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Abstract: Emerging literature implicates acid sphingomyelinase in tumor sensitivity/resistance to
anticancer treatments. Gentamicin is a drug commonly used as an antimicrobial but its serendipity
effects have been shown. Even though many evidences on the role of gentamicin in cancer have been
reported, its mechanism of action is poorly understood. Here, we explored acid sphingomyelinase
as a possible new target of gentamicin in cancer. Since gastric cancer is one of the most common
cancers and represents the second cause of death in the world, we performed the study in NCI-N87
gastric cancer cell line. The effect of the drug resulted in the inhibition of cell proliferation, including
a reduction of cell number and viability, in the decrease of MIB-1 proliferative index as well as in the
upregulation of cyclin-dependent kinase inhibitor 1A and 1B (CDKN1A and CDKN1B), and growth
arrest and DNA-damage 45A (GADD45A) genes. The cytotoxicity was apoptotic as shown by FACS
analysis. Additionally, gentamicin reduced HER2 protein, indicating a minor tumor aggressiveness.
To further define the involvement of sphingomyelin metabolism in the response to the drug, gene
and protein expression of acid and neutral sphingomeylinase was analyzed in comparison with
phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and vitamin D receptor (VDR),
molecules involved in cancer. Gentamicin induced a downregulation of PTEN, VDR, and neutral
sphingomyelinase and a strong upregulation of acid sphingomyelinase. Of note, we identified the
same upregulation of acid sphingomyelinase upon gentamicin treatment in other cancer cells and
not in normal cells. These findings provide new insights into acid sphingomyelinase as therapeutic
target, reinforcing studies on the potential role of gentamicin in anticancer therapy.
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1. Introduction

Sphingomyelin (SM) is a bioactive sphingolipid recognized as an important signaling molecule
in cell proliferation, differentiation, apoptosis, and cancer [1]. SM metabolism is a multifaceted
network that involves many enzymes responsible for SM and phosphatidylcholine (PC) balance by
producing second mediators such as ceramide and diacylglycerol (DAG). Both these molecules may
elicit several opposite effects within the cell [2]. SM is hydrolyzed by sphingomyelinase (SMase) to
produce phosphocholine and ceramide, and it is synthesized by SM-synthase by using phosphocholine
from PC producing DAG. PC is restored by using SM as a source of phosphocholine [2]. The SM
breakdown is carried out by different SMase isoenzymes belonging to three families with distinct
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and often opposite roles: neutral sphingomyelinase (nSMase), acid sphingomyelinase (aSMase), and
alkaline sphingomyelinase (alkSMase) [3]. Studies from several laboratories identified nSMase as a
possible tumor suppressor. nSMase overexpression delayed cell growth in MCF-7 breast cancer cells [4],
where it was considered a target for daunorubicin [5]. In addition, nSMase overexpression reduced
hepatocyte proliferation [6], and its deficiency led to spontaneous liver tumor [7]. Moreover, nSMase
gene mutations were identified in acute myeloid and lymphoid leukemias [8]. There is an emerging
body of literature implicating aSMase in the modulation of cancer progression [9], contributing to the
apoptosis of tumor cells and determining tumor sensitivity/resistance to anticancer treatments [10].
Perrotta et al. (2015) highlighted the existence of an aSMase-autophagy axis whose imbalance plays a
role in cancer [11].

Gentamicin (GM) is an aminoglycoside molecule primarily used as a gram-negative antimicrobial
drug due to its ability to bind and cleave the 30S subunit of the bacterial ribosome [12]. Previous
studies revealed a nephrotoxic action for high doses of GM with particular focus on both apoptosis [13]
and necrosis [14] of tubular epithelial cells. These effects were mediated by nitric oxide production [15]
and by SMase inhibition [16]. In the last ten years, the serendipity function of GM has been elucidated
in cancer. In fact, GM has been implicated in the onset and progression of non-Hodgkin’s T cell human
lymphoblast lymphoma (SUP-T1) by regulating SM metabolism [17] and in increasing the efficacy of
chemotherapy treatment [18].

The above data provide strong evidence that nSMase and aSMase are important regulators of
cancer cell fate. Starting from these findings, we studied for the first time, the effect of GM treatment
on nSMase and aSMase in NCI-N87 gastric cancer cell line, by demonstrating that the drug delays
cancer cell proliferation and aggressiveness by involving specifically aSMase.

2. Results

2.1. Advances in Anticancer Action of Gentamicin

GM has been described to be able to induce cancer cell death. In this study, we evaluated whether
GM can suppress the human gastric cancer cell growth. A dose response of GM revealed that with
increasing dose from 0.75 to 1.5 mM for 24 h, a significant reduction of NCI-N87 cell number was
observed (Figure 1a). However, considering all the concentrations studied from 0.25 to 20 mM, the
dose–response effect is not linear, as it happens for other drugs or in other experimental models [17,19,20].
The results showed that high doses did not induce reduction of cell growth similar to the effect obtained
with very low doses (Figure 1a). To determine the effect of GM on cell death, a trypan blue assay
was performed. No significant difference in cell death was induced by GM treatment from 0.25
to 2 mM at 24 h (Figure 1a). Conversely, a 72 h time point showed that the long time treatment
significantly decreased the cell number, specially by 1.75 and 2 mM GM treatment. At the same
concentrations, accumulated cell death was shown (Figure 1a). In addition, after 24 h from treatment,
cell viability, assayed by the MTT test, did not change with concentration up to 0.5 mM GM, but
decreased progressively with concentrations between 0.75 and 2 mM (Figure 1b). Therefore, the results
indicated that the cells treated with GM were numerically similar to the control, but their viability was
reduced. Cell viability following exposure to 1.5 mM GM was around 70%. Based on these results,
1.5 mM GM concentration was chosen for the following experiments. We then set out to determine
whether GM-induced cytotoxicity was apoptotic. Therefore, we performed FACS analysis after 24 h
from 1.5 mM GM treatment and we compared the results with those of the control sample. As shown
in Figure 1c, there was an increase of apoptosis after GM treatment (control sample 5.21% ± 0.25%; GM
treated sample 7.61% ± 0.16%) although there were no variations from the count of dead cells, because
the last is a more approximate technique. In addition, FACS analysis showed different distribution of
the control and experimental cells in all phases of the cell cycle. In fact, control cells were 65.4% ± 1.2%
in G0/G1, 28.32% ± 0.8% in S, and 6.25% ± 0.5% in G2/M phase of the cell cycle, and GM treated cells
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were 70.17% ± 1.41% in G0/G1, 25.14% ± 0.36% in S, and 4.67% ± 0.14% in G2/M phase of the cell cycle,
by indicating an accumulation of the cells in G0/G1 phase of the cell cycle.
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the ordinate on the right). Cell death was evaluated by trypan blue staining (histograms referred to 
the ordinate on the left). Ctr, untreated sample. (b) Cell viability was assessed by MTT method and 
expressed as a percentage relative to that of the control cells set at 100%. (c) FACS analysis. (d) 
CDKN1A, CDKN1B gene expression, data are referred to the gentamicin (GM)-untreated sample 
(control) set at 1. GAPDH expression was used as a housekeeping gene. RT-PCR analysis was 
performed in control and experimental NCI-N87 cells collected 24 h after 1.5 mM GM treatment. The 
data represent the mean ± standard deviation (SD) of three independent experiments performed in 
duplicate (significance, * p < 0.001 versus control sample). 

These data were consistent with the upregulation of CDKN1A and CDKN1B cyclin-dependent 
kinase inhibitor genes (Figure 1d). Hematoxylin–eosin staining revealed that NCI-N87 GM-treated 
cells exhibited large size, suggesting that GM induced a change of cell morphology (Figure 2a). 
Immunohistochemistry analysis by using Ki-67 (MIB-1) as proliferation marker revealed that GM 
treatment caused a reduction of cell labeling, confirming a significant inhibition of cell growth [21] 
(Figure 2b). Furthermore, the HercepTest, a semi-quantitative immunohistochemistry assay, was 
performed to determine the expression of HER2 protein, a transmembrane tyrosine kinase receptor 
that plays a key role in the development and progression of gastric cancer cells [22]. Images showed 
a strong reduction of labeling in the GM-treated cells (Figure 2c,d). Densitometric analysis (Figure 
2e). In accordance, the growth arrest and DNA-damage 45A (GADD45A) gene was strongly 
upregulated (Figure 2f). Taken together, these results show the potential role of GM in the reduction 
of gastric cancer cell growth. 

Figure 1. Effects of increasing doses of gentamicin on NCI-N87 cells. (a) The cells were counted
24 and 72 h after treatment with increasing concentrations of the drug (0.25–2.0 mM) (lines referred
to the ordinate on the right). Cell death was evaluated by trypan blue staining (histograms referred
to the ordinate on the left). Ctr, untreated sample. (b) Cell viability was assessed by MTT method
and expressed as a percentage relative to that of the control cells set at 100%. (c) FACS analysis.
(d) CDKN1A, CDKN1B gene expression, data are referred to the gentamicin (GM)-untreated sample
(control) set at 1. GAPDH expression was used as a housekeeping gene. RT-PCR analysis was
performed in control and experimental NCI-N87 cells collected 24 h after 1.5 mM GM treatment.
The data represent the mean ± standard deviation (SD) of three independent experiments performed in
duplicate (significance, * p < 0.001 versus control sample).

These data were consistent with the upregulation of CDKN1A and CDKN1B cyclin-dependent
kinase inhibitor genes (Figure 1d). Hematoxylin–eosin staining revealed that NCI-N87 GM-treated
cells exhibited large size, suggesting that GM induced a change of cell morphology (Figure 2a).
Immunohistochemistry analysis by using Ki-67 (MIB-1) as proliferation marker revealed that GM
treatment caused a reduction of cell labeling, confirming a significant inhibition of cell growth [21]
(Figure 2b). Furthermore, the HercepTest, a semi-quantitative immunohistochemistry assay, was
performed to determine the expression of HER2 protein, a transmembrane tyrosine kinase receptor
that plays a key role in the development and progression of gastric cancer cells [22]. Images showed a
strong reduction of labeling in the GM-treated cells (Figure 2c,d). Densitometric analysis (Figure 2e).
In accordance, the growth arrest and DNA-damage 45A (GADD45A) gene was strongly upregulated
(Figure 2f). Taken together, these results show the potential role of GM in the reduction of gastric
cancer cell growth.
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Figure 2. Effect of gentamicin after 24 h from treatment. (a) Cell morphology by hematoxylin–eosin 
staining; (b) MIB-1 immunohistochemistry staining; (c,d) HercepTest immunostaining. 10× 
magnification (a, b), 20× magnification (c), and 40× magnification (d); (e) densitometric analysis; (f) 
GADD45A gene expression, data are referred to the GM-untreated sample (control) set at 1. GAPDH 
expression was used as a housekeeping gene. RT-PCR analysis was performed in control and 
experimental NCI-N87 cells collected 24 h after 1.5 mM GM treatment. The data represent the mean 
± SD of three independent experiments performed in duplicate (significance, * p < 0.001 versus control 
sample). 
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deregulation after GM treatment, other genes involved in cancer, such as vitamin D receptor (VDR) 
[17], importin 7 (Ipo7) [22], and anti-phosphatase and tensin homolog deleted on chromosome 10 
(PTEN) [17], were considered. Figure 3 shows no changes of Ipo7 expression and a significant 
downregulation of VDR in accordance with our previous results [17]. Contrary to expectations, a 
downregulation of the PTEN gene was obtained (Figure 3). Then we performed immunoblotting 
analysis to study nSMase, aSMase, Ipo7, VDR, and PTEN protein expression. Figure 4 provides 
strong evidence that proteins changed according to the gene expression. Results suggested that GM-
induced reduction of cancer cell growth was not mediated by the PTEN pathway. To completely 
exclude the involvement of PTEN, AKT and phosho-AKT (p-AKT) have been studied. Figure 5 
illustrates how AKT and p-AKT were not modified following treatment of cells with GM. 
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Figure 2. Effect of gentamicin after 24 h from treatment. (a) Cell morphology by hematoxylin–eosin
staining; (b) MIB-1 immunohistochemistry staining; (c,d) HercepTest immunostaining. 10×magnification
(a,b), 20× magnification (c), and 40× magnification (d); (e) densitometric analysis; (f) GADD45A gene
expression, data are referred to the GM-untreated sample (control) set at 1. GAPDH expression was used as
a housekeeping gene. RT-PCR analysis was performed in control and experimental NCI-N87 cells collected
24 h after 1.5 mM GM treatment. The data represent the mean ± SD of three independent experiments
performed in duplicate (significance, * p < 0.001 versus control sample).

2.2. Gentamicin Alters Sphingomyelin Metabolism

To investigate whether GM-induced cell growth inhibition was linked to the change of SM
metabolism, the gene expression of nSMase and aSMase was measured. As shown in Figure 3,
the treatment with 1.5 mM GM for 24 h induced a downregulation of nSMase and approximately a
threefold increase in aSMase gene expression. To verify a specific SM metabolism enzyme deregulation
after GM treatment, other genes involved in cancer, such as vitamin D receptor (VDR) [17], importin 7
(Ipo7) [22], and anti-phosphatase and tensin homolog deleted on chromosome 10 (PTEN) [17], were
considered. Figure 3 shows no changes of Ipo7 expression and a significant downregulation of VDR in
accordance with our previous results [17]. Contrary to expectations, a downregulation of the PTEN
gene was obtained (Figure 3). Then we performed immunoblotting analysis to study nSMase, aSMase,
Ipo7, VDR, and PTEN protein expression. Figure 4 provides strong evidence that proteins changed
according to the gene expression. Results suggested that GM-induced reduction of cancer cell growth
was not mediated by the PTEN pathway. To completely exclude the involvement of PTEN, AKT and
phosho-AKT (p-AKT) have been studied. Figure 5 illustrates how AKT and p-AKT were not modified
following treatment of cells with GM.

Based on these results, we could hypothesize that aSMase might specifically mediate GM response
in gastric cancer cells. To investigate whether aSMase could be a specific target of GM in cancer
cells, the experiment was repeated by incubating normal cells such as thyrocytes (FRTL-5), embryonic
hippocampal cells (HN9.10), and lymphocytes, and other cancer cells as and lymphoma cells (SUP-T1)
and hepatoma cells (H35), with 1.5 mM GM for 24 h. Interestingly, GM specifically upregulated the
aSMase gene only in cancer cells (Figure 6). The analysis of aSMase protein supported this results
(Figure 7). Therefore, these results can induce to hypothesize that aSMase could be a specific target of
GM in cancer cells.
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Figure 3. Effect of gentamicin on Ipo7, VDR, PTEN, SMPD1, SMPD4, gene expression. GAPDH expression
was used as a housekeeping gene. RT-PCR analysis was performed in control and experimental NCI-N87
cells collected 24 h after 1.5 mM GM treatment. Data are expressed as the mean ± SD of three independent
experiments performed in three PCR replicates (significance, * p < 0.001 versus control sample).
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Figure 4. Effect of gentamicin on importin 7 (Ipo7), vitamin D receptor (VDR), phosphatase and
tensin homolog deleted on chromosome 10 (PTEN), acid sphingomyelinase (aSMase), and neutral
sphingomyelinase (nSMase) protein expression. Experiments were performed in control and experimental
NCI-N87 cells collected 24 h after 1.5 mM GM treatment. (a) Immunoblots of proteins were probed
with anti-IPO7, anti-VDR, anti-PTEN, anti-aSMase, and anti-nSMase and visualized by enhanced
chemiluminescence (ECL). β-tubulin was used as loading control. (b) The area intensity was evaluated
by densitometry scanning and analysis with ImageJ program, the data represent the mean ± SD of three
experiments performed in duplicate (significance, * p < 0.001 versus control sample).
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control and experimental NCI-N87 cells collected 24 h after 1.5 mM GM treatment. (a) Immunoblots 
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performed in duplicate (significance, * p < 0.001 versus control sample). 
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the mean ± SD of three independent experiments performed in three PCR replicates (significance, * p 
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Figure 5. Effect of gentamicin on AKT/p-AKP protein expression. Experiments were performed in
control and experimental NCI-N87 cells collected 24 h after 1.5 mM GM treatment. (a) Immunoblots
of proteins were probed with anti-AKT and p-AKT and visualized by enhanced chemiluminescence
(ECL). β-tubulin was used as loading control. (b) The area density was evaluated by densitometry
scanning and analysis with ImageJ program, the data represent the mean ± SD of three experiments
performed in duplicate (significance, * p < 0.001 versus control sample).
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Figure 6. Effect of gentamicin on SMPD1, SMPD4 gene expression in thyrocytes (FRTL-5 cells),
embryonic hippocampal cells (HN9.10), human lymphocytes and non-Hodgkin’s T cell human
lymphoblastic lymphoma cells (SUP-T1), hepatoma cells (H35), and human gastric cancer cells
(NCI-N87). GAPDH expression was used as a housekeeping gene. RT-PCR analysis was performed
in control and experimental cells collected after 24 h after 1.5mM GM treatment. Data are expressed
as the mean ± SD of three independent experiments performed in three PCR replicates (significance,
* p < 0.001 versus control sample).
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Figure 7. Effect of gentamicin on aSMase and nSMase protein expression. Experiments were performed
in control and experimental FRTL-5, HN9.10, lymphocytes, SUP-T1, and H35 cells, collected 24 h after
1.5 mM GM treatment. (a) Immunoblots of proteins were probed with anti-aSMase and anti-nSMase
and visualized by enhanced chemiluminescence (ECL). β-tubulin was used as loading control. (b) The
area intensity was evaluated by densitometry scanning and analysis with ImageJ program, the data
represent the mean ± SD of three experiments performed in duplicate (significance, * p < 0.001 versus
control sample).

3. Discussion

The aim of the study was to demonstrate that SM metabolism enzymes could be potential targets
of GM. To this end, we used human gastric cancer cells since it is one of the most common cancers and
represents the second cause of death in the world, in order to highlight a new serendipity function of
the drug to be added to those already reported in the literature. In fact, GM, a known antibacterial
agent, induced apoptosis, necrosis, and cancer in mammalians [13,14,16,18]. Nowadays, the treatment
of gastric cancer is primarily based on surgical resection and different chemotherapy protocols [23–25].
A recent review highlighted the importance of monoclonal antibody use [26]. Interestingly, Lei et al.
(2017) demonstrated that quercetin, a flavonoid widely present in vegetables and fruits, potentiated
the efficacy of anticancer drugs [27]. Recently, GM has been described as a read-through agent for the
treatment of rectal cancer [28]. This is the first study showing the action of GM in human gastric cancer
NCI-N87 cells. We found that GM treatment delayed cell growth by inducing a slight upregulation of
CDKN1A and CDKN1B and a strong upregulation of GADD45A gene expression. It is well known
that CDKN1A, a kinase induced in response to DNA damage, mediates cell cycle arrest in G1 and
G2 phases [29]. Moreover, CDKN1B plays a critical role in the regulation of G1/S transition of the
cell cycle [30] and GADD45A is involved in promoting cell death [31]. Although a wide literature
indicated that the tumor suppressor PTEN was required for the anticancer action of both drug [32] and
natural product [33], we found no evidence about the involvement of the PTEN/AKT pathway as a
direct substrate of GM. Moreover, since VDR gene and protein expression levels were slightly reduced
we suggest that the mechanism underlying the action of GM did not depend on VDR expression. There
are conflicting findings regarding the impact of VDR in cancer. Matusiak et al. (2005) found that VDR
protein levels decreased in relation with colon cancer cell de-differentiation [34]. Recently, Liu et al.,
(2018) demonstrated that VDR was a target for miR-1204 to promote breast cancer cell proliferation,
tumorigenesis, and metastasis [35]. These controversial observations might be due to the deregulation
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of vitamin D metabolism in many types of cancer [36]. Interestingly, we revealed modifications in the
SM pathway through a slight reduction of nSMase and a strong increase of aSMase gene and protein
expression. The specificity of GM action on aSMase in cancer cells was demonstrated showing an
increase of aSMase gene and protein expression in other cancer cell lines such as SUP-T1 (lymphoma
cells) and H35 (hepatoma cells). It was very relevant considering that nSMase is correlated with cell
growth [37] and aSMase with autophagy and/or apoptosis [11]. The definitive proof that aSMase is
a GM target could be obtained by testing the effect of aSMase knockdown by siRNA transfection.
However, it represents the cellular model that reproduces Niemann–Pick disease in vitro. The lack of
the enzyme causes an accumulation of SM that induces cellular degeneration and death with a great
experimental variability, and, therefore, it is not easy to establish the effect of a GM in these cells.

Our results suggest that aSMase can be considered a potential target of GM in cancer cells. Our
attention focused on gastric cancer considering that it is the most common cancer and represents the
second cause of death in the world. In this study, we provide evidence for anti-gastric cancer properties
of an anti-microbial drug, indicating a serendipitous finding of GM that acts via aSMase. Thus, GM
could be a valuable aid for anticancer therapy at low costs and with reduced collateral effects.

4. Materials and Methods

4.1. Materials

Human gastric cancer NCI-N87 cell line was purchased from Istituto Zooprofilattico Sperimentale
della Lombardia e dell’Emilia Romagna ‘Bruno Ubertini’ (Brescia, Italy). Thyroid epithelial FRTL-5
cells were prepared and characterized as previously reported [38]. Lymphocytes were from three
donors (Centro Trasfusionale, Ospedale Silvestrini, Perugia, Italy), as previously reported [17].
Non-Hodgkin’s T-cell human lymphoblastic lymphoma (SUP-T1) were from Biological Materials Bank
(ICLC) CBA, Genoa, Italy. H35 hepatoma cells were obtained from the European Collection of Animal
Cell Cultures (Salisbury, UK). RPMI 1640, L-glutamine, trypsin, and ethylenediaminetetraacetic
acid disodium and tetrasodium salt (EDTA) were from Microtech Srl (Pozzuoli, NA, Italy).
Fetal bovine serum (FBS), penicillin–streptomycin, Dulbecco’s phosphate buffered saline pH 7.4
(PBS), High-Capacity cDNA Reverse Transcription Kit, TaqMan®Gene Expression Master Mix,
and all gene expression TaqMan assays used were from Thermo Fisher Scientific (Waltham,
MA, USA). Dimethyl sulfoxide (DMSO) was purchased from Carlo Erba Reagents Srl (Milan,
Italy). 3-[4,5-Dimethyl-2-thiazolyl]-2,5-diphenyl-2-tetrazoliumbromide (MTT) and gentamicin sulfate
salt (477.6 molecular weight) were purchased from Sigma-Aldrich Srl (St. Louis, MO, USA).
RNAqueous®-4PCR kit was from Ambion Inc. (Austin, TX, USA). Anti-aSMase, anti-nSMase,
anti-vitamin D receptor (VDR), anti-importin 7 (Ipo7), and anti-phosphatase and tensin homolog deleted
on chromosome 10 (PTEN) were from Abcam (Cambridge, UK). Anti-AKT and phosphor-AKT (p-AKT)
were from Cell Signaling Technology—EuroClone (Milano, Italy). Horseradish peroxidase-conjugated
goat anti-rabbit secondary antibodies were from Santa Cruz Biotechnology (Dallas, TX, USA).

4.2. Cell Culture

NCI-N87 cells were grown as previously reported [39]. Cells were cultured in RPMI 1640 medium
containing 2 mM L-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin in the presence of
10% FBS. Thyroid epithelial FRTL-5 cells were grown in Ham’s modified F-12 with 5% calf serum and
six hormones: 10 ng/mL glycyl-l-histidyl-l-lysine acetate (Sigma), 10−8 M hydrocortisone (Sigma),
10 µg/mL insulin (Sigma), 10 µg/mL somatostatin (Sigma), 5 µg/mL transferrin (Sigma), and 10 mU/mL
TSH (Sigma), as previously reported [38]. Lymphocytes were extracted from the peripheral blood by
using “Lymphocyte Separation Medium” according to the protocol instructions for use (Lonza Group,
Basel, Switzerland) and cultured in RPMI 1640 medium with penicillin, streptomycin, and amphotericin
B added in the presence of 10% FCS, as previously reported [17]. SUP-T1 cells were cultured in
DMEM supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 IU/mL penicillin, 100 g/mL
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streptomycin, and 2.5 g/mL amphotericin B (fungizone), as previously reported [39]. H35 hepatoma
cells were seeded in 25 cm2 flasks and were grown in monolayer in DMEM enriched with 10%
FBS, 2 mM of L-glutamine, 100 IU/mL of penicillin, 100 µg/mL of streptomycin, and 250 µg/mL of
amphotericin B, as previously reported [40]. All cells were maintained at 37 ◦C in 5% of CO2 and
95% humidity.

4.3. GM Dose-Dependent Effect

To establish the GM dose-dependent effects in NCI-N87 cells, increasing concentrations of the
drug from 0.25 to 2.0 mM were added to the culture medium for 24 h or 72 h. Cell death was counted
by using a trypan blue dye exclusion assay and the viability was analyzed by MTT assay as previously
reported [41].

4.4. Flow Cytometry Analysis

Flow cytometry analysis was performed and analyzed as previously reported [39]. Briefly,
cells were collected, washed, and resuspended in 1 mL of hypotonic propidium iodide (PI) solution
(50 µg mL−1 in 0.1% sodium citrate plus 0.1% Triton X-100; Sigma). The samples were placed for
1 h in the dark at 4 ◦C, and the PI fluorescence of individual nuclei was measured using an EPICS
XL-MCL™ flow cytometer (Beckman Coulter, Inc., Miami, FL, USA). Apoptosis data were processed
by an Intercomp computer and analyzed with EXPO32 software (Beckman Coulter). The cell cycle
was analyzed by measuring DNA-bound PI fluorescence in the orange–red fluorescence channel
(FL2) through a 585/42 nm bandpass filter with linear amplification. Analysis of distribution profiles
was performed with ModFit LT software (Verity Software House, Topsham, ME, USA) to determine
fractions of the population in each phase of the cell cycle (G0/G1, S, G2/M). At least 15,000 events were
collected for each sample. Cells were gated on FL2-area versus FL2-width plots to exclude aggregates
and debris from the analysis, as previously reported [39].

4.5. Morphological and Immunohistochemistry Analysis

NCI-N87 cells were incubated for 24 h in the presence or absence of 1.5 mM GM, and then
were fixed in 96% ethanol for 5 min, included in paraffin and sectioned into 4-µm-thick sections
as previously reported [42]. Hematoxylin–eosin staining, immunohistochemistry determination of
Ki-67 (MIB-1 clone) and HER2 (HercepTest) proteins was performed as previously reported [39]. The
observations were performed by using inverted microscopy EUROMEX FE 2935 (Papenkamp 206836
BD Arnhem, The Netherlands) equipped with a CMEX 5000 camera system (40×magnification). The
analysis of the immunostaining was performed by ImageFocus software.

4.6. Reverse Transcription Quantitative PCR (RTqPCR)

After 24 h of culture in the presence or absence of 1.5 mM GM, cells were used for total RNA extraction
by using RNAqueous ®-4PCR kit and RT-PCR was performed by using Master Mix TaqMan®Gene
Expression with 7.500 RT-PCR instrument (Applied Biosystems, Foster City, CA, USA). The following
target genes were investigated: SMPD1 (Hs03679347_g1), SMPD4 (Hs04187047_g1), VDR (Hs00172113_m),
CDKN1A (Hs 00355782_m1), CDKN1B (Hs 00153277_m1), GADD45A (Hs 00169255_m1), IPO7 (Hs
00255188_m1), and PTEN (Hs 02621230_s1). GAPDH (Hs99999905_m1) was used as a housekeeping gene.

4.7. Western Blot

Western blot analysis was performed to determine protein expression levels in untreated
and 1.5 mM GM-treated cells. Protein concentration was determined by Bradford assay [43].
Forty micrograms of proteins was loaded in a 10% SDS (sodium dodecyl sulfate)-polyacrylamide gel at
200 V for 60 min, transferred into 0.45 µm nitrocellulose membranes and blocked in 5% non-fat dry
milk. The blot was incubated overnight at 4 ◦C with anti-aSMase, anti-nSMase, anti-VDR, anti-PTEN,
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anti-IPO7, anti-AKT, and anti-pAKT specific antibodies (1:1000), as previously reported [44].The blot
was treated with horseradish peroxidase-conjugated goat anti-rabbit secondary antibodies (1:10,000).
SuperSignal West Pico Chemiluminescent Substrate (Thermo Fisher Scientific) was used to detect
chemiluminescent HRP substrate. The apparent molecular weight of proteins was calculated according
to the migration of molecular size standards. The blot was stripped and treated for the analysis of
β-tubulin used as the loading control. The band intensity was evaluated by densitometric analysis
with the ImageJ program.

4.8. Statistical Analysis

Three independent experiments performed in duplicate were carried out for each analysis. Data
are expressed as mean ± SD, Student’s t test was used for statistical analysis.

Author Contributions: Conceptualization, E.A.; Data curation, S.C.; Formal analysis, C.C., F.F.P. and M.C.;
Investigation, S.C., K.F. and M.C.; Methodology, M.R.C., C.C. and I.F.; Supervision, E.A. and T.B.; Validation, M.C.;
Visualization, T.B.; Writing – original draft, M.C.; Writing – review & editing, E.A.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Testi, R. Sphingomyelin breakdown and cell fate. Trends Biochem. Sci. 1996, 21, 468–471. [CrossRef]
2. Albi, E. Role of intranuclear lipids in health and disease. Clin. Lipidol. 2011, 6, 59–69. [CrossRef]
3. Canals, D.; Perry, D.M.; Jenkins, R.W.; Hannun, Y.A. Drug targeting of sphingolipid metabolism:

Sphingomyelinases and ceramidases. Br. J. Pharmacol. 2011, 163, 694–712. [CrossRef] [PubMed]
4. Marchesini, N.; Luberto, C.; Hannun, Y.A. Biochemical properties of mammalian neutral sphingomyelinase

2 and its role in sphingolipid metabolism. J. Biol. Chem. 2003, 278, 13775–13783. [CrossRef] [PubMed]
5. Ito, H.; Murakami, M.; Furuhata, A.; Gao, S.; Yoshida, K.; Sobue, S.; Hagiwara, K.; Takagi, A.; Kojima, T.;

Suzuki, M.; et al. Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human
breast cancer cell line, MCF-7, induced by the anti-cancer drug, daunorubicin. Biochim. Biophys. Acta 2009,
1789, 681–690. [CrossRef] [PubMed]

6. Karakashian, A.A.; Giltiay, N.V.; Smith, G.M.; Nikolova-Karakashian, M.N. Expression of neutral
sphingomyelinase-2 (NSMase-2) in primary rat hepatocytes modulates IL-beta-induced JNK activation.
FASEB J. 2004, 18, 968–970. [CrossRef]

7. Zhong, L.; Kong, J.N.; Dinkins, M.B.; Leanhart, S.; Zhu, Z.; Spassieva, S.D.; Qin, H.; Lin, H.P.; Elsherbini, A.;
Wang, R.; et al. Increased liver tumor formation in neutral sphingomyelinase-2-deficient mice. J. Lipid Res.
2018, 59, 795–804. [CrossRef] [PubMed]

8. Kim, W.J.; Okimoto, R.A.; Purton, L.E.; Goodwin, M.; Haserlat, S.M.; Dayyani, F.; Sweetser, D.A.;
McClatchey, A.I.; Bernard, O.A.; Look, A.T.; et al. Mutations in the neutral sphingomyelinase gene
SMPD3 implicate the ceramide pathway in human leukemia. Blood 2008, 111, 4716–4722. [CrossRef]

9. Savic, R.; He, X.; Fiel, I.; Schuchman, E.H. Recombinant human acid sphingomyelinase as an adjuvant to
sorafenib treatment of experimental liver cancer. PLoS ONE 2013, 8, e65620. [CrossRef]

10. Cervia, D.; Assi, E.; De Palma, C.; Giovarelli, M.; Bizzozero, L.; Pambianco, S.; Di Renzo, I.; Zecchini, S.;
Moscheni, C.; Vantaggiato, C.; et al. Essential role for acid sphingomyelinase-inhibited autophagy in
melanoma response tocisplatin. Oncotarget 2016, 7, 24995–25009. [CrossRef]

11. Perrotta, C.; Cervia, D.; De Palma, C.; Assi, E.; Pellegrino, P.; Bassi, M.T.; Clementi, E. The emerging role of
acid sphingomyelinase in autophagy. Apoptosis 2015, 20, 635–644. [CrossRef] [PubMed]

12. Sakakibara, Y.; Chow, C.S. Pseudouridine modifications influence binding of aminoglycosides to helix 69
ofbacterialribosomes. Org. Biomol. Chem. 2017, 15, 8535–8543. [CrossRef] [PubMed]

13. Li, J.; Li, Q.X.; Xie, X.F.; Ao, Y.; Tie, C.R.; Song, R.J. Differential roles of dihydropyridine calcium antagonist
nifedipine, nitrendipine and amlodipine on gentamicin-induced renal tubular toxicity in rats. Eur. J. Pharmacol.
2009, 620, 97–104. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0968-0004(96)10056-6
http://dx.doi.org/10.2217/clp.10.83
http://dx.doi.org/10.1111/j.1476-5381.2011.01279.x
http://www.ncbi.nlm.nih.gov/pubmed/21615386
http://dx.doi.org/10.1074/jbc.M212262200
http://www.ncbi.nlm.nih.gov/pubmed/12566438
http://dx.doi.org/10.1016/j.bbagrm.2009.08.006
http://www.ncbi.nlm.nih.gov/pubmed/19698806
http://dx.doi.org/10.1096/fj.03-0875fje
http://dx.doi.org/10.1194/jlr.M080879
http://www.ncbi.nlm.nih.gov/pubmed/29567647
http://dx.doi.org/10.1182/blood-2007-10-113068
http://dx.doi.org/10.1371/journal.pone.0065620
http://dx.doi.org/10.18632/oncotarget.8735
http://dx.doi.org/10.1007/s10495-015-1101-9
http://www.ncbi.nlm.nih.gov/pubmed/25666706
http://dx.doi.org/10.1039/C7OB02147J
http://www.ncbi.nlm.nih.gov/pubmed/28959821
http://dx.doi.org/10.1016/j.ejphar.2009.08.021
http://www.ncbi.nlm.nih.gov/pubmed/19698708


Int. J. Mol. Sci. 2019, 20, 4375 11 of 12

14. Edwards, J.R.; Diamantakos, E.A.; Peuler, J.D.; Lamar, P.C.; Prozialeck, W.C. A novel method for the
evaluation of proximal tubule epithelial cellular necrosis in the intact rat kidney using ethidium homodimer.
BMC Physiol. 2007, 7, 14. [CrossRef] [PubMed]

15. Pessoa, E.A.; Convento, M.B.; Silva, R.G.; Oliveira, A.S.; Borges, F.T.; Schor, N. Gentamicin-induced
preconditioning of proximal tubular LLC-PK1 cells stimulates nitric oxide production but not the synthesis
of heat shock protein. Braz. J. Med. Biol. Res. 2009, 42, 614–620. [CrossRef] [PubMed]

16. Ghosh, P.; Chatterjee, S. Effects of gentamicin on sphingomyelinase activity in cultured human renal proximal
tubular cells. J. Biol. Chem. 1987, 262, 12550–12556. [PubMed]

17. Codini, M.; Cataldi, S.; Ambesi-Impiombato, F.S.; Lazzarini, A.; Floridi, A.; Lazzarini, R.; Curcio, F.; Beccari
TAlbi, E. Gentamicin arrests cancer cell growth: The intriguing involvement of nuclear sphingomyelin
metabolism. Int. J. Mol. Sci. 2015, 16, 2307–2319. [CrossRef] [PubMed]

18. Cuccarese, M.F.; Singh, A.; Amiji, M.; O’Doherty, G.A. A novel use of gentamicin in the ROS-mediated
sensitization of NCI-H460 lung cancer cells to various anticancer agents. ACS Chem. Biol. 2013, 8, 2771–2777.
[CrossRef] [PubMed]

19. Pugliese, L.; Bernardini, I.; Pacifico, N.; Peverini, M.; Damaskopoulou, E.; Cataldi, S.; Albi, E. Severe
hypocholesterolaemia is often neglected in haematological malignancies. Eur. J. Cancer 2010, 46, 1735–1743.
[CrossRef]

20. Patria, F.F.; Ceccarini, M.R.; Codini, M.; Conte, C.; Perioli, L.; Beccari, T.; Albi, E. A Role for Neutral
Sphingomyelinase in Wound Healing Induced by Keratinocyte Proliferation upon 1α, 25-Dihydroxyvitamin
D3 Treatment. Int. J. Mol. Sci. 2019, 20, 3634. [CrossRef]

21. Habberstad, A.H.; Gulati, S.; Torp, S.H. Evaluation of the proliferation markersKi-67/MIB-1, mitosin, survivin,
pHH3, and DNA topoisomerase IIa in human anaplastic astrocytomase an immunohistochemical study.
Diagn. Pathol. 2011, 6, 43–50. [CrossRef] [PubMed]

22. Lee, A.Y.; Kim, S.; Lee, S.; Jiang, H.L.; Kim, S.B.; Hong, S.H.; Cho, M.H. Knockdown of Importin 7 Inhibits
Lung Tumorigenesis in K-rasLA1 Lung Cancer Mice. Anticancer Res. 2017, 37, 2381–2386. [CrossRef]
[PubMed]

23. Kim, S.Y.; Kim, H.P.; Kim, Y.J.; Oh, D.Y.; Im, S.A.; Lee, D.; Jong, H.S.; Kim, T.Y.; Bang, Y.J. Trastuzumab
inhibits the growth of human gastric cancer cell lines with HER2 amplification synergistically with cisplatin.
Int. J. Oncol. 2008, 32, 89–95. [CrossRef] [PubMed]

24. Lordick, F.; Kang, Y.K.; Chung, H.C.; Salman, P.; Oh, S.C.; Bodoky, G.; Kurteva, G.; Volovat, C.;
Moiseyenko, V.M.; Gorbunova, V.; et al. Capecitabine and cisplatin with or without cetuximab for
patients with previously untreated advanced gastric cancer (EXPAND): A randomized, open-label phase 3
trial. Lancet Oncol. 2013, 14, 490–499. [CrossRef]

25. Ilson, D.H. Advances in the treatment of gastric cancer. Curr. Opin. Gastroenterol. 2017, 33, 473–476.
[CrossRef] [PubMed]

26. Pento, J.T. Monoclonal Antibodies for the Treatment of Cancer. Anticancer Res. 2017, 37, 5935–5939. [CrossRef]
[PubMed]

27. Lei, C.S.; Hou, Y.C.; Pai, M.H.; Lin, M.T.; Yeh, S.L. Effects of quercetin combined with anticancer drugs on
metastasis-associated factors of gastric cancer cells: In vitro and in vivo studies. J. Nutr. Biochem. 2017, 51,
105–113. [CrossRef] [PubMed]

28. Frumkin, J. Gentamicin, a read-through agent for the treatment of rectal cancer. Colorectal Dis. 2017, 19, 864.
[CrossRef] [PubMed]

29. Newbold, A.; Salmon, J.M.; Martin, B.P.; Stanley, K.; Johnstone, R.W. The role of p21waf1/cip1 and p27Kip1 in
HDACi-mediated tumor cell death and cell cycle arrest in the Eµ-myc model of B-cell lymphoma. Oncogene
2013, 33, 5415–5423. [CrossRef]

30. Bustany, S.; Tchakarska, G.; Sola, B. Cyclin D1 regulates p27Kip1 stability in B cells. Cell Signal. 2011, 23,
171–179. [CrossRef] [PubMed]

31. Moskalev, A.A.; Smit-McBride, Z.; Shaposhnikov, M.V.; Plyusnina, E.N.; Zhavoronkov, A.; Budovsky, A.;
Tacutu, R.; Fraifeld, V.E. Gadd45 proteins: Relevance to aging, longevity and age-related pathologies.
Ageing Res. Rev. 2012, 11, 51–66. [CrossRef] [PubMed]

32. Okumura, T. Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive
organs. J. Gastroenterol. 2010, 45, 1097–1102. [CrossRef] [PubMed]

http://dx.doi.org/10.1186/1472-6793-7-1
http://www.ncbi.nlm.nih.gov/pubmed/17319948
http://dx.doi.org/10.1590/S0100-879X2009005000005
http://www.ncbi.nlm.nih.gov/pubmed/19466282
http://www.ncbi.nlm.nih.gov/pubmed/3040755
http://dx.doi.org/10.3390/ijms16022307
http://www.ncbi.nlm.nih.gov/pubmed/25622250
http://dx.doi.org/10.1021/cb4007024
http://www.ncbi.nlm.nih.gov/pubmed/24093441
http://dx.doi.org/10.1016/j.ejca.2010.03.041
http://dx.doi.org/10.3390/ijms20153634
http://dx.doi.org/10.1186/1746-1596-6-43
http://www.ncbi.nlm.nih.gov/pubmed/21609421
http://dx.doi.org/10.21873/anticanres.11576
http://www.ncbi.nlm.nih.gov/pubmed/28476804
http://dx.doi.org/10.3892/ijo.32.1.89
http://www.ncbi.nlm.nih.gov/pubmed/18097546
http://dx.doi.org/10.1016/S1470-2045(13)70102-5
http://dx.doi.org/10.1097/MOG.0000000000000395
http://www.ncbi.nlm.nih.gov/pubmed/28877045
http://dx.doi.org/10.21873/anticanres.12040
http://www.ncbi.nlm.nih.gov/pubmed/29061772
http://dx.doi.org/10.1016/j.jnutbio.2017.09.011
http://www.ncbi.nlm.nih.gov/pubmed/29125991
http://dx.doi.org/10.1111/codi.13832
http://www.ncbi.nlm.nih.gov/pubmed/28755390
http://dx.doi.org/10.1038/onc.2013.482
http://dx.doi.org/10.1016/j.cellsig.2010.09.001
http://www.ncbi.nlm.nih.gov/pubmed/20837141
http://dx.doi.org/10.1016/j.arr.2011.09.003
http://www.ncbi.nlm.nih.gov/pubmed/21986581
http://dx.doi.org/10.1007/s00535-010-0310-9
http://www.ncbi.nlm.nih.gov/pubmed/20824291


Int. J. Mol. Sci. 2019, 20, 4375 12 of 12

33. Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of
dietary phenolics for the treatment of cancers. Nutr. J. 2016, 15, 99–114. [CrossRef] [PubMed]

34. Matusiak, D.; Murillo, G.; Carroll, R.E.; Mehta, R.G.; Benya, R.V. Expression of vitamin D receptor and
25-hydroxyvitamin D3-1{alpha}-hydroxylase in normal and malignant human colon. Cancer Epidemiol.
Biomark. Prev. 2005, 14, 2370–2376. [CrossRef] [PubMed]

35. Liu, X.; Bi, L.; Wang, Q.; Wen, M.; Li, C.; Ren, Y.; Jiao, Q.; Mao, J.H.; Wang, C.; Wei, G.; et al. miR-1204
targets VDR to promotes epithelial-mesenchymal transition and metastasis inbreast cancer. Oncogene 2018,
37, 3426–3439. [CrossRef]

36. Jeon, S.M.; Shin, E.A. Exploring vitamin D metabolism and function in cancer. Exp. Mol. Med. 2018, 50,
20–33. [CrossRef] [PubMed]

37. Ishii, T.; Warabi, E. Mechanism of Rapid Nuclear Factor-E2-Related Factor 2 (Nrf2) Activation via
Membrane-Associated Estrogen Receptors: Roles of NADPH Oxidase 1, Neutral Sphingomyelinase 2
and Epidermal Growth Factor Receptor (EGFR). Antioxidants 2019, 8, 69. [CrossRef]

38. Albi, E.; Ambesi-Impiombato, S.; Villani, M.; de Pol, I.; Spelat, R.; Lazzarini, R.; Perrella, G. Thyroid cell
growth: Sphingomyelin metabolism as non-invasive marker for cell damage acquired during spaceflight.
Astrobiology 2010, 10, 811–820. [CrossRef]

39. Albi, E.; Cataldi, S.; Ferri, I.; Sidoni, A.; Traina, G.; Fettucciari, K.; Ambesi-Impiombato, F.S.; Lazzarini, A.;
Curcio, F.; Ceccarini, M.R.; et al. VDR independent induction of acid-sphingomyelinase by 1,23(OH)2 D3 in
gastric cancer cells: Impact on apoptosis and cell morphology. Biochimie 2018, 146, 35–42. [CrossRef]

40. Lazzarini, A.; Macchiarulo, A.; Floridi, A.; Coletti, A.; Cataldi, S.; Codini, M.; Lazzarini, R.; Bartoccini, E.;
Cascianelli, G.; Ambesi-Impiombato, F.S.; et al. Very-long-chain fatty acid sphingomyelin in nuclear lipid
microdomains of hepatocytes and hepatoma cells: Can the exchange from C24:0 to C16:0 affect signal
proteins and vitamin D receptor? Mol. Biol. Cell. 2015, 26, 2418–2425. [CrossRef]

41. Ceccarini, M.R.; Codini, M.; Cataldi, S.; Vannini, S.; Lazzarini, A.; Floridi, A.; Moretti, M.; Villarini, M.;
Fioretti, B.; Beccari, T.; et al. Acid sphingomyelinase as target of LyciumChinense: Promising new action for
cell health. Lipids Health Dis. 2016, 15, 183–192. [CrossRef] [PubMed]

42. Albi, E.; Curcio, F.; Lazzarini, A.; Floridi, A.; Cataldi, S.; Lazzarini, R.; Loreti, E.; Ferri, I.; Ambesi-Impiombato, F.S.
How microgravity changes galectin-3 in thyroid follicles. Biomed. Res. Int. 2014, 2014, 652863–652867. [CrossRef]
[PubMed]

43. Bradford, M.M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [CrossRef]

44. Bartoccini, E.; Marini, F.; Damaskopoulou, E.; Lazzarini, R.; Cataldi, S.; Cascianelli, G.; Gil Garcia, M.; Albi, E.
Nuclear lipid microdomains regulate nuclear vitamin D3 uptake and influence embryonic hippocampal cell
differentiation. Mol. Biol. Cell 2011, 17, 3022–3031. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s12937-016-0217-2
http://www.ncbi.nlm.nih.gov/pubmed/27903278
http://dx.doi.org/10.1158/1055-9965.EPI-05-0257
http://www.ncbi.nlm.nih.gov/pubmed/16214919
http://dx.doi.org/10.1038/s41388-018-0215-2
http://dx.doi.org/10.1038/s12276-018-0038-9
http://www.ncbi.nlm.nih.gov/pubmed/29657326
http://dx.doi.org/10.3390/antiox8030069
http://dx.doi.org/10.1089/ast.2010.0461
http://dx.doi.org/10.1016/j.biochi.2017.11.011
http://dx.doi.org/10.1091/mbc.e15-04-0229
http://dx.doi.org/10.1186/s12944-016-0351-z
http://www.ncbi.nlm.nih.gov/pubmed/27756324
http://dx.doi.org/10.1155/2014/652863
http://www.ncbi.nlm.nih.gov/pubmed/25328888
http://dx.doi.org/10.1016/0003-2697(76)90527-3
http://dx.doi.org/10.1091/mbc.e11-03-0196
http://www.ncbi.nlm.nih.gov/pubmed/21737687
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Advances in Anticancer Action of Gentamicin 
	Gentamicin Alters Sphingomyelin Metabolism 

	Discussion 
	Materials and Methods 
	Materials 
	Cell Culture 
	GM Dose-Dependent Effect 
	Flow Cytometry Analysis 
	Morphological and Immunohistochemistry Analysis 
	Reverse Transcription Quantitative PCR (RTqPCR) 
	Western Blot 
	Statistical Analysis 

	References

