
sensors

Article

A Comparative Study of Traffic Classification Techniques for
Smart City Networks

Razan M. AlZoman 1,2 and Mohammed J. F. Alenazi 1,*

����������
�������

Citation: AlZoman, R.M.; Alenazi,

M.J.F. A Comparative Study of Traffic

Classification Techniques for Smart

City Networks. Sensors 2020, 21, 4677.

https://doi.org/10.3390/s21144677

Academic Editors: Laura Belli,

Gianluigi Ferrari, Marco Martalò and

Luca Davoli

Received: 23 May 2021

Accepted: 6 July 2021

Published: 8 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Engineering, CCIS, King Saud University, 11451 Riyadh, Saudi Arabia;
441203669@student.ksu.edu.sa

2 Ministry of Communications and Information Technology, 12382 Riyadh, Saudi Arabia
* Correspondence: mjalenazi@ksu.edu.sa

Abstract: Smart city networks involve many applications that impose specific Quality of Service (QoS)
requirements, thus representing a challenging scenario for network management. Solutions aiming
to guarantee QoS support have not been deployed in large-scale networks. Traffic classification is a
mechanism used to manage different aspects, including QoS requirements. However, conventional
traffic classification methods, such as the port-based method, are inefficient because of their inability
to handle dynamic port allocation and encryption. Traffic classification using machine learning has
gained research interest as an alternative method to achieve high performance. In fact, machine
learning embeds intelligence into network functions, thus improving network management. In this
study, we apply machine learning algorithms to predict network traffic classification. We apply
four supervised learning algorithms: support vector machine, random forest, k-nearest neighbors,
and decision tree. We also apply a port-based method of traffic classification based on applications’
popular assigned port numbers. Then, we compare the results of this method to those obtained from
the machine learning algorithms. The evaluation results indicate that the decision tree algorithm
provides the highest average accuracy among the evaluated algorithms, at 99.18%. Moreover, network
traffic classification using machine learning provides more accurate results and higher performance
than the port-based method.

Keywords: machine learning; traffic classification; smart city; quality of service; Internet of things;
supervised learning

1. Introduction and Motivations

The Internet of Things (IoT) is a technological revolution that has gained importance
over time. Its substantial impact on many aspects of daily living is the strength of the IoT [1].
In addition, IoT technology plays a vital role in economic growth. Therefore, technology
companies and research centers invest in the development and research of IoT solutions [2].
The IoT applications interconnect a variety of objects, such as actuators, sensors, smart
devices, and smart home appliances, to the Internet in order to send and process their
data [3,4]. Thus, IoT technology is essential to enable smart city services. A smart city is
a paradigm that exploits the recent evolution of communication technologies to improve
the services provided to its inhabitants and their quality of life [5,6]. It involves many
smart solutions [7], such as smart buildings, smart education, smart healthcare, smart trans-
portation, smart grids, smart environments, and smart homes (Figure 1), which can benefit
citizens by facilitating smart services. Nevertheless, such applications have diverse and
specific requirements that increase the challenges and complexity of network management.

Different applications consist of multiple objects (e.g., sensors, actuators), generate
massive network traffic, and have different Quality of Service (QoS) requirements, such as
bandwidth, loss, delay, jitter (variation in delay), and best-effort options [8]. For instance,
video surveillance supports readiness and response for traffic emergencies and accidents
or localization of busy roads [9]. This application has stringent requirements, including

Sensors 2020, 21, 4677. https://doi.org/10.3390/s21144677 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6101-0128
https://orcid.org/0000-0001-6593-112X
https://doi.org/10.3390/s21144677
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21144677
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21144677?type=check_update&version=2


Sensors 2020, 21, 4677 2 of 17

high bandwidth and low jitter, for the network traffic to reach its destination. Real-time
applications, such as online gaming and telephony, require guaranteed correct interactions
and are highly sensitive to delay. The immense expansion of these smart city applications
with different traffic types causes challenges to the QoS support because of their diversity.
Thus, these challenges should be properly addressed.

Smart Transportation Smart Healthcare Smart Buildings Smart Education

Smart Grids Smart Environment Smart Home

Figure 1. Typical architecture of a smart city network.

Supporting QoS requirements was not an initial design goal of internet architecture;
internet architecture was intended for best-effort data delivery. However, several efforts
have been devoted to satisfying QoS requirements, including Integrated Services and
Differentiated Services [10]. Integrated Services aim at both multicast and unicast ap-
plications and offer a QoS guarantee per flow by reserving sufficient network resources
along the path, where each router stores an internal state per flow. Hence, Integrated
Services increase complexity in routers that are more susceptible to crashes. Moreover, they
undermine network scalability through multiple flows because the state of the flows at
each node should be stored [8,11,12]. In contrast, Differentiated Services aim to improve
the scalability problem of Integrated Services. They group traffic flows into QoS classes
using the Differentiated Services Codepoint field in IPv4 and IPv6 headers to satisfy QoS
requirements differently compared with flow-based QoS treatment [8,13]. However, these
approaches have not been adopted in large-scale networks [8,14].

Traffic classification is essential for many network applications, such as monitoring,
QoS management, and security [15]. Traffic classification can implement a mechanism
for service differentiation that classifies the traffic flow according to the application type
(e.g., streaming, Voice over IP) [16]. Thus, resources can be allocated based on application
requirements, such as bandwidth and delay, thus guaranteeing QoS support. Several
methods are available for traffic classification without modifying the TCP/IP header. The
port-based method classifies the traffic based on the assigned port numbers [17]. How-
ever, recent applications use dynamic ports and tunneling, thus rendering this technique
ineffective. Alternatively, deep packet inspection classifies traffic according to the packet
payload, which is matched with a set of predefined signatures [18]. Nevertheless, this
method poses privacy challenges, cannot handle encrypted data, and is computationally
expensive [19–21].

Traffic classification based on machine learning algorithms has attracted research
interest in view of its expected accuracy and efficiency. Machine learning algorithms
involve various steps when adopting supervised learning. First, traffic features that
represent the attributes of the flows (e.g., packet length) are identified. Second, the machine
learning model is constructed. Third, the classifier is trained to associate specific features



Sensors 2020, 21, 4677 3 of 17

with known traffic classes. Finally, the model is applied to classify data traffic, predicting
the classes in traffic flow. A typical scenario of traffic classification based on machine
learning to improve the QoS in smart city networks is illustrated in Figure 2.

The contributions of this study are summarized as follows. First, we show that ma-
chine learning algorithms can accurately classify and predict network traffic. We compare
four supervised machine learning algorithms and evaluate their performance for traffic
classification, establishing the effectiveness of statistical features. Second, we perform
port-based traffic classification based on port numbers to distinguish services running over
a network. Finally, we evaluate the performance of the port-based method in comparison
with the machine learning algorithms. Our results demonstrate that the decision tree (DT)
algorithm provides the highest average accuracy (99.18%) among the evaluated machine
learning algorithms, whereas the k-nearest neighbors (KNN) algorithm provides the lowest
accuracy (97.16%). Overall, traffic classification using machine learning algorithms is
more accurate than that using the port-based method. Machine learning algorithms lever-
age various statistical features in addition to the port number for classification, whereas
the port-based method relies solely on assigned port numbers for different applications,
which provides ineffective results as many services use dynamic or a variety of ports over
a network.

The remainder of this paper is organized as follows: A brief background of machine
learning algorithms is presented in Section 2. The related work is discussed in Section 3.
The proposed traffic classification method, based on machine learning, is detailed in
Section 4. In Section 5, we present the performance evaluation, including the dataset,
performance measures, and experimental setup. Section 6 reports the evaluation results.
Finally, Section 7 concludes the paper and presents directions for future studies.

Data Preprocessing

Flow Statistics

Classifier Model

The Internet

Smart City Applications

Switch

Data link

Database

. . .

Base station

Figure 2. Typical scenario illustrating traffic classification based on machine learning in a smart
city network.

2. Background

In this section, we describe machine learning algorithms with supervised and unsu-
pervised learning.

2.1. Supervised Learning Algorithms

Supervised learning provides knowledge about new samples based on predefined
labels. The corresponding machine learning model is trained by a set of inputs with known
outputs. This type of learning allows the model to examine features and then create the
relations to predict the class label of previously unseen samples. Supervised learning
is used to build a system that predicts an output from a given input, using previously
learned rules [17]. There are two main types of supervised machine learning problems:



Sensors 2020, 21, 4677 4 of 17

classification and regression. In classification, the model predicts the class label, which is a
predefined categorical output. In regression, a continuous output is predicted. Supervised
learning involves training and testing. During training, the classifier model is built to
examine the provided dataset. During testing, the classifier model automatically assigns
the learned classes to a test dataset containing previously unseen samples [22,23]. Common
supervised learning algorithms include random forest (RF), KNN, DT, neural network, and
support vector machine (SVM) [24].

2.2. Unsupervised Learning Algorithms

In unsupervised learning, an unlabeled input is provided to the machine learning algo-
rithm. Thus, the output for a sample is not defined. Unsupervised learning is implemented
without guidance and aims to find a pattern or structure in input data to group samples
based on the similarity or statistical relations between features [18]. Each group with the
same pattern obtained from the input data is called a cluster. The model examines and
clusters patterns but cannot evaluate the correctness of the results. Unsupervised learning
allows new clusters to be determined [22] using algorithms such as k-means clustering and
self-organizing maps [24].

3. Related Work

This section presents related work from the literature and a discussion of their different
approaches. Some studies have shown a comparative analysis of traffic classification based
on machine learning utilizing different datasets, such as the backbone network, while
others have used machine learning for traffic classification or investigated QoS support
for smart city applications across different layers, such as the data link layer and transport
layer. For instance, Aureli et al. [25] proposed a dynamic classification method called
learning-based Differentiated Services to discover traffic characteristics and dynamically
assign service classes to IP packets. They applied machine learning methods (e.g., linear
discriminant analysis, k-means clustering) considering packet characteristics such as the
unbalanced traffic distribution between classes. Their proposed method adjusted the
classification results dynamically. Although our approach and that of the authors’ share the
same objective, which is to classify traffic, the authors applied semisupervised techniques to
generate a different number of subclasses from the Differentiated Services labels. However,
in our approach, we apply four supervised machine learning algorithms to classify network
traffic, using 11 classes.

Zhongsheng et al. [26] proposed an SVM to classify network traffic in campus back-
bone networks. They applied the SVM to traffic classification through data collection and
feature generation. The SVM achieved reliable and accurate results, reaching 99.31% and
96.12% accuracy using biased and unbiased test samples, respectively. However, they
only analyzed the SVM, neglecting other machine learning algorithms because algorithm
accuracy is not always the most required objective. In fact, real-time applications are more
sensitive to delay than to accuracy. Therefore, the execution time of different machine
learning algorithms has to be considered.

Al-Turjman [27] handled the wireless medium access problem under rapid mobility
in smart cities. The resulting framework uses LTE (Long Term Evolution), while improving
the QoS of mobile applications. In addition, it minimizes the delay and error in real-time
smart transportation. The framework integrates a Markovian process into the IEEE 802.16
standard to investigate various QoS measures, such as the average packet delay. Moreover,
a design for mobile vehicular cloud is proposed considering multiple conditions, such
as traffic and weather. The design uses the cellular infrastructure to stream data and
video but does not consider machine learning techniques that might provide better and
more-efficient decisions.

Yao et al. [28] proposed a traffic classification method mainly intended for smart city
networks. Their method relies on deep learning (DL), using a capsule network model
for efficient classification. The proposed method aims to remove the manual selection of



Sensors 2020, 21, 4677 5 of 17

network traffic features. While this method uses only an improved convolutional neural
network model to enhance the feature selection, we rely on four supervised machine
learning algorithms and compare their results for traffic classification, aiming to improve
the QoS in smart city networks by classifying the network traffic.

Miao et al. [29] compared six machine learning algorithms for traffic classification:
Naive Bayes, RF, SVM, H2O, KNN, and DT. They used principal component analysis for
feature extraction and analyzed its influence on the classification results. Experimental
results showed that RF and KNN were the top performing algorithms overall. Without
principal component analysis, the accuracy was 92.92% and 84.56% for RF and KNN,
respectively. In contrast, our traffic classification algorithms achieved higher accuracy,
reaching 99.08% and 97.16% for RF and KNN, respectively. Although our datasets contain
campus data traffic and their datasets contain ISP data traffic, they are both considered
backbone network traffic types. Therefore, they share similar data traffic.

Perera et al. [30] compared six supervised learning algorithms for traffic classification:
Naive Bayes, Bayesian network, RF, DT, Naive Bayes tree, and multilayer perceptron.
Experiments were conducted using two feature selection methods and five traffic classes.
The results showed that the RF and DT algorithms provided the highest classification accu-
racy, with 96% and 95% average accuracy, respectively. However, our traffic classification
algorithms achieved superior performance, with 99.08% and 99.18% average accuracy for
RF and DT, respectively.

Rahman et al. [31] proposed a cloud robotics framework that is suitable for smart
city applications. In the framework, a robotic agent leverages cloud services through
task offloading to improve the QoS and system performance. An optimization problem
is formulated for a directed acyclic graph, and a genetic algorithm determines the opti-
mal offloading decisions and solves the optimization problem. Unlike this development,
we improve the QoS in smart city networks by adopting traffic classification based on
machine learning.

To summarize, machine learning algorithms have been used to compare classifier
performance considering supervised algorithms. In addition, deep learning techniques
have been studied and various methods have been proposed to improve QoS in smart city
networks. Unlike existing studies, we provide a comprehensive study and evaluate the
performance of supervised classification algorithms—namely, SVM, RF, KNN, and DT—to
improve the QoS in smart city networks and classify network traffic according to statistical
features. Moreover, we design and implement a port-based traffic classification method for
comparison with the machine learning algorithms.

4. Traffic Classification Method Based on Machine Learning

We adopt a four-step method for traffic classification based on machine learning
(Figure 3): data gathering and feature selection; preprocessing; construction of a machine
learning model; result analysis and visualization. In data gathering and feature selection,
traffic flow samples are collected into a dataset for evaluation. The collected dataset is
described in Section 5. We then remove nonstatistical features and manually label each
sample with its corresponding class to create the training and test datasets. During pre-
processing, the features are scaled by applying a standardization method to the samples.
Then, the machine learning algorithms use the training dataset to determine the model for
traffic classification. We compare four common supervised machine learning algorithms:
SVM, RF, KNN, and DT. Then, the test dataset is used to evaluate each algorithm. During
analysis, we use four measures to evaluate the algorithm performance: accuracy, preci-
sion, recall, and F1-score. In addition, we adopt k-fold cross-validation to evaluate the
classification performance.



Sensors 2020, 21, 4677 6 of 17

Data Gathering and Feature Selection

Collect Samples Dataset Labeling

Preprocessing

Standardization

Statistical Features

Construct Machine Learning Model
Training 
Dataset

Results Analysis and Visualization

Classifier ModelSVM-RF-KNN-DT
Testing 
Dataset

Figure 3. Steps to build and evaluate proposed machine learning algorithms.

5. Evaluation of Traffic Classification

In this section, we describe the evaluation environment used in this study. We detail
the dataset and its traffic flows. Next, we introduce the performance measures to evaluate
the model. Finally, we present the experimental setup to evaluate the port-based method
and machine learning algorithms.

5.1. Dataset

We use the dataset constructed by Moore and Zuev [32] to apply the machine learning
algorithms and port-based method to traffic classification. The dataset has related smart
city data traffic characteristics, such as diversity in data sources, high traffic samples, and
various data types. The dataset was collected in a computer laboratory at Cambridge Uni-
versity. It comprises 10 datasets monitored at different times of the day from one Internet
website, which hosted around 1000 users connected to the Internet via a full-duplex gigabit
link. The dataset consists of 248 features, such as flow duration, TCP port number, and
packet interarrival time mean and variance. The dataset contains around 377,000 samples
based on TCP traffic flows. The classes with their corresponding applications are listed in
Table 1. We collect random samples from each class to construct a new dataset and remove
some features, including those representing nonstatistical information. In addition, we
remove the class Games, which has few samples. As a result, we obtain the 11 classes listed
in Table 2.

Table 1. Applications for traffic classification.

Classification Application

Bulk ftp
Database postgres, sqlnet oracle, ingres
Interactive ssh, klogin, rlogin, telnet
Mail imap, pop2/3, smtp
Services X11, dns, ident, ldap, ntp
WWW www
P2P KaZaA, BitTorrent, GnuTella
Attack Internet worm and virus attacks
Games Half-Life
Multimedia Windows Media Player, Real



Sensors 2020, 21, 4677 7 of 17

Table 2. Characteristics of the traffic classification dataset used in this study.

Traffic Class Samples

Attack 1500
Database 1068

FTP–Control 993
FTP–Data 2019

FTP–Passive 1297
Interactive 110

Mail 2081
Multimedia 43

P2P 542
Services 1921
WWW 1499

5.2. Performance Measures

To evaluate the performance of the machine learning algorithms and port-based
method, we consider various measures: accuracy, precision, recall, and F1-score. The
accuracy is the ratio of correctly classified traffic flow samples to the total number of
samples (Equation (1)):

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where the true positives (TP) represent the number of traffic flows correctly classified into
the class they belong to, and the true negatives (TN) represent the number of traffic flows
correctly classified as not corresponding to a class. In addition, the false positives (FP)
represent the number of traffic flows incorrectly classified into a class, and the false nega-
tives (FN) represent the number of traffic flows incorrectly classified as not belonging to a
class. We use the average of tenfold cross-validation to measure the accuracy and improve
the reliability of the results.

In some cases, when the dataset has a class representing the majority of sample values,
the accuracy score value might not precisely reflect the classifier model’s performance.
To avoid this problem, we also use other performance measures (precision, recall, and
F1-score) to present the performance of the classifier model. The precision is a measure
of the ratio of positive, correctly predicted traffic classes to the total number of positive
classification predictions (Equation (2)):

Precision =
TP

TP + FP
(2)

The recall measures the ratio of the actual positive, correctly predicted traffic classes
(Equation (3)):

Recall =
TP

TP + FN
(3)

The F1-score measures the average of precision and recall (Equation (4)):

F1 =
2 × Precision × Recall

Precision + Recall
(4)

5.3. Experimental Setup

All the experiments for the machine learning algorithms and port-based method
were implemented in Python. Specifically, we used the Scikit-learn library to implement,
train, and test the machine learning algorithms. We split the dataset into training and test
datasets, containing 75% of the samples for training and 25% of the samples for testing. We
also performed data preprocessing, including feature scaling using standardization for the



Sensors 2020, 21, 4677 8 of 17

feature’s sample values to reflect the same properties and avoid any bias towards a specific
feature. The objective of the standardization technique is to rescale the feature’s sample
values with a mean and standard deviation of 0 and 1, respectively. The standardized value
score (z) of a sample is calculated using Equation (5):

z =
x − µ

σ
(5)

where x is the sample value to be standardized, µ is the mean of the training samples, and
σ represents the standard deviation of training the samples.

In addition, we set different parameters in the machine learning algorithms to promote
accuracy. These parameters are related to each machine learning algorithm. To evaluate
the classification performance and prevent overfitting, we used tenfold cross-validation to
measure the accuracy, which provides reliable results when applied to machine learning
algorithms. To apply and evaluate the port-based method, we determined a list of popular
and well-known port numbers corresponding to the applications included in the dataset.

6. Results and Discussion

This section presents the evaluation results obtained from the machine learning al-
gorithms and the port-based method for traffic classification. We present the evaluation
of the machine learning algorithms in terms of performance measures, the impact of the
number of classes on accuracy, and their training and execution times. Then, we compare
the algorithms with the port-based method.

6.1. Evaluation of Machine Learning Algorithms

We implement and compare four machine learning algorithms: SVM, RF, KNN, and
DT. We set different model parameters for each algorithm to improve accuracy. In the
SVM implementation, we set a linear kernel. The SVM performs supervised learning
and represents the data samples in a high-dimensional space. This space determines a
hyperplane to optimally separate the samples and maximize the margin between classes,
using support vectors [33]. The average accuracy of SVM reached 97.41%, demonstrating
its high performance (Figure 4). The precision, recall, and F1-score per traffic class using
SVM are listed in Table 3. The results demonstrate that Interactive and Multimedia classes
have the lowest measurements among the classification labels. Class Interactive has a
precision of 0.82, recall of 0.72, and F1-score of 0.77; class Multimedia has a precision of
0.62, recall of 0.83, and F1-score of 0.71. Thus, the number of data traffic samples affects the
classification performance, because these two classes have fewer samples than the others.

SVM RF KNN DT
Machine Learning Classifiers

0

20

40

60

80

100

Ac
cu

ra
cy

(%
)

Figure 4. Average accuracy of machine learning algorithms.



Sensors 2020, 21, 4677 9 of 17

The RF algorithm creates DTs trained on the data flows and then aggregates the
different results to predict the class. In the RF implementation, we consider 50 trees to
maintain reasonable execution time and accuracy. We also set entropy as a parameter that
yields the best results. The average classification accuracy of RF reached 99.08% (Figure 4),
which is a remarkable performance. The evaluation results were also better for classes
Interactive and Multimedia. Class Interactive has a precision of 1.00, recall of 0.92, and
F1-score of 0.96; class Multimedia has a precision of 0.86, recall of 1.00, and F1-score of 0.92.
Table 4 shows that the RF implementation with its many DTs improves class prediction.

In the KNN algorithm, we use the Manhattan distance that provides high accuracy
and performance. The KNN algorithm [34] classifies data by finding the closest k neigh-
boring data points. The data class prediction is then based on majority voting between
the neighbors according to distance. The type of distance and value of k determine the
performance of the KNN algorithm. We obtain the best value of k from the accuracy
obtained for k that ranged from 1 to 20, as depicted in Figure 5. The results indicate that the
accuracy dropped while increasing the number of neighbors, and a k value of 4 yields an
accurate classification. The average accuracy of the KNN algorithm reached 97.16%, which
is lower than that of other algorithms (Figure 4). The precision, recall, and F1-score per
class obtained from the KNN algorithm are listed in Table 5.

0 5 10 15 20
Number of Neighbors 

93

94

95

96

97

98

Ac
cu

ra
cy

(%
)

Figure 5. Accuracy according to number of neighbors for k-nearest neighbors (KNN) algorithm.

The DT algorithm consists of multiple nodes and conditions until reaching its leaves
to predict classes. In the DT implementation, we use the entropy metric for improved
performance. The average accuracy of the DT algorithm reached 99.18% (Figure 4), which
is the highest accuracy among the evaluated classification algorithms. The precision, recall,
and F1-score per class obtained from the DT algorithm are listed in Table 6, showing high
measured values for most classes.

The results of F1-score, precision, and recall for each machine learning algorithm are
shown in Figure 6. The results show that for F1-score measurement, the DT algorithm
outperforms other algorithms, with a score of 99.27%; the KNN reached 97.15%, the RF
reached 99.14%, and the SVM reached 98.07%. For precision, the DT achieved the highest
performance with 99.27%, while the KNN reached 97.16%, the RF reached 99.15%, and
SVM achieved a score of 98.08%. For Recall, the DT algorithm shows its effectiveness with a
score of 99.27%, while the KNN reached 97.16%, the RF reached 99.14%, and SVM achieved
98.07%. Based on these results, the DT algorithm outperforms the other machine learning
algorithms in all calculated performance metrics.



Sensors 2020, 21, 4677 10 of 17

Here, we compare the results of the DT algorithm against other studies with similar
approaches. For instance, Zhang et al. [35] proposed a method relying on the DL method
with five hidden layers and 10 hidden nodes targeting the same dataset. As shown in
Figure 7, our proposed model achieved higher performance results than the DL method,
reaching 99.18% accuracy compared with 91.21%. Moreover, the proposed algorithm
outperformed Cao et al.’s [36] SVM algorithm targeting the same dataset, which scored
98.6%. Another performance study was proposed by Yuan et al. [37] based on SVM,
utilizing the same dataset. The results of unbiased samples achieved a score of 97.17%.
However, our proposed DT algorithm achieved higher performance (Figure 7).

Overall, the proposed model of the DT algorithm achieves the highest average accu-
racy (99.18%) among the evaluated algorithms, whereas the KNN algorithm provides the
lowest average accuracy (97.16%). Moreover, the DT algorithm outperforms other machine
learning algorithms when it comes to precision and recall evaluation. The results indicate
the effectiveness of the model to predict positive traffic classes correctly. In addition, the
DT and RF algorithms provide suitable performance for traffic classification.

F1-score Precision Recall
Performance Measurements

0

20

40

60

80

100

Sc
or

e 
Va

lu
e(

%
)

DT
KNN
RF
SVM

Figure 6. F1-score, precision, and recall performance measurements of machine learning algorithms.

DT (Proposed) DL (Zhang et al.) SVM (Cao et al.) SVM (Yuan et al.)
Classifiers

0

20

40

60

80

100

Ac
cu

ra
cy

(%
)

Figure 7. Accuracy comparison between the proposed DT algorithm, the DL method (Zhang et al.)
in [35], SVM algorithm (Cao et al.) in [36], and SVM algorithm (Yuan et al.) in [37].



Sensors 2020, 21, 4677 11 of 17

Table 3. Precision, recall, and F1-score per class for SVM classification.

Traffic Class Precision Recall F1-Score

Attack 0.95 0.95 0.95
Database 1.00 1.00 1.00
FTP–Control 0.98 0.99 0.99
FTP–Data 0.99 1.00 1.00
FTP–Passive 0.98 1.00 0.99
Interactive 0.82 0.72 0.77
Mail 0.99 0.99 0.99
Multimedia 0.62 0.83 0.71
P2P 0.92 0.96 0.94
Services 1.00 0.99 0.99
WWW 0.98 0.95 0.96

Table 4. Precision, recall, and F1-score per class for RF classification.

Traffic Class Precision Recall F1-Score

Attack 0.98 0.97 0.98
Database 1.00 1.00 1.00
FTP–Control 1.00 1.00 1.00
FTP–Data 0.99 1.00 1.00
FTP–Passive 0.98 1.00 0.99
Interactive 1.00 0.92 0.96
Mail 1.00 1.00 1.00
Multimedia 0.86 1.00 0.92
P2P 0.97 0.97 0.97
Services 1.00 0.99 1.00
WWW 0.99 0.97 0.98

Table 5. Precision, recall, and F1-score per class for KNN classification.

Traffic Class Precision Recall F1-Score

Attack 0.95 0.95 0.95
Database 0.97 1.00 0.99
FTP–Control 0.96 0.99 0.98
FTP–Data 0.99 0.99 0.99
FTP–Passive 0.97 0.97 0.97
Interactive 0.81 0.68 0.74
Mail 0.98 0.98 0.98
Multimedia 0.62 0.83 0.71
P2P 0.88 0.89 0.89
Services 1.00 0.99 0.99
WWW 0.97 0.94 0.96



Sensors 2020, 21, 4677 12 of 17

Table 6. Precision, recall, and F1-score per class for DT classification.

Traffic Class Precision Recall F1-Score

Attack 0.99 0.98 0.99
Database 1.00 1.00 1.00
FTP–Control 1.00 1.00 1.00
FTP–Data 1.00 1.00 1.00
FTP–Passive 0.98 0.99 0.99
Interactive 1.00 1.00 1.00
Mail 0.99 1.00 1.00
Multimedia 1.00 1.00 1.00
P2P 0.94 0.98 0.96
Services 1.00 0.99 1.00
WWW 0.99 0.98 0.98

6.2. Impact of the Number of Classes on the Accuracy

This section studies the impact of increasing the number of classes on the accuracy
of machine learning algorithms. We assume different numbers of class labels as follows:
two, four, six, eight, and eleven. Figure 8 shows the impact of increasing the number of
classes on the machine learning algorithms’ accuracy. The results demonstrate that as the
number of classes increases, the average accuracy decreases. Furthermore, we observe that
the decrease in average accuracy for the DT and RF algorithms is slight compared to the
other algorithms, showing their strength for traffic classification. DT starts at 99.69% when
the number of classes is 2, then ends at 99.28% when the number of classes is 11. RF starts
at 99.90% when the number of classes is 2, then ends at 99.08% when the number of classes
is 11. However, in the KNN algorithm, increasing the number of classes drops the average
accuracy dramatically; it starts at 99.48% when the number of classes is 2, then ends at
97.16% when the number of classes is 11. This indicates that KNN, which depends on the
distance to measure the similarity to the k-nearest neighbor’s point, is highly impacted by
increasing the number of classes. The SVM algorithm also shows a drop, with an average
accuracy of 99.9% and 97.41% in cases of 2 and 11 classes, respectively. By observing
these impacts, we conclude that DT and RF yield better performance results than other
algorithms in terms of average accuracy when varying the number of classes.

2 4 6 8 10
Number of Classes

90

92

94

96

98

100

Ac
cu

ra
cy

(%
)

SVM
RF
KNN
DT

Figure 8. Illustrating the impact of increasing the number of classes on the average accuracy.



Sensors 2020, 21, 4677 13 of 17

6.3. Training and Execution Times

Performance evaluation, in addition to accuracy, is essential to characterize machine
learning algorithms. In particular, the training and execution times are important perfor-
mance indicators. The training time is the time taken by a model to train on a dataset,
and the execution time represents the total time taken for computations, including data
splitting, data preprocessing, and model evaluation. The training and execution times for
all the machine learning algorithms are shown in Figure 9. The training and execution
times of the SVM algorithm are 2.01 and 21.59 s, respectively. For the RF algorithm, the
respective times are 2.36 and 24.90 s. Thus, RF is the slowest algorithm regarding both
training and execution times, because it builds and computes several DTs. In contrast, the
training time of the KNN algorithm is only 0.49 s because it does not create any model
during training but only stores training data for subsequent classification. Nevertheless,
its execution time is 23.46 s. This indicates that KNN takes more time to measure the
distance to the k-nearest neighbor’s data point. The training and execution times of the DT
algorithm are 0.72 and 7.47 s. Thus, DT is the fastest among the evaluated algorithms in
terms of both training and execution times.

SVM RF KNN DT
Machine Learning Classifiers

0

5

10

15

20

25

30

Ti
m

e(
s)

Training Time
Execution Time

Figure 9. Training and execution times of machine learning algorithms.

6.4. Evaluation of Port-Based Method

We also implement a port-based method for traffic classification in Python. The
method relies on popular port numbers for different services, and considers only the
standard port numbers per service running over network protocols (e.g., TCP, UDP). The
port numbers are used to distinguish different services running over the network for
management purposes, including QoS and security. We only consider the corresponding
well-known port for each application among classes defined in the dataset (depicted in
Table 1). For instance, we define port number 22 for SSH (Secure Shell) services and port 21
for FTP (File Transfer Protocol) applications.

We apply the port-based method [38] that classifies the flow from data samples
according to the port number. Algorithm 1 shows the pseudocode of the port-based
method’s implementation. After applying the method, classification accuracy reached
49.86%, which represents a low value. The results per class are listed in Table 7. The
precision, recall, and F1-score in most classes are zero, indicating that the port-based method
relies only on popular port numbers to classify data flows. However, the applications in
the dataset use dynamic port numbers for many purposes, including security. Some classes,
such as Interactive and Mail, show precision, recall, and F1-score values of 1 because the
corresponding applications use specific ports when constructing the dataset. However, the
port-based method is expected to fail in classes such as Attack, because the port numbers
are unknown beforehand, rendering the port-based method ineffective. For comparison,



Sensors 2020, 21, 4677 14 of 17

the F1-score, precision, and recall are calculated. Compared to DT, which shows the highest
results discussed in Section 6.1, the port-based method reached 49.25% for F1-score, 51.44%
for precision, and 49.86% for recall (Figure 10). Overall, the port-based method shows a
lower precision, recall, and F1-score than the machine learning algorithms; the latter seem
promising because they consider various statistical features in addition to port numbers
for traffic classification.

Algorithm 1: Port-based Method
Input:
X = test dataset without the class labels;
Class = set of class labels with the corresponding applications port number;
P = a list of test dataset port numbers;
Output:
Y = a list of predicted class labels;
begin

P = []
for i in X do

P.append(i[0])
end
Y = []
for p in P do

for c in Class do
if p within Class then

Y.append(c)
end

end
end
if p not within Class then

Y.append(not found)
end
return Y

end

Table 7. Precision, recall, and F1-score per class for conventional port-based classification.

Traffic Class Precision Recall F1-Score

Attack 0.00 0.00 0.00
Database 0.00 0.00 0.00
FTP–Control 1.00 0.99 0.99
FTP–Data 0.00 0.00 0.00
FTP–Passive 0.00 0.00 0.00
Interactive 1.00 1.00 1.00
Mail 1.00 1.00 1.00
Multimedia 0.00 0.10 0.18
P2P 1.00 0.99 0.99
Services 0.77 0.95 0.85
WWW 0.00 0.00 0.00



Sensors 2020, 21, 4677 15 of 17

F1-score Precision Recall
Performance Measurements

0

20

40

60

80

100

Sc
or

e 
Va

lu
e(

%
)

DT
Port-based Method

Figure 10. F1-score, precision, and recall performance measurements of DT algorithm and Port-
based Method.

6.5. Evaluation Summary

This section summarizes the evaluation results of machine learning algorithms and the
port-based method. By observing the results, we conclude that the DT algorithm showed
the best average accuracy and execution time performance. This result is considered the
best option for network traffic classification. However, smart city applications have dif-
ferent QoS requirements. Therefore, the DT algorithm is suitable for applications that
require real-time interactions and are sensitive to delay, such as online games, voice over
IP, and streaming applications. For mission-critical services that focus on accuracy rather
than execution time, such as intrusion detection systems, the DT and RF algorithms are
preferable for network traffic classification. Moreover, we observe that KNN is considered
time-consuming, rendering the KNN algorithm inefficient for applications that require
rapid decisions. Alternatively, the KNN is preferable for solutions that tend to find similar-
ities between instances. However, machine learning algorithms outperform the port-based
method in terms of traffic classification efficiency.

7. Conclusions and Future Work

Smart cities are becoming increasingly popular over time. The deployment of smart
solutions aims to make our daily lives more comfortable, productive, and efficient. Smart
cities involve various applications, data diversity, and a variety of QoS requirements
that represent challenges for traffic management. Traffic classification can be used to
manage several network aspects, including QoS support. Conventional traffic classification
methods, such as the port-based method and deep packet inspection, cannot handle
encrypted data and dynamic port numbers. In contrast, machine learning algorithms may
solve QoS management and handle complexity. We evaluated four supervised machine
learning algorithms for traffic classification: SVM, RF, KNN, and DT. In addition, we
evaluated a port-based method for comparison with the machine learning algorithms.
The evaluation results demonstrated that statistical features improve traffic classification
based on machine learning. The DT algorithm provided the highest average accuracy
(99.18%) among the evaluated machine learning algorithms. In contrast, the KNN algorithm
provided the lowest average accuracy (97.16%). Moreover, we demonstrated the limited
effectiveness of the port-based method for traffic classification, as this method depends
on specific port numbers to distinguish network flows. Unlike this method, the machine
learning algorithms consider various features, as well as the assigned port number, for
traffic classification. In future work, we plan to investigate routing problems by integrating
machine learning algorithms for traffic classification into various smart city applications
that handle critical data. Moreover, we plan to compare other machine learning algorithms
for traffic classification, such as eXtreme Gradient Boosting (XGBoost).



Sensors 2020, 21, 4677 16 of 17

Author Contributions: R.M.A. performed the experiments, analyzed the data, and wrote the paper.
M.J.F.A. supervised the research and critically revised the paper. All authors have read and agreed to
the published version of the manuscript.

Funding: The authors extend their appreciation to the Deanship of Scientific Research at King Saud
University for funding this work through research group number RG-1441-512.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the Deanship of Scientific Research and RSSU at King Saud
University for their technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
2. Imran; Ghaffar, Z.; Alshahrani, A.; Fayaz, M.; Alghamdi, A.M.; Gwak, J. A Topical Review on Machine Learning, Software

Defined Networking, Internet of Things Applications: Research Limitations and Challenges. Electronics 2021, 10, 880. [CrossRef]
3. Gyrard, A.; Zimmermann, A.; Sheth, A. Building IoT-Based Applications for Smart Cities: How Can Ontology Catalogs Help?

IEEE Internet Things J. 2018, 5, 3978–3990. [CrossRef]
4. Kirimtat, A.; Krejcar, O.; Kertesz, A.; Tasgetiren, M.F. Future Trends and Current State of Smart City Concepts: A Survey. IEEE

Access 2020, 8, 86448–86467. [CrossRef]
5. Roblek, V.; Meško, M. Smart City Knowledge Management: Holistic Review and the Analysis of the Urban Knowledge

Management. In Proceedings of the 21st Annual International Conference on Digital Government Research, Seoul, Korea,
15–19 June 2020; pp. 52–60.

6. Tcholtchev, N.; Schieferdecker, I. Sustainable and Reliable Information and Communication Technology for Resilient Smart Cities.
Smart Cities 2021, 4, 156–176. [CrossRef]

7. Mohanty, S.P.; Choppali, U.; Kougianos, E. Everything you wanted to know about smart cities: The Internet of things is the
backbone. IEEE Consum. Electron. Mag. 2016, 5, 60–70. [CrossRef]

8. Alharbi, F.; Fei, Z. Improving the quality of service for critical flows in Smart Grid using software-defined networking.
In Proceedings of the 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm), Sydney, Australia,
6–9 November 2016; pp. 237–242.

9. Naphade, M.; Banavar, G.; Harrison, C.; Paraszczak, J.; Morris, R. Smarter Cities and Their Innovation Challenges. Computer
2011, 44, 32–39. [CrossRef]

10. Huang, N.; Liao, I.; Liu, H.; Wu, S.; Chou, C. A dynamic QoS management system with flow classification platform for software-
defined networks. In Proceedings of the 2015 8th International Conference on Ubi-Media Computing (UMEDIA), Colombo,
Sri Lanka, 24–26 August 2015; pp. 72–77.

11. Binsahaq, A.; Sheltami, T.R.; Salah, K. A Survey on Autonomic Provisioning and Management of QoS in SDN Networks. IEEE
Access 2019, 7, 73384–73435. [CrossRef]

12. Braden, R.T.; Clark, D.D.D.; Shenker, S. Integrated Services in the Internet Architecture: An Overview. In RFC 1633; IETF:
Fremont, CA, USA, 1994. [CrossRef]

13. Baker, F.; Black, D.L.; Nichols, K.; Blake, S.L. Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers. In RFC 2474; IETF: Fremont, CA, USA, 1998. [CrossRef]

14. AlZoman, R.; Alenazi, M.J.F. Exploiting SDN to Improve QoS of Smart City Networks Against Link Failures. In Proceedings of
the 2020 Seventh International Conference on Software Defined Systems (SDS), Paris, France, 20–23 April 2020; pp. 100–106.

15. Tahaei, H.; Afifi, F.; Asemi, A.; Zaki, F.; Anuar, N.B. The rise of traffic classification in IoT networks: A survey. J. Netw. Comput.
Appl. 2020, 154, 102538. [CrossRef]

16. Dainotti, A.; Pescape, A.; Claffy, K.C. Issues and future directions in traffic classification. IEEE Netw. 2012, 26, 35–40. [CrossRef]
17. Nguyen, T.T.T.; Armitage, G. A survey of techniques for internet traffic classification using machine learning. IEEE Commun.

Surv. Tutor. 2008, 10, 56–76. [CrossRef]
18. Pacheco, F.; Exposito, E.; Gineste, M.; Baudoin, C.; Aguilar, J. Towards the Deployment of Machine Learning Solutions in Network

Traffic Classification: A Systematic Survey. IEEE Commun. Surv. Tutor. 2019, 21, 1988–2014. [CrossRef]
19. Park, B.; Won, Y.; Chung, J.; Kim, M.s.; Hong, J.W.K. Fine-grained traffic classification based on functional separation. Int. J. Netw.

Manag. 2013, 23, 350–381. [CrossRef]
20. Aceto, G.; Dainotti, A.; de Donato, W.; Pescape, A. PortLoad: Taking the Best of Two Worlds in Traffic Classification. In Proceedings

of the 2010 INFOCOM IEEE Conference on Computer Communications Workshops, San Diego, CA, USA, 15–19 March 2010;
pp. 1–5.

http://doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.3390/electronics10080880
http://dx.doi.org/10.1109/JIOT.2018.2854278
http://dx.doi.org/10.1109/ACCESS.2020.2992441
http://dx.doi.org/10.3390/smartcities4010009
http://dx.doi.org/10.1109/MCE.2016.2556879
http://dx.doi.org/10.1109/MC.2011.187
http://dx.doi.org/10.1109/ACCESS.2019.2919957
http://dx.doi.org/10.17487/RFC1633
http://dx.doi.org/10.17487/RFC2474
http://dx.doi.org/10.1016/j.jnca.2020.102538
http://dx.doi.org/10.1109/MNET.2012.6135854
http://dx.doi.org/10.1109/SURV.2008.080406
http://dx.doi.org/10.1109/COMST.2018.2883147
http://dx.doi.org/10.1002/nem.1837


Sensors 2020, 21, 4677 17 of 17

21. Tongaonkar, A.; Keralapura, R.; Nucci, A. Challenges in Network Application Identification. In Proceedings of the 5th USENIX
Conference on Large-Scale Exploits and Emergent Threats, San Jose, CA, USA, 25–27 April 2012; p. 1.

22. Salman, O.; Elhajj, I.; Kayssi, A.; Chehab, A. A Review on Machine Learning Based Approaches for Internet Traffic Classification.
Ann. Telecommun. 2020, 673–710. [CrossRef]

23. Alqudah, N.; Yaseen, Q. Machine Learning for Traffic Analysis: A Review. Procedia Comput. Sci. 2020, 170, 911–916. [CrossRef]
24. Xie, J.; Yu, F.R.; Huang, T.; Xie, R.; Liu, J.; Wang, C.; Liu, Y. A Survey of Machine Learning Techniques Applied to Software

Defined Networking (SDN): Research Issues and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 393–430. [CrossRef]
25. Aureli, D.; Cianfrani, A.; Diamanti, A.; Sanchez Vilchez, J.M.; Secci, S. Going Beyond DiffServ in IP Traffic Classification.

In Proceedings of the NOMS 2020—2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary,
20–24 April 2020; pp. 1–6.

26. Zhongsheng, W.; Jianguo, W.; Sen, Y.; Jiaqiong, G. Traffic identification and traffic analysis based on support vector machine.
Concurr. Comput. Pract. Exp. 2020, 32, e5292. [CrossRef]

27. Al-Turjman, F. Smart-city medium access for smart mobility applications in Internet of Things. Trans. Emerg. Telecommun. Technol.
2020, e3723. [CrossRef]

28. Yao, H.; Gao, P.; Wang, J.; Zhang, P.; Jiang, C.; Han, Z. Capsule Network Assisted IoT Traffic Classification Mechanism for Smart
Cities. IEEE Internet Things J. 2019, 6, 7515–7525. [CrossRef]

29. Miao, Y.; Ruan, Z.; Pan, L.; Zhang, J.; Xiang, Y. Comprehensive analysis of network traffic data. Concurr. Comput. Pract. Exp. 2018,
30, e4181. [CrossRef]

30. Perera, P.; Tian, Y.C.; Fidge, C.; Kelly, W. A Comparison of Supervised Machine Learning Algorithms for Classification of
Communications Network Traffic. In Neural Information Processing; Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S.M., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 445–454.

31. Rahman, A.; Jin, J.; Cricenti, A.; Rahman, A.; Yuan, D. A Cloud Robotics Framework of Optimal Task Offloading for Smart City
Applications. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8
December 2016; pp. 1–7.

32. Moore, A.W.; Zuev, D. Internet Traffic Classification Using Bayesian Analysis Techniques. SIGMETRICS Perform. Eval. Rev. 2005,
33, 50–60. [CrossRef]

33. Bishop, C. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
34. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
35. Zhang, C.; Wang, X.; Li, F.; He, Q.; Huang, M. Deep learning–based network application classification for SDN. Trans. Emerg.

Telecommun. Technol. 2018, 29, e3302. [CrossRef]
36. Cao, J.; Fang, Z.; Qu, G.; Sun, H.; Zhang, D. An accurate traffic classification model based on support vector machines. Int. J.

Netw. Manag. 2017, 27, e1962. [CrossRef]
37. Yuan, R.; Li, Z.; Guan, X.; Xu, L. An SVM-based machine learning method for accurate internet traffic classification. Inf. Syst.

Front. 2010, 12, 149–156. [CrossRef]
38. Cotton, M.; Eggert, L.; Touch, D.J.D.; Westerlund, M.; Cheshire, S. Internet Assigned Numbers Authority (IANA) Procedures for

the Management of the Service Name and Transport Protocol Port Number Registry. In RFC 6335; IETF: Fremont, CA, USA, 2011.
[CrossRef]

http://dx.doi.org/10.1007/s12243-020-00770-7
http://dx.doi.org/10.1016/j.procs.2020.03.111
http://dx.doi.org/10.1109/COMST.2018.2866942
http://dx.doi.org/10.1002/cpe.5292
http://dx.doi.org/10.1002/ett.3723
http://dx.doi.org/10.1109/JIOT.2019.2901348
http://dx.doi.org/10.1002/cpe.4181
http://dx.doi.org/10.1145/1071690.1064220
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1002/ett.3302
http://dx.doi.org/10.1002/nem.1962
http://dx.doi.org/10.1007/s10796-008-9131-2
http://dx.doi.org/10.17487/RFC6335

	Introduction and Motivations
	Background
	Supervised Learning Algorithms
	Unsupervised Learning Algorithms

	Related Work
	Traffic Classification Method Based on Machine Learning
	Evaluation of Traffic Classification
	Dataset
	Performance Measures
	Experimental Setup

	Results and Discussion
	Evaluation of Machine Learning Algorithms 
	Impact of the Number of Classes on the Accuracy
	Training and Execution Times
	Evaluation of Port-Based Method
	Evaluation Summary

	Conclusions and Future Work
	References

