystander cells (18). Furthermore, mutations of chemokine
receptors (e.g. CXCR3) are described (10). The potential
proactive role of the micromilieu in T-PLL’s leukemogenesis is
further implicated by the secretion of the Th1-associated
cytokines IFN-g, IL-2, IL-10, TNF-a/b, and IL-8 of T-PLL cells
upon TCR stimulation (18). Mechanistic proof for an
involvement of CCR7 in the sustenance of T-PLL cell survival
derives from studies with CCR7-blocking antibodies. They
impaired survival signaling pathways in T-PLL cells in vitro
and increased the survival of mice transplanted with the T-PLL-
like cell line SUP-T11 (51). More work is required to study the
composition of T-PLL’s microenvironment (i.e. cell types and
humoral factors) and the involved molecular interactions.
ROLE OF THE T-CELL RECEPTOR

TCR signaling is the major growth regulatory system of T-cells. It
shapes their maturation, differentiation, and activation, hence their
effector and tolerogenic capacity (52, 53). Amplification of TCR
signaling represents a feature of many T-cell malignancies, although
generated by distinct mechanisms (54): (i) decreased input
thresholds for continuous exogeneous TCR activation, (ii)
autonomous activation of TCR-signaling intermediates, (iii)
downregulation of inhibitory coregulators, or (iv) stand-ins for
TCR signals, such as strong cytokine-inputs or their mimics, e.g.
via the ALK oncogene. T-PLL cells usually express at least one
surface component of the TCR/coreceptor complex and show
robust TCR-signal competence when stimulated ex vivo (9, 18).
Their gene expression profiles show prominent signatures of TCR
activation (10). Notably, TCL1A acts as a physically engaging
coactivator of TCR-kinases such as AKT, ZAP70, or ERK, and by
that is a TCR-signal enhancer, hence, a sensitizer towards low-
abundance signals. That places T-PLL into model (i) of the TCR-
centric pathogenetic view of T-cell neoplasms (18, 54).

Enhanced TCR signaling is further established in T-PLL cells
by impaired control mechanisms [model (iii)], e.g. by
downregulation of negative coregulators such as SLAMFs or
checkpoint molecules such as CTLA4 (10). The resulting
activated phenotype of T-PLL cells is additionally accompanied
by a TCL1A-mediated inability to execute FAS-mediated and
activation-induced cell death (18).
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In line with their TCR signaling competence, T-PLL cells
reveal a phenotype of mature, antigen-experienced, non-
conventional memory T-cells (18). As an underlying principle,
it is tempting to speculate that through enhanced TCR signaling,
the transition of naïve T-cells into an expanding pool of memory
T-cells is accelerated. The lack of a common TCR clonotype
across cases would indicate that not a specific antigen drives
TCR-mediated outgrowth in T-PLL (18, 55). More likely is an
MHC-dependent TCR activation through various low-avidity
(auto)antigens or antigen-independent tonic signals at place,
either MHC-driven or via TCR self-activation in enabled
memory T-cells. Although treatment strategies that target TCR
signaling intermediates have shown promising potential (56), the
TCR dependence of T-PLL cells at the overt leukemic stage is not
conclusively clarified.
DISCUSSION

Model of Clonal Evolution of T-PLL Cells
Recent advances in omics technologies over the last decade have
elevated the molecular understanding of T-PLL to another level
(Figure 1, Supplementary Table 1). Translocations and
inversions of chromosome 14q at the dp thymocyte stage are
perceived to initiate T-PLL’s leukemogenesis (10, 17). These
genomic aberrations lead to overexpression of the proto-
oncogenes TCL1A and MTCP1 and result in apoptotic
resistance and genomic instability (19). TCL1 family-activating
lesions form a functionally perturbing cooperation with
(preceding or subsequent) lesions that impair the tumor
suppressor ATM, which further incapacitate the T-PLL cell to
execute safeguarding responses (10). Likely, additional
perturbations are operational for this TCL1up/ATMdef leukemic
precursor to finally escape T-cell homeostatic control. These are
acquired by lesions that activate JAK/STAT signaling (43), by
miR (processing) deregulations (44, 45), by MYC amplification
(6, 10), and by deregulated epigenetic mechanisms (10, 36). To a
lesser degree we understand, on which central functional levels,
such as TCR- or cytokine signaling or autocrine forward-feeding
loops, these (epi)genetic events have a direct or less
immediate impact.

Overall, many questions of T-PLL’s pathogenesis remain
unresolved, like (i) the role of pro-survival signals of T-PLL’s
bystander cells, (ii) the dependence of T-PLL cells on their TCR
in clonal sustenance, (iii) the nature of T-PLL’s epigenome, and
(iv) the mechanisms of disease progression and treatment
resistance. Especially the latter aspect calls for single-cell
resolved analyses to illustrate clonal oscillations.

Clinical Implications Derived From the
Current Disease Model
The identification of key drivers of the molecular pathogenesis of
T-PLL offers the possibility for the development of new drugs
that target its crucial pathways. Here, central pathogenetic
relevance is likely not equivalent to a major vulnerability,
which requires more thorough interrogations. However, there
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is sound reason to be optimistic that we will soon see novel
strategies against T-PLL cells to become the basis for future
combinatorial therapies. Exemplarily, agents targeting TCR
signaling or the JAK/STAT pathway (18, 56) show encouraging
results, preclinically and/or in first case reports (57, 58). In
addition, the inability of T-PLL cells to induce adequate
responses to DNA insults was translated into therapeutic
strategies to reactivate p53 via MDM2/MDMx inhibitors or
targeting BCL2 family members (e.g. Venetoclax) (10, 59, 60).
There are ongoing activities in the search for efficacious
combinations of the, as single agent clinically only moderately
active Venetoclax, with other classes of inhibitors in relapsed/
refractory (r/r) T-PLL (59–62). In addition, epigenetic
disturbances of T-PLL cells further emphasize hypomethylating
Frontiers in Oncology | www.frontiersin.org 5
agents (e.g. Cladribine) as well as inhibitors of deacetylating
enzymes (e.g. Romidepsin) as options (10, 63, 64). Combining
these drugs, which target molecular vulnerabilities of T-PLL cells,
with the current standard therapy of alemtuzumab represents
another promising approach. Another challenge to be addressed
is the ‘purposing’ of the innate or adaptive immune system to
specifically attack T-PLL cells (65).
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FIGURE 1 | Proposed model of clonal evolution of T-PLL cells. Schematic visualization explaining T-PLL’s leukemogenesis, based on recent genomic profiling series
and corresponding functional assessments. Timeline: Chronology of genomic events leading to the progression to an advanced state of (pre)malignant T-cell
development. Y-Axis: Percentage of all analyzed T-PLL patients presenting the respective genomic aberration. Each dot represents a prevalence, derived from
selected publications (Supplementary Table 1). The median, as well as standard deviation, out of these publications was calculated for each genomic event. The
variability between the studies can be attributed to the different methods and cohort sizes (for more information refer to Supplementary Table 1). The first ‘stage’
involves the double-negative (dn) thymocyte, carrying the pre-T cell receptor (pre-TCR) complex. Translocations (t) and inversions (inv) of chromosome 14q at the dp
thymocyte stage result in constitutive expression of the proto-oncogenes TCL1A or MTCP1 in a vast majority of T-PLL cases (9, 17). These hits impair the genomic
stability of the affected T-cell by reduced DNA repair capacities of DNA double-stranded breaks (DSB) or other (oxidative) insults (10). Deletions (del) and mutations
(mut) involving ATM lead to a functionally hypomorphic apical regulator of repair, cell fate, and cell cycle control of the T-PLL precursor. This pre-leukemic cell
becomes unable to execute such safeguarding mechanisms upon genotoxic stress (10). Among subsequent perturbations, TCL1A overexpression lowers TCR-
signaling thresholds (18), enabling the cell to sustain on low-level input, either by major histocompatibility complex (MHC)-dependent (auto) antigen-presenting cells
(APC), or by self-MHC drive only, or by autonomous TCR activation (*, not proven). A central distal node is the JAK/STAT transcriptional machinery. Besides major
growth pathways such as the TCR and cytokine-mediated cascades feeding into it, there also is a high prevalence of hyperactivating mutations that target JAK1,
JAK3, or STAT5B (18) and a high incidence of losses of JAK/STAT negative regulators (43). Further leukemic outgrowth and progression to an exponentially
proliferating T-PLL cell are likely mediated by additional aberrations, including copy number (CN) gains on chromosome 8q, leading to MYC amplification and AGO2
overexpression (10). Furthermore, deregulations of T-PLL’s miR-ome, exemplarily represented by the upregulation (upreg) of the miR-141/200c family (45), and of T-
PLL’s epigenome in virtually all patients as shown by altered chromatin states at promoters and active enhancers (46), potentially mediated by frequent mutations in
KMTs(▪), TET2 (⬟), and EZH2 (▲) (10), contribute to the final leukemic outgrowth of a transformed and activated T-cell (as shown by the T-cell activation marker
CD69) with memory-type effector functions (as shown by CD45RO surface expression) (18). The figure was created by the authors using Biorender.com.
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