
RESEARCH ARTICLE

Regulation of Stem Cell Proliferation and Cell
Fate Specification by Wingless/Wnt Signaling
Gradients Enriched at Adult Intestinal
Compartment Boundaries
Ai Tian, Hassina Benchabane, ZhenghanWang, Yashi Ahmed*

Department of Genetics and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth
College, Hanover, New Hampshire, United States of America

* yfa@dartmouth.edu

Abstract
Intestinal stem cell (ISC) self-renewal and proliferation are directed by Wnt/β-catenin signal-

ing in mammals, whereas aberrant Wnt pathway activation in ISCs triggers the development

of human colorectal carcinoma. Herein, we have utilized the Drosophila midgut, a powerful

model for ISC regulation, to elucidate the mechanisms by which Wingless (Wg)/Wnt regu-

lates intestinal homeostasis and development. We provide evidence that the Wg signaling

pathway, activation of which peaks at each of the major compartment boundaries of the

adult intestine, has essential functions. Wg pathway activation in the intestinal epithelium is

required not only to specify cell fate near compartment boundaries during development, but

also to control ISC proliferation within compartments during homeostasis. Further, in con-

trast with the previous focus onWg pathway activation within ISCs, we demonstrate that the

primary mechanism by which Wg signaling regulates ISC proliferation during homeostasis

is non-autonomous. Activation of the Wg pathway in absorptive enterocytes is required to

suppress JAK-STAT signaling in neighboring ISCs, and thereby their proliferation. We con-

clude that Wg signaling gradients have essential roles during homeostasis and develop-

ment of the adult intestine, non-autonomously controlling stem cell proliferation inside

compartments, and autonomously specifying cell fate near compartment boundaries.

Author Summary

The highly conserved Wingless/Wnt signal transduction pathway directs many cellular
processes in metazoans and its deregulation underlies numerous human congenital dis-
eases and cancers. Most notably, more than 80% of colon cancers arise from aberrant acti-
vation of the Wnt pathway. A better understanding of howWnt signaling functions in the
intestinal stem cells (ISCs) during homeostasis and in disease states is thus critical. The
Drosophila digestive tract provides a powerful genetic model and an entry point to study
these questions. Here, we find that the Wg ligand and pathway activation are enriched at
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Drosophila intestinal compartment boundaries and are essential for development and
homeostasis of the adult gut. During homeostasis, Wg signaling in enterocytes is required
to prevent the overproliferation of ISCs non-autonomously. In addition, during develop-
ment, Wg signaling ensures proper cell fate specification near compartment boundaries.
These findings provide insight into the mechanisms underlying the Wg-dependent regula-
tion of adult intestinal function.

Introduction
The evolutionarily conserved Wnt/β-catenin signal transduction pathway regulates cell prolif-
eration and tissue patterning in metazoans, and deregulation of this pathway is associated with
numerous human diseases [1,2]. In the absence of Wnt/Wg exposure, the key transcriptional
activator β-catenin/Armadillo (Arm) is targeted for proteasomal degradation by a “destruction
complex” comprised of Axin, Adenomatous polyposis coli (Apc1 and Apc2) and glycogen
synthase kinase 3 (GSK3)/shaggy (sgg). Binding of Wnt/Wg to the transmembrane co-recep-
tors Frizzled (Fz and Dfz2) and low-density lipoprotein receptor-related protein 5/6 (LRP6)/
Arrow (Arr) recruits the adaptor protein Dishevelled (Dvl/Dsh) and deactivates the destruction
complex. Stabilized β-catenin subsequently translocates to the nucleus, and associates with the
transcription factor T-cell factor/lymphoid enhancer factor (TCF/LEF) and the cofactors Pygo-
pus (Pygo) and BCL9/Legless (Lgs) to activate target genes (S1A Fig) [3–7]. Notably, Wnt sig-
naling is essential for self-renewal and proliferation of mammalian ISCs, whereas Wnt
pathway hyperactivation triggers the development of the vast majority of colorectal carcinomas
[2,8].

The Drosophila digestive tract, with its remarkable similarity to the mammalian intestine
but simpler anatomy, is an ideal model for studying intestinal development, homeostasis, and
disease [9–12]. Like its mammalian counterpart, the fly gut undergoes rapid turnover and is
replenished by ISCs. The ISCs, which are distributed along the basement membrane of the gut
epithelium, divide asymmetrically to give rise to enteroblasts and pre-enteroendocrine cells
that differentiate into either absorptive enterocytes or secretory enteroendocrine cells, respec-
tively [13–17]. Visceral muscles envelop this monolayer epithelium. Food is successively
digested, absorbed and eliminated through the foregut, midgut and hindgut. The midgut can
be further partitioned into fine-scale compartments of unique histological structure, gene
expression, and physiological function [18–20], denoted as R1 (Region 1) through R5 (Fig 1A).
Intriguingly, the peak expression of frizzled 3 (fz3), a direct target gene of the Wg pathway
[21,22], occurs at four of these compartment boundaries (cardia-R1, R2-R3, R3-R4 and
R5-hindgut) [18].

Wg signaling is required for intestinal regeneration after injury caused by toxins or bacterial
infection, whereas the aberrant activation of signaling deregulates ISC proliferation [23–29].
The roles of Wg signaling during homeostasis have also been examined previously. An initial
study indicated that wg expression in the muscle surrounding the midgut activates the pathway
in midgut ISCs, and is required for their self-renewal and proliferation [30]. However, later
studies challenged these conclusions [25,26]. First, ISC self-renewal was not affected upon loss
of Apc [26]. Second, knockdown of wg from both muscle and epithelial sources, or in wgCX4

heterozygous mutants did not lead to significant loss of ISCs even after 30 days [25]. Third,
genetic inactivation of core Wnt pathway components with null alleles resulted in only mild or
no effects on ISC proliferation during homeostasis [25]. The only method that revealed strong
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Fig 1. Novel sources of Wg in the epithelium and surroundingmuscle at adult intestinal compartment
boundaries. (A) Schematic view of the Drosophila adult intestine. It is divided into foregut, midgut and
hindgut. The midgut is further demarcated into 5 main compartments, R1-R5. Cardia and rectum are the
anterior and posterior ends of the fly gut. CCR: copper cell region, shares the anterior border with R3. HPZ:
Hindgut proliferation zone, stands for the most anterior rows of cells of hindgut. (B)Wg expression pattern
along the adult gut. Intestines expressingwg-lacZ stained with phalloidin, which marks the muscle layer.
Anterior to the left. The blue arrows point to the two major constrictions that denote the position of R3. Scale
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effects of Wg signaling on ISC self-renewal [25,26,30] required ectopic expression of a domi-
nant negative dTCF protein [4].

The recent discovery that Wg signaling is enriched specifically at compartment boundaries,
as revealed by activation of the target gene fz3 [18], prompted us to reexamine the source and
roles of Wg during adult intestinal homeostasis and development. Here, we identify several
novel sources of Wg in the intestinal epithelium and in the surrounding visceral muscle, which
all peak at compartment boundaries. We confirm that Wg pathway activation also peaks at
these boundaries, but also find that low-level Wg signaling is present throughout compart-
ments, where it is essential for maintenance of homeostasis. Further, in contrast with the prior
focus on Wg signaling in midgut stem cells, our findings reveal that enterocytes, and not ISCs,
are the primary site of Wg pathway activation during homeostasis. Wg signaling in enterocytes
non-autonomously regulates JAK-STAT signaling in neighboring ISCs, and thereby prevents
ISC overproliferation during homeostasis. Further, we demonstrate that Wg signaling is
required for proper cell fate specification near compartment boundaries during development.
We conclude that gradients of Wg signaling that peak at adult intestinal compartment bound-
aries are essential to control stem cell proliferation during homeostasis and to specify cell fate
during development.

Results

Novel sources of Wg are detected in the epithelium and surrounding
visceral muscle at adult intestinal compartment boundaries
To identify regions in the adult intestine that express wg, we examined a wg-lacZ enhancer trap
[31](Fig 1B). Consistent with prior findings, four rows of wg-expressing cells were detected in
the surrounding circular visceral muscles throughout the entire length of the midgut [30](Figs
1D and S1C). Furthermore, at the foregut-midgut boundary, wg was expressed in the anterior
cardiac epithelium, whereas at the midgut-hindgut boundary, wg was expressed in the spindle
cells of the hindgut proliferation zone (HPZ)[23,32–35] (Figs 1C, 1E and S1B).

Unexpectedly, we also identified four novel sources of Wg at intestinal compartment
boundaries (Figs 1F–1I” and S1D–S1D”). First, we observed high-level wg expression in a band
of approximately 18 visceral muscle cells in the middle of the midgut, adjacent to the anterior
border of the copper cell region (CCR, marked by Cut and α-Spectrin [24]) and the R2-R3
compartment boundary (Fig 1B and 1F-1G”). Second, we identified a zone of wg expression in
the visceral muscle at the posterior terminal midgut, immediately anterior to the R5-HPZ bor-
der [23,34] (Fig 1H–1H”). Third, we detected high-level wg expression in the intestinal epithe-
lium underneath this wg-enriched muscle segment, which was present not only at the R5-HPZ
boundary, but also extended anteriorly into the posterior midgut (Fig 1I–1I”). Lastly, a trans-
verse stripe of wg was present within the rectal epithelium (S1D-S1D” Fig) [36]. Together,
these results indicated that wg is not expressed uniformly along the fly gut, but is enriched at
intestinal compartment boundaries. Notably, this expression pattern was largely retained in
aged flies, indicating that the enrichment of wg expression at major compartment boundaries
was stable over the course of adulthood (S1E–S1E” Fig).

bar: 100μm. (C-E)Wg-lacZ expression inside cardia, midgut visceral muscles and HPZ. Scale bar: 50μm.
(F-G”)Wg-enriched muscle segment anterior to the R2-R3 boundary (marked by the white line). Phalloidin
staining reveals the muscle fiber pattern. The appearance of Cutpos α-SpectrinStrong cells delineates the
anterior border of R3 as well as CCR. Scale bar: 50μm. (H-I”) Novel muscular and epithelial Wg sources in
the terminal midgut (R5) anterior to the R5-HPZ border. Phalloidin marks the muscle layer while DAPI labels
the epithelial cell nuclei. Scale bar: 10μm.

doi:10.1371/journal.pgen.1005822.g001
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These unprecedented observations of boundary-enriched wg expression were recapitulated
using a wg:mcherry knock-in line [37] (S2 Fig), and when lacZ expression was driven by a wg:
Gal4 knock-in line [37] (S3 Fig). Of note, expression of wg>lacZ culminated at all major com-
partment boundaries (S3 Fig) and the epithelial sources were detected in enterocytes (S4 Fig).
In summary, the newly discovered sources in the epithelium and muscle, coupled with previous
findings, revealed marked enrichment of wg expression at adult intestinal compartment
boundaries that correlate with major sphincters and tissue-organizing centers.

The level of Wg pathway activation is high at compartment boundaries
and low inside midgut compartments
Having established the sources of Wg that are present in the epithelium and visceral muscle of
the adult midgut, we sought to identify the regions where the Wg pathway is activated during
homeostasis. We confirmed that a direct target gene of Wg signaling, frizzled 3 (fz3) [21,22,38],
was expressed in five gradients in the adult gut, each of which peaked at intestinal compart-
ment boundaries, as described previously [18] (Fig 2A–2D and 2E–2F). We also detected
strong fz3-RFP signal at the anterior border of the rectal papillae (S5A and S5A” Fig). To vali-
date these conclusions, we analyzed a reporter for another direct Wg pathway target gene,
naked (nkd) [39]. As observed for fz3-RFP, nkd-lacZ was also expressed highly at intestinal
compartment boundaries, though in a narrower pattern (Fig 2A and 2B’–2F). Further, nkd-
lacZ was also expressed in the rectum (S5A’ and S5A” Fig), and, as observed for wg, in four
rows in the visceral muscle surrounding the intestine (Fig 2A).

Notably, we also detected expression of both fz3-RFP and nkd-lacZ at low levels within pos-
terior midgut compartments (Fig 2A and 2E–2F). To determine whether this low-level expres-
sion was dependent onWg signaling, we inactivated the pathway by generating MARCM
clones [40,41] of null alleles of the Wg pathway components pygo and dsh [6,42] alongside
wild-type control clones. The expression of fz3-RFP and nkd-lacZ were eliminated in mutant
clones, but not in wild-type clones, indicating that the Wg pathway is indeed activated at low
levels in midgut compartments (Fig 2G–2J’). Together, these findings indicated that the Wg
pathway is activated at high levels at the boundaries between functionally distinct intestinal
compartments, but also activated at low levels within these compartments (Fig 2K).

TheWg pathway is activated within Adult Midgut Progenitors (AMPs) at
analogous compartment boundaries in the larval gut
Recent studies have indicated that the larval intestine is also compartmentalized [18,19,43]. We
therefore sought to determine whether the boundary enrichment of wg and Wg pathway activ-
ity are also present in the larval counterpart, and thus examined the expression pattern of wg-
lacZ, wg>lacZ and fz3-RFP in 3rd instar larval guts. Remarkably, as in adults, wg expression
that emanates from muscle and epithelial sources (S6 Fig) was enriched at compartment
boundaries of the larval intestine. Further, fz3-RFP expression also culminated at these bound-
aries (S7 Fig). These findings suggested that even though the larval and adult intestines are
derived independently and face different functional demands, the patterns of boundary-
enriched Wg pathway activation are largely shared. To further determine whether Wg signal-
ing was required for fz3-RFP expression in the larval gut, we induced either null mutant clones
of Wg pathway components, or wild-type control clones, during larval development. Inactiva-
tion of Wg signaling resulted in specific loss of fz3-RFP within AMPs at compartment bound-
aries (S8A–S8D”‘ Fig). Moreover, inactivation of the Apc-Axin destruction complex resulted in
the ectopic expression of fz3-RFP in AMPs but not enterocytes [44] (S8E–S8E”‘ Fig). We
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Fig 2. Wg pathway activity gradients around adult intestinal compartment boundaries. (A) Expression
pattern of fz3-RFP and nkd-lacZ, twoWg activity reporters, in the adult gut. Anterior to the left. The two blue
arrows indicate constriction sites around R3. Scale bar: 100μm. (B-D’) Higher magnification view of (A)
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conclude that in the larval midgut, the Wg pathway is activated exclusively in progenitor cells,
and this activation is restricted to compartment boundaries.

Unexpectedly, enterocytes, but not ISCs, are the primary site of Wg
pathway activation during adult intestinal homeostasis
To test whether stem cells are also the primary sites of Wg pathway activation in the adult
intestinal epithelium, we first identified the cell types in which the twoWg pathway reporters,
fz3-RFP and nkd-lacZ, were expressed (Fig 3A–3B”‘). We found that nkd-lacZ was expressed
primarily in enterocytes (demarcated by their large polyploid nuclei) and also in a subpopula-
tion of enteroendocrine cells (small diploid cells that are Escargot negative and Prospero posi-
tive [13]) (Fig 3A–3A”‘), whereas fz3-RFP was detected not only in enterocytes, but also in
progenitor cells (small diploid Escargot positive cells [13]) (Fig 3B–3B”‘). Thus, unexpectedly,
despite the overlapping boundary-enriched pattern, the expression of the two Wg pathway
reporters was partially distinct with regard to individual cell types.

We therefore sought to determine whether expression of the reporters was dependent on
Wg signaling by generating marked null mutant clones of four Wg pathway components: Dsh,
Pygo, Arr [45] and the functionally redundant Fz and Dfz2 [46], alongside wild-type controls.
Nkd-lacZ and fz3-RFP expression were not affected in wild-type control clones (Figs 2G–2H’,
3C–3C”‘ and 3E–3E”‘). In contrast, both inside compartments and at compartment bound-
aries, the inactivation of Wg signaling in the mutant clones eliminated expression of both nkd-
lacZ (Figs 2J–2J’, 3D–3D”‘, S9A–S9A”‘ and S10A–S10A”‘) and fz3-RFP (Figs 2I–2I’, 3F–3G”‘,
S9B–S9E”‘ and S10B–S10C”‘) in enterocytes, revealing dependence on Wg pathway activation
in this cell type. Unexpectedly, in mutant clones, there was no decrease in the level of nkd-lacZ
expression in the subpopulation of enteroendocrine cells (Figs 3D–3D”‘ and S10A–S10A”‘),
indicating that the nkd-lacZ reporter expression in enteroendocrine cells was independent of
Wg pathway activation. Further, there was no decrease in the level of fz3-RFP expression in the
vast majority of progenitor cells (Figs 3F–3F”‘, S9B–S9D”‘ and S10B–S10C”‘), suggesting that
the fz3-RFP reporter expression in nearly all progenitors was independent of Wg pathway acti-
vation. The only exception was inside R5, where both enterocytes and progenitors were respon-
sive to Wg exposure, as indicated by loss of fz3-RFP expression in the mutant clones of Wg
pathway components in this subregion (Figs 3G–3G”‘ and S9E-S9E”‘). We conclude that, in
contrast with the larval gut, the primary site of Wg pathway activation during adult homeosta-
sis is in enterocytes, and not ISCs, throughout the majority of the midgut.

All cell types in the adult intestinal epithelium are capable of activating
signaling in response to Wg exposure
The pattern of wg expression cannot account for the preferential activation of signaling specifi-
cally in enterocytes. Therefore, we sought to determine whether intrinsic differences in the dis-
tinct intestinal cell types could explain their differential response to Wg exposure. We

around cardia (B and B’), CCR (C and C’) and R5-HPZ region (D and D’). Scale bar: 50μm. Note: the
expression of nkd-lacZ around R2-R3 boundary is variable between guts. (E)Merged expression pattern of
fz3-RFP and nkd-lacZ from the middle of R4 to the R5-HPZ boundary. Anterior to the left. Scale bar: 100μm.
(F)Quantification of fluorescent intensity in (E) from R4 to the R5-HPZ boundary shows gradient expression
of both reporters, high at the boundary and low inside compartment. (G-J’) Low-level Wg pathway activities
are present inside midgut compartments. Scale bar: 10μm. (G-H’)Wild-type MARCM clones do not affect
fz3-RFP or nkd-lacZ expression inside R4. (I and I’)MARCM clones of pygo deplete fz3-RFP signal inside
R4. (J and J’)MARCM clones of dsh diminish nkd-lacZ signal inside R4. (K) Schematic view ofwg
expression andWg pathway activation in the adult intestine.

doi:10.1371/journal.pgen.1005822.g002
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Fig 3. Wg pathway is activated primarily in ECs, but not ISCs, during adult homeostasis. (A-B”‘) Nkd-
lacZ and fz3-RFP are expressed in partially distinct cell types. DAPI labels the nuclei and indicates their
ploidy. Small Escargotpos Prosperoneg diploid cells are progenitor cells (orange arrow), big polyploid cells are
enterocytes (white arrow), small Escargotneg Prosperopos diploid cells are enteroendocrine cells (yellow
arrow and arrowhead). (A-A”‘) Nkd-lacZ is primarily expressed inside enterocytes (white arrow) and a
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examined the response of the different cell types to ectopic pathway activation by analyzing the
expression patterns of fz3-RFP in Apc1 null mutant flies or in Apc2 Apc1 double mutant clones
[47], in which the Wg pathway is constitutively activated due to loss of destruction complex
activity. Compared with wild-type, fz3-RFP expression was markedly increased in Apc1mutant
guts and in Apc2 Apc1 double mutant clones (Figs 4A–4C”‘ and S11). This aberrant Wg path-
way activation was not restricted to enterocytes, but instead observed in all cell types in the
intestinal epithelium. These findings indicated that the Wg pathway components acting down-
stream of the Apc-Axin destruction complex are present in all cell types in the intestinal epithe-
lium, and thus do not underlie their differential responsiveness to Wg stimulation.

To determine whether Wg pathway components that act upstream of the destruction com-
plex are functional in all cell types of the intestinal epithelium, we expressed wg throughout the
muscle using a temperature sensitive dMef2-Gal4 driver [48]. As compared with controls (Fig
4D), overexpressing wg in the muscle markedly increased the fz3-RFP signal throughout the
entire length of the intestine, and most pronouncedly in the anterior midgut (Fig 4D’). These
results indicated that Wg originating from the visceral muscle is sufficient to activate signaling
in the intestinal epithelium. Notably, this ectopic activation of Wg signaling was observed in all
intestinal cell types (Fig 4E–4E”‘). Thus, all cell types in the intestinal epithelium express the
pathway components necessary for transduction of the Wg signal, and are thus capable of
responding to Wg exposure. Therefore, the activation of signaling primarily in enterocytes dur-
ing homeostasis may reflect inherent differences in the threshold for pathway activation (see
discussion).

Wg pathway activation in enterocytes non-autonomously controls the
proliferation of neighboring ISCs during adult homeostasis
Having discovered that enterocytes are the primary sites of Wg pathway activation in the
homeostatic adult gut, we sought to determine whether this signaling was required to maintain
homeostasis. We inactivated the Wg pathway by inducing arr, pygo or dsh null mutant clones
during early adulthood and examined the effects 5 to 7 days later. We found that wild-type
control clones were comprised primarily of 1 to 2 cells (Fig 5A), and were surrounded by regu-
larly spaced progenitor cells. In contrast, a higher percentage of multi-cellular clones of Wg
pathway mutants were detected (Fig 5A). Furthermore, an increased number of wild-type pro-
genitors (esg-lacZmarked cells or small Armstrong Prosperoneg cells) were present in clusters
adjacent to the mutant clones, whereas progenitor cells located farther away from the clones
exhibited normal spacing and number (Figs 5B and S12A–S12B”). Further, Dl-lacZ and Su(H)-
lacZ expression revealed that these clusters contained an increased number of both ISCs and
EBs (Fig 5C–5F). We further sought to determine whether the aberrantly increased number of

subpopulation of enteroendocrine cells (yellow arrow). Scale bar: 10μm. (B-B”‘) Fz3-RFP is expressed in
both enterocytes (white arrow) and progenitors (orange arrow). Its expression is mostly absent in the
enteroendocrine cells (yellow arrow). Scale bar: 10μm. (C-G”‘)Wg signaling is primarily transduced in
enterocytes of the adult gut. MARCM clones of wild-type controls andWg pathway mutants were induced
during larval development and examined soon after eclosion. GFP marks the clones. nkd-lacZ or fz3-RFP
represents Wg pathway activity. Orange arrows indicate progenitor cells while white arrows point to
enterocytes. (C-D”‘) Nkd-lacZ expression is not affected in wild-type clones (C-C”‘) but specifically lost within
enterocytes of arr clones at intestinal compartment boundaries (D-D”‘). (E-F”‘) Fz3-RFP expression is not
affected in wild-type clones (E-E”‘) but specifically lost within enterocytes of dsh clones at intestinal
compartment boundaries (F-F”‘). The mutant enterocytes retain normal cell morphology, nuclear morphology
and cell-cell junctions, indicating that the loss of Wg pathway activation in this cell type is not due to cell
death. Note that Fz3-RFP expression in progenitors is not dependent onWg signaling. (G-G”‘) At the unique
R5-HPZ boundary, Wg pathway is activated in both progenitors and enterocytes. Scale bar: 10μm.

doi:10.1371/journal.pgen.1005822.g003
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progenitors adjacent to Wg pathway mutant clones resulted from their overproliferation. To
test this, we compared the mitotic index in posterior midguts bearing either wild-type or Wg
pathway mutant clones. Indeed, many more phospho-histone H3 (pH3) positive cells were
observed in posterior midguts containing pygo or dsh clones by comparison with controls (Figs

Fig 4. All gut cell types are capable of responding toWg exposure. (A-B”) Compared with the wild-type anterior midgut, Wg signaling is ectopically
induced in the Apc1Q8mutant. Fz3-RFP serves as a reporter for Wg pathway activity. DAPI labels the gut cell nuclei. Anterior to the left. Scale bar: 100μm.
(C-C”‘)GFP-marked Apc2 Apc1mutant MARCM clones exhibit aberrantly high fz3-RFP signals in all gut cell types at compartment boundaries, including
progenitors (orange arrow), enterocytes (white arrow) and enteroendocrine cells (yellow arrow), as indicated by Arm and Prospero staining. Of note, despite
the high-level Wg pathway activation that is already present at compartment boundaries, Apc2 Apc1 double mutant cells display even higher levels of
activation at all boundaries. Scale bar: 10μm. (D and D’)Wg originating from the visceral muscle is sufficient to activate signaling in the intestinal epithelium.
Wg is expressed throughout the muscle using a temperature sensitive dMef2-Gal4 driver (D’) alongside with wild-type control (D). Flies were shifted to the
permissive temperature forwg expression at eclosion and reared at this temperature for one week prior to analysis. Dramatic induction of fz3-RFP is detected
in the epithelium, most pronouncedly in the anterior midgut. Scale bar: 100μm. (E-E”‘)Overexpression ofwg in muscle during adulthood induces ectopic Wg
pathway activation in all gut cell types, including progenitors (orange arrow), enterocytes (white arrow) and enteroendocrine cells (yellow arrow), as indicated
by Arm and Prospero staining. Scale bar: 10μm.

doi:10.1371/journal.pgen.1005822.g004

Regulation of Intestinal Stem Cell Proliferation by Wingless Signaling

PLOS Genetics | DOI:10.1371/journal.pgen.1005822 February 4, 2016 10 / 31



Fig 5. Disruption of Wg signaling non-autonomously induces proliferation of ISCs. (A)MARCM clones were induced on the day of eclosion and
analyzed 5–7 days later. Quantification of clone size for wild-type, pygo and dsh ISC lineages in the posterior midgut shows that both pygo and dsh have a
higher percentage of multi-cellular clones compared with wild-type. Number of clones examined: 82B (n = 864), pygo (n = 898), 19A (n = 384) and dsh
(n = 699). (B)Wild-type progenitor cells, marked with esg-lacZ, aberrantly gather around the adult pygomutant MARCM clones (marked by GFP, inside R4).
Scale bar: 25μm. (C-F) The abnormally clustered wild-type progenitor cells include both ISCs and EBs. Scale bar: 10μm. (C and D) Increased number of
ISCs, marked by Dl-lacZ, are aberrantly clustered around arrMARCM clones (inside R4) (D), this defect was not observed when wild-type clones were
induced (C). (E and F) Increased number of EBs, marked by Su(H)-lacZ, are aberrantly clustered around pygoMARCM clones (inside R4) (F), this defect
was not observed when wild-type clones were induced (E). (G) Phospho-histone H3 labels cells that are undergoing mitosis and serves as a marker for
proliferation. Quantification of pH3+ cells in posterior midguts bearing either pygo or dshMARCM clones, alongside wild-type controls, reveals a significant
increase in proliferation. Number of guts examined: 82B (n = 15), pygo (n = 21), 19A (n = 20) and dsh (n = 19). ****P<0.0001 (t-test). (H) ReducingWg
pathway activity specifically in adult enterocytes using RNAis (i, the number after i indicates the line used) also results in increased proliferation. Number of
guts examined: wild-type (n = 15), TCFi1 (n = 17), arri1 (n = 16) and pygoi1 (n = 17). ****P<0.0001; ***P<0.001 (t-test). (I-L)Diminishing Wg pathway activity
specifically in adult enterocytes also results in disorganized gut epithelium (J-L). Wild-type control is shown in (I). Scale bar: 10μm.

doi:10.1371/journal.pgen.1005822.g005
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5G and S12C and S12D). Thus, non-autonomous ISC overproliferation was detected. There
remained the possibility that the normal process of ISC migration following mitosis was also
disrupted, and contributed to their aberrant clustering. This non-autonomous overprolifera-
tion defect was observed only when the Wg pathway was inactivated during adulthood, but not
prior to eclosion (S10 Fig). Together, these findings indicate that Wg signaling prevents the
non-autonomous overproliferation of neighboring ISCs during adult homeostasis.

To test the possibility that Wg signaling in enterocytes non-autonomously regulates the pro-
liferation of neighboring progenitor cells, we disrupted signaling by knocking downWg path-
way components using RNA-mediated interference (RNAi), or by expressing dominant-
negative Legless (Lgs17E) [5] or dominant-negative TCF (dTCFΔN) in enterocytes or progenitor
cells with the cell type-specificMyoIA or esg drivers, respectively [13,49,50]. Inhibition of Wg
signaling in enterocytes resulted in ISC overproliferation, as revealed by the aberrantly
increased number of pH3+ cells (Fig 5H) and the presence of progenitor cells that were
grouped in clusters (Figs 5I–5L and S13A-S13F). By contrast, when the same components were
knocked down in progenitor cells, the phenotype was either absent or very weak (S13J–S13L
Fig). In addition, ISC overproliferation was observed only when Wg signaling was disrupted
during adulthood, but not prior to eclosion (S13G–S13I and S13M–S13O Fig), consistent with
our analysis of Wg pathway mutant clones. Together, these findings indicated that the activa-
tion of Wg signaling in enterocytes prevents the non-autonomous overproliferation of neigh-
boring ISCs during adult homeostasis.

Wg pathway activation prevents the non-autonomous overactivation of
JAK-STAT signaling
We further sought to determine the mechanism by which loss of Wg signaling in enterocytes
induces the non-autonomous overproliferation of nearby ISCs. We postulated that following
Wg pathway inactivation, cytokines or ligands secreted from enterocytes could activate signal-
ing, and thereby the proliferation of neighboring ISCs. This hypothesis is consistent with previ-
ous findings, which revealed that ligands from several different signal transduction pathways
are released in this manner, including Unpaired (Upd2 and Upd3) from the JAK-STAT path-
way, Krn from the EGF pathway and Dpp from the TGF-β pathway [49–54]. Therefore, we
compared the levels of transcripts encoding these ligands in control intestines with those in
which signaling had been disrupted in enterocytes by RNAi-mediated knockdown of Wg path-
way components or by expression of dominant negative Lgs or dominant negative TCF. We
observed a marked increase in the expression of upd2 and upd3, but none of the other ligands
tested (Figs 6A and S14A).

Based on these results, we sought to determine whether the JAK-STAT pathway was aber-
rantly activated in ISCs following disruption of Wg signaling in enterocytes. Indeed, strong
activation of stat-GFP expression, a JAK-STAT pathway reporter, was observed in clusters of
wild-type progenitor cells near pygo null mutant clones (Fig 6C–6C’). In contrast, in cells far-
ther away from mutant clones, or in cells adjacent to wild-type clones, stat-GFP was present at
basal levels (Fig 6B–6C’). Consistent with this observation, strong induction of Socs36e, a direct
target gene of the JAK-STAT pathway, was also detected following RNAi-mediated knockdown
of Wg pathway components or overexpression of dominant negative Lgs (S14B Fig). To deter-
mine whether JAK-STAT pathway activation mediates the non-autonomous effects of Wg
pathway mutant enterocytes, we used RNAi-mediated knockdown to reduce upd2 and upd3
expression in enterocytes in which Wg signaling was disrupted concomitantly (Fig 6D–6E).
Notably, the aberrant increase in pH3+ cells and the abnormal clustering of Deltapos cells were
both suppressed (Fig 6D–6E). We conclude that JAK-STAT pathway activation is required for
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Fig 6. JAK-STAT pathway overactivation upon disruption of Wg signaling in enterocytes. (A)When the
MyoIAts driver was used to knockdownWg signaling inside enterocytes during adulthood, mRNA expression
levels of upd2 and upd3, but not dpp or krn, are greatly induced. The qPCR results were normalized to rpl32
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the non-autonomous overproliferation of ISCs that results from inhibition of Wg signaling in
enterocytes.

The JAK-STAT pathway is activated in response to various challenges in the midgut, includ-
ing infection, apoptosis, and stress to promote rapid proliferation [50,55]. We sought to deter-
mine whether Wg pathway inhibition in enterocytes induces either a stress response and/or
apoptosis, and secondarily results in JAK-STAT pathway activation and a proliferative
response in neighboring ISCs. Therefore, we examined the activation of the two major stress-
responsive signaling pathways, JNK (c-Jun N-terminal kinase) and Nrf2 (Nuclear factor 2)
[56–58], through analysis of their respective target genes: puc and keap1 [59–61]. Importantly,
we found that neither of these pathways was activated following Wg signaling disruption (S14B
Fig). Furthermore, enterocytes in which Wg signaling was inhibited using mutant clones or
RNAi-mediated knockdown did not exhibit any hallmarks of apoptosis, including nuclear frag-
mentation, detachment from the epithelium, or caspase activation (S14C–S14E’ Fig). These
findings provided evidence that the induction of JAK-STAT pathway and ISC overproliferation
is more likely a direct consequence of Wg pathway inactivation in these enterocytes. Together,
we conclude that the maintenance of intestinal homeostasis requires activation of Wg signaling
in enterocytes to prevent the non-autonomous activation of JAK-STAT signaling, and thereby
the aberrant overproliferation of neighboring ISCs.

Wg signaling autonomously specifies cell fate at compartment
boundaries during development
The non-autonomous effect on ISC proliferation described above was observed within intesti-
nal compartments. We also sought to determine the function of high-level Wg pathway activa-
tion at compartment boundaries and focused our analysis on the R5-HPZ border, which
partitions the posterior terminal midgut (R5) from the anterior hindgut [23,34]. This boundary
is distinguished by the juxtaposition of two distinct epithelial cell populations that are derived
from distinct origins and differ with respect to cell size, nuclear size and cell adhesion (Fig 7A–
7B’) [34,62]. To examine the roles of Wg signaling at the midgut-hindgut boundary, we gener-
ated mutant clones of the Wg pathway components arr, dsh, pygo and the functionally redun-
dant fz and Dfz2 in larvae and analyzed adult guts shortly after eclosion. When wild-type
clones crossed the midgut-hindgut boundary or were confined within the R5 region, normal
cell morphology and cell-cell junctions were observed, and a discrete border between R5 and
the HPZ was clearly demarcated, with high levels of Fas3 restricted to the hindgut (Fig 7C–
7D”‘). In contrast, two distinct phenotypes were observed in Wg pathway mutant clones near
the R5-HPZ boundary: the mutant epithelial cells either formed tightly-packed swirls or dis-
played markedly larger nuclear and cell size by comparison with their wild-type neighbors.

and compared with wild-type, presented as mean fold-change with standard deviation. ****P<0.0001 (t-
test). (B-C’) JAK-STAT pathway activity is abruptly increased in the vicinity of the adult pygomutant MARCM
clones (inside R4). Stat-GFP serves as a reporter for JAK/STAT signaling. The pygo clones are marked with
DsRed. Scale bar: 50μm. (C’) Intensity of stat-GFP expression is quantified using the IMARIS software. (D
and E) JAK-STAT pathway activation mediates the non-autonomous effects of Wg pathway disruption. (D)
Knockdown of TCF by RNAi inside enterocytes using theMyoIAts driver results in ISC overproliferation, and
this could be suppressed by simultaneous inactivation of JAK-STAT pathway via upd2 or upd3 knockdown.
Number of guts examined:wi (n = 17), TCFi1+wi (n = 12), TCFi1+ upd2i1 (n = 17), TCFi1+ upd2i2 (n = 24),
TCFi1+ upd3i1 (n = 15) and TCFi1+ upd3i2 (n = 18). ****P<0.0001; N.S. not significant (t-test). (E)
Knockdown arr by RNAi inside enterocytes using theMyoIAts driver results in increase of Deltapos cells,
which could also be suppressed by further knockdown of JAK-STAT pathway activity. Number of guts
examined: wild-type (n = 9), Arri2+GFP (n = 10), Arri2+ upd2i1 (n = 9), Arri2+ upd2i2 (n = 12), Arri2+ upd3i1

(n = 8) and Arri2+ upd3i2 (n = 11). ****P<0.0001; ***P<0.001; **P<0.01; N.S. not significant (t-test).

doi:10.1371/journal.pgen.1005822.g006
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Fig 7. Disruption of Wg signaling at R5-HPZ boundary inducesmasses of “tightly-packed” cells.
(A-B’) Terminal midgut cells and HPZ hindgut cells separated by the midgut-hindgut boundary are derived
from distinct origins (endoderm for midgut versus ectoderm for hindgut). They have disparate nuclei shape,
nuclei size and cell size (A and B), as well as disparate cell-cell junctions (A’ and B’). Dashed lines mark the
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The first class of mutant clones at the R5-HPZ boundary was comprised of masses of
tightly-spaced cells of aberrant nuclear and cell size that were arranged in a spiral pattern,
which were readily distinguishable from the surrounding loosely-ordered wild-type epithelium
(Figs 7E–7I”‘ and S15B–S15E”‘). This “tightly packed” phenotype occurred with high pene-
trance (S15A Fig) and was often very severe. Of note, many of the tightly packed mutant clones
extended outside the gut (Figs 7F–7G”‘, 7I–7I”‘, S15B and S15E–S15E”‘), and formed a hollow
mass with a haze of DAPI staining at its center (Figs 7F and S15B). Importantly, despite their
location at the terminal midgut, these mutant clones expressed Fas3 at high levels, a character-
istic that is normally restricted to the hindgut cells (Figs 7F–7G”‘ and S15D–S15D”‘). These
observations suggested that the “tightly-packed”Wg pathway mutant clones failed to adopt a
proper midgut fate, and instead displayed characteristics of the hindgut. To further test this
conclusion, we analyzed the mutant clones for cell-specific markers. We found that the vast
majority of mutant clones lacked Deltapos ISCs and Prosperopos enteroendocrine cells, and
were also negative for Pdm-1, a marker for differentiated enterocytes (Fig 7H–7I”‘) [26,63]. In
rare instances, Deltapos or Prosperopos cells were found at the clone periphery. In addition, no
Cut was detected in the mutant clones, ruling out the possibility of misadoption of the renalcyte
fate (S15E–S15E”‘ Fig)[64,65]. Together, these findings indicated that Wg signaling at the
R5-HPZ boundary is critical for proper fate specification of posterior terminal midgut cells.

The second major defect that we observed in Wg pathway mutant clones at the midgut-
hindgut boundary were abnormally large cells with large nuclei as compared with their wild-
type neighbors, which we termed “large cell” clones (Fig 8A–8A”‘). These large cell clones were
found mainly in the midgut, but in some cases, they intercalated within the tightly-spaced rows
of anterior hindgut cells in the HPZ (S16A–S16A”‘ Fig). In sharp contrast with the “tightly-
packed” clones, the cells within the large cell clones had low Fas3 levels and remained contigu-
ous with the epithelial lining of the gut lumen (S16B–S16B”‘ Fig). Thus, the “large cell” clones
and the “tightly-packed” clones represented two distinct classes. Previous studies have shown
that ISCs or EEs that underwent excessive replication and cell growth without cell division or
differentiation displayed abnormally large nuclear and cell size [66,67]. To determine whether
the “large cell” clones caused by inhibition of Wg signaling resulted from a similar mechanism,
we stained these clones with midgut markers. Of note, Deltapos ISCs and Prosperopos EEs of
normal size and ploidy were present inside these “large cell” clones; however, the cells of

midgut-hindgut border with midgut on the left. DAPI labels the nuclei. In R5, cells are large and have round
nuclei, whereas the HPZ is composed of tightly-spaced rows of small, columnar cells. Arm and Fas3
demarcate the adherence junctions. Note that Fas3 is expressed at high level in the hindgut and its
expression drops dramatically in the midgut (B’). Scale bar: 10μm. (C-D”‘)Wild-type MARCM clones
crossing the midgut-hindgut boundary do not affect nuclei morphology or cell-cell junction on either side. The
border between the two compartments is clearly demarcated. Note that Fas3 is restricted to the hindgut side.
Scale bar: 10μm. (E-I”‘)MARCM clones of indicated mutants were induced during larval development and
examined soon after eclosion. GFP marks the clones. Dashed lines mark the midgut-hindgut border with
midgut on the left. (E-E”‘) A tightly packed dsh clone exhibits abnormal spherical arrangement of nuclei
(DAPI) as well as distorted cellular organization (Arm). Scale bar: 10μm. (F) A tightly packed pygo clone
extends outside the gut. Cross-section of the clone shows that it is hollow with a haze of DAPI inside (yellow
asterisk). Note that high-level Fas3 signal is localized at the inner surface of the pygo clone, and is absent
from its outline, suggesting that cells within the clone has maintained apico-basal polarity. Scale bar: 10μm.
(G-G”‘) A tightly packed pygo clone (orange arrow) expresses Fas3 at a high level similar to that of the
hindgut despite its location inside the midgut. Again, high-level Fas3 signal is localized at the inner surface of
the pygo clone, and is absent from its outline. In addition, the clone has extended outside the gut outline.
Scale bar: 50μm. (H-H”‘) A tightly packed fz Dfz2 clone is devoid of Deltapos and Prosperopos cells except at
the very periphery. Scale bar: 10μm. (I-I”‘) A tightly packed fz Dfz2 clone is devoid of Pdm-1pos cells. Scale
bar: 10μm.

doi:10.1371/journal.pgen.1005822.g007
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Fig 8. Disruption of Wg signaling at R5-HPZ boundary induces “large” cells. (A-C”‘)MARCM clones of Wg pathway components were induced during
larval development and examined soon after eclosion. GFPmarks the clones. Dashed lines mark the midgut-hindgut border with midgut on the left. (A-A”‘)
Disrupting Wg pathway activity by arr clones results in cells with dramatically larger nuclei and cell size as well as distorted cell outlines (orange arrows).
Scale bar: 10μm. (B-B”‘) The mutant fz Dfz2 clones bearing large cells (orange arrows) have normal looking Deltapos ISCs (white arrow) and Prosperopos

EEs (yellow arrow). Scale bar: 10μm. (C-C”) The mutant fz Dfz2 clones bearing large cells (orange arrows) have greatly diminished Pdm-1 staining. Scale
bar: 10μm. (D)Model: roles of Wg signaling in the fly gut under normal conditions. (Left)During adult homeostasis, proper Wg pathway activation inside the
enterocytes non-autonomously prevents ISC over-proliferation. (Right) At the midgut-hindgut boundary, Wg is transduced both in progenitors and
enterocytes. During development, normal Wg signaling around this boundary is required for cell fate specification and prevention of lineage mixing.

doi:10.1371/journal.pgen.1005822.g008
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abnormally large size were negative for Delta and Prospero (Figs 8B–8B”‘ and S16C–S16C”‘).
Further, many of the large cells were also devoid of Pdm-1 staining (Fig 8C–8C”‘), the loss of
which correlated with the severity of the phenotype. Together, these findings indicated that the
abnormally large cells had not adopted any of the known terminal cell fates of the midgut.
Therefore, the “large cell” phenotype resulting from inactivation of Wg signaling was likely due
to a defect in cell fate specification during midgut development. We conclude that Wg pathway
activation ensures proper cell fate specification at compartment boundaries during the devel-
opment of the adult intestine (Fig 8D).

The aberrant cell fate specification uponWg pathway inhibition was not only observed at
the midgut-hindgut boundary, but also at the foregut-midgut boundary, a site of high-level Wg
pathway activity where the cardia forms [33,35] (Fig 2B and 2B’). Importantly, when wild-type
clones crossed the cardia, neither nuclear morphology nor cell-cell junctions were affected
(S17A–S17A”‘ Fig). In contrast, several defects were observed in Wg pathway mutant clones
located in the cardia. Specifically, normal cell alignment was disrupted, cells of abnormal size
were detected, and further, mutant cells extended outside the cardia (S17B–S17D”‘ Fig).
Fz3-RFP was lost inside these mutant clones, confirming disruption of Wg pathway activity
(S17B–S17B”“Fig). Together, these observations provided evidence that Wg signaling directs
proper cell fate specification at two major intestinal boundaries.

Discussion
Despite the critical processes mediated by Wnt signaling in mammalian intestinal homeostasis,
the functions of this pathway in maintaining homeostasis in the adult Drosophila intestine
have remained uncertain [25,26,30]. Here, motivated by the recent discovery of graded activa-
tion of the Wg pathway at adult intestinal compartment boundaries [18], we examined the
sources and function of Wg signaling during homeostasis and development. Our findings dem-
onstrate that Wg pathway activation is essential for the non-autonomous control of ISC prolif-
eration within compartments during homeostasis and also for specifying cell fate near
compartment boundaries during the development of the adult gut.

Wg emanating from the gut epithelium and surrounding visceral muscle
peaks at intestinal compartment boundaries
The adult fly gut is subdivided into distinct compartments that have unique function, histo-
logical structure, and gene expression repertoire [18–20]. Recently, the graded expression of
fz3, a known target gene of the Wg pathway, was found to peak at compartment boundaries
[18]. This boundary-enriched activation of the Wg pathway could not be fully explained by
the previously identified patterns of wg expression in the intestine [30,34,35]. In this study,
we uncovered several novel regions of wg expression both in the gut epithelium and within
the surrounding muscle. Together with previous reports, our new findings indicate that Wg
is markedly enriched around intestinal compartment boundaries that coincide with promi-
nent sphincters and tissue-organizing centers. An analogous enrichment of wg expression at
major compartment boundaries was observed in the larval intestine. How these wg-enriched
zones are established and maintained awaits further investigation. The Wnt pathway is
known to be one of the key regulators of antero-posterior patterning and regional specificity
in the development of vertebrate gastrointestinal tract [68,69], suggesting that the require-
ment for Wg signaling at intestinal compartment boundaries in flies might be evolutionarily
conserved.
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Wg signaling is activated primarily in enterocytes but not ISCs during
homeostasis
Previous studies of Wg signaling in intestinal homeostasis were focused on transduction of the
pathway in ISCs [25,26,30,70]. Here, however, starting with Wg signaling reporters that
enabled cell-type specific analysis and coupling these findings with functional studies, we have
discovered that the primary site of Wg pathway activation during adult homeostasis is in enter-
ocytes and not ISCs. Two factors may account for the discrepancy between our results and pre-
vious reports. First, the primary conclusions regarding strong effects on ISC self-renewal in
previous studies were based mainly on a dominant negative TCF (dnTCF) [25,26,30], which is
a truncated and overexpressed protein [4]. Indeed, the strong negative effects on ISC prolifera-
tion resulting from dnTCF expression were not recapitulated by null alleles of the essential
components Frizzled or Pygo [25], indicating that dnTCF exhibited some phenotypes that
were not present upon complete inactivation of Wg pathway, and thus some dnTCF effects do
not represent the physiological roles of Wg signaling in intestinal homeostasis. For this reason,
we based our studies on null alleles, and tested our conclusions by analyzing multiple essential
Wg pathway components. Second, the initial study investigating the roles of Wg signaling on
ISC renewal examined mutant clones 30 days after clone induction [30]. Our clonal analysis
was performed at much earlier timepoints (5–7 days ACI). Therefore, the differing results may
indicate that Wg signaling has biphasic roles in adult gut homeostasis.

Of note, we found that all cell types in the adult intestinal epithelium have the capability to
respond to Wg exposure. Therefore, the responsivity of different intestinal cell types to Wg
stimulation may reflect inherent differences in their threshold for pathway activation. We pos-
tulate that the threshold for Wg pathway activation is higher in ISCs than enterocytes, and
therefore signaling is activated in ISCs only under hyperactivated contexts, as in Apcmutants
[26–29], or in response to high levels of wg that are expressed following intestinal injury [25].
Nonetheless, ISCs at the R5-HPZ boundary are an exceptional population in which the Wg
pathway is active during homeostasis. The R5-HPZ compartment boundary is a unique region
at which three distinct sources of the Wg ligand converge, and exhibits the highest level of Wg
pathway activation in the gut (our observations and [18]). Therefore, the level of wg in this
region may surpass the threshold required for activation of signaling in ISCs.

Wg signaling non-autonomously prevents the proliferation of ISCs to
maintain homeostasis
We have found that when Wg signaling is inactivated in enterocytes, the JAK-STAT pathway
is aberrantly induced in neighboring wild-type ISCs, and drives their non-autonomous prolif-
eration (Fig 8D). In wild-type flies, the JAK-STAT pathway is activated in response to various
challenges such as infection, apoptosis, and stress to promote rapid ISC proliferation [50,55].
However, we found that neither of the two major stress response pathways in the fly gut, JNK
and Nrf2, nor apoptosis, was induced following Wg pathway inhibition in enterocytes. There-
fore, the non-autonomous ISC overproliferation is not a secondary consequence of stress or
cell death in neighboring enterocytes. Transcription factors including TCF that are critical for
maintenance of gut regionalization in the adulthood can also regulate homeostasis [18]. There-
fore, inactivation of Wg signaling during adult homeostasis could potentially disrupt gut
regionalization and thus trigger JAK-STAT pathway activation. Alternatively, Wg pathway
activation might be required for the tight control of JAK-STAT signaling during homeostasis.
As a critical barrier to toxins and infection, intestines are subjected to constant injury and acti-
vate JAK-STAT signaling as a compensatory response. We postulate that Wg signaling is
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required to prevent the inappropriate activation of this critical response during homeostasis
and that this “brake”must be shut off or bypassed during regeneration following injury.

Wg signal transduction controls cell fate specification and prevents
lineage mixing near compartment boundaries
Wg pathway activation has known critical roles in cell sorting and patterning at several distinct
compartment boundaries in metazoans, including at fly embryonic parasegmental boundaries,
the larval wing disc dorsal-ventral boundary, and vertebrate rhombomere boundaries [71–74].
Here, we have found that Wg pathway activation may serve a similar tissue-organizing role at
intestinal compartment boundaries, where it is required for proper cell fate specification and
lineage separation. We focused on the R5-HPZ boundary, a site of high-level Wg pathway
activity, where cells of completely distinct functional and morphological properties are sepa-
rated [34]. During development of the adult intestine, the R5 compartment is formed by the
anterior migration of HPZ cells from the hindgut to the midgut accompanied by their re-speci-
fication as midgut cells, and the posterior migration of midgut AMPs [62]. Despite this striking
bi-directional movement, the precise coordination of cells in this region ensures proper fate
specification and demarcation by a sharp border.

Here, we discovered that disruption of Wg signaling at the R5-HPZ boundary results in two
distinct defects: the formation of either “tightly packed” groups of cells or abnormally “large”
cells (Fig 8D). Both of these defects affect proper cell fate specification and boundary mainte-
nance, but are disparate in nature. First, the tightly packed cells segregate away from their wild-
type neighbors, and cluster together to form a hollow spherical mass that can grow outside the
midgut. Intriguingly, despite their location in the midgut, these “tightly packed” cells lack cell-
type specific midgut markers, and express Fas3 at high levels that are normally found in the
hindgut cells. Based on these observations, we speculate that these “tightly packed” clones are
hindgut cells that fail to adopt midgut cell fate following migration. Unlike the “tightly packed”
cells, the abnormally “large” cells that also result from inactivation of Wg signaling are likely
midgut-derived, as they express Fas3 at low levels and are contiguous with midgut epithelium.
Previous reports revealed that defects in mitosis result in dysfunctional ISCs that undergo rep-
lication without division [66,67], which in principle could have been the cause of the aberrantly
large cells we observed. Similarly, mitotic deregulation in EEs also results in an abnormal
increase in ploidy [67]. However, the “large cells” that resulted fromWg pathway inhibition
are devoid of normal ISC and EE markers. Further, almost all of the abnormally large cells do
not express markers characteristic of differentiated enteroctyes. Importantly, these “large cell”
clones are multi-cellular, and include ISCs and EEs of normal ploidy, size, and cell-type specific
markers. These characteristics distinguish the phenotype of the Wg pathway mutant clones
from the previously reported large cells that result from defective mitosis [66,67] and suggest
that these large cells, like the “tightly-packed” cells, likely arise from deregulated cell fate speci-
fication and have likely adopted an intermediate or novel cell fate.

Materials and Methods

Fly stocks
Reporters. wg-lacZ [31], fz3-RFP [38], nkd-lacZ (nls) [39], esgK606 [13], Fer1HCH[G188]

[75], 10xstat-GFP [76], wg{KO, cherry} [37], wg{KO, Gal4}[37], Dl-lacZ (BDSC#11651), esg-
GFP [77], Su(H)-lacZ [78] and UAS-GFP-lacZ (BDSC#6452).
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Wg pathway mutants and controls. arr2 [45], fzH51 fz2C1 [46], pygoS123 [6], dsh3 [42],
Apc1Q8 [47] and Apc219-3 Apc1Q8 [44]. Wild-type controls were FRT42D, FRT2A, FRT82B,
FRT19A and Canton S flies.

MARCM lines. MARCM 42D: yw hs-flp; UAS-(nls)GFP tub-gal4; FRT42D tub-gal80 [50],
MARCM 82B: yw hs-flp tub-gal4 UAS-dsRed;; FRT82B tub-gal80/TM3, Ser [49], MARCM 82B:
yw hs-flp UAS-CD8::GFP;; tub-gal4 FRT82B tub-gal80/TM6B [79], MARCM 82B: hsflp
U-CD8-GFP; tub-gal4; FRT82B Gal80 [48], MARCM 19A: hs-flp tub-gal80 FRT19A;; tub-gal4
UAS-mCD8::GFP/SM6^TM6B [80], MARCM 19A: FRT19A tub-gal80 hs-flp; UAS-lacZ/(CyO);
tub-gal4/TM6B [79], MARCM 2A: yw hs-flp; tubgal4 UAS-mCD8::GFPLL5/CyO act-GFPJMR1;
FRT2A tub-gal80LL9 [81].

RNAi and overexpression stocks. tubgal80ts; mef2-gal4 [48], UAS-wg [4], UAS-dicer2;
MyoIA-gal4 tubgal80ts UAS-GFP/CyO [49], UAS-dicer2; esg-gal4 tubgal80ts UAS-GFP/CyO
[49],MyoIA-gal4 [82], dTCFΔN [4], Lgs17E [5], UAS-rpr/TM3 (BDSC#50791), UAS-w RNAi
(BDSC#25785) and UAS-GFP-lacZ (BDSC#6451). Independent RNAi constructs were tested
for each gene to minimize off-target effects: UAS-Tcf RNAi#1 (VDRC#108679), UAS-Tcf
RNAi#2 (VDRC#3014), UAS-Tcf RNAi#3 (BDSC#26743), UAS-pygo RNAi#1 (VDRC#19692),
UAS-pygo RNAi#2 (VDRC#19693), UAS-arr RNAi#1 (VDRC#6707), UAS-arr RNAi#2
(BDSC#53342), UAS-arr RNAi#3 (VDRC#4819), UAS-upd2 RNAi#1 (BDSC#33988), UAS-
upd2 RNAi#2 (BDSC 33949), UAS-upd3 RNAi#1 (BDSC#32859) and UAS-upd3 RNAi#2
(BDSC#28575).

Fly maintenance
Crosses were performed at 25°C except those under control of gal4/gal80ts driver, which were
set up at room temperature. To test the effects specifically during adulthood, progeny were col-
lected within 2 days after eclosion and shifted to 29°C for another 7–10 days. To determine the
potential function during development, 2nd instar larvae were switched to 29°C and dissected
right after eclosion. For the rpr-induced cell death experiments, flies overexpressing rpr, as well
as control flies, were shifted to 29°C 3 days after eclosion for 40 hours before examination.

Immunohistochemistry
Primary antibodies used for immunostaining were mouse anti-β-gal (Promega) 1:500, rabbit
anti-β-gal 1:5000 (MP Biomedicals), mouse anti-Arm 1:20 ([83]; Developmental Studies
Hybridoma Bank, DSHB), mouse anti-delta 1:100 ([78]; DSHB), mouse anti-Prospero 1:20
([84]; DSHB), mouse anti-Cut 1:20 ([85]; DSHB), mouse anti-α-Spectrin 1:20 ([86]; DSHB),
mouse anti-Fas3 1:20 ([87]; DSHB), rabbit anti-Pdm-1 1:200 [63], rabbit anti phosphor-his-
tone H3 (Ser10) 1:1000 (Millipore), rabbit anti-DsRed 1:500 (Clontech), chicken anti-GFP
1:10000 (Abcam), rabbit anti-GFP 1:500 (Life Technologies), Alexa Fluor 555 phalloidin 1:500
(Life Technologies), Alexa Fluor 488 phalloidin 1:500 (Life Technologies), rabbit anti-cleaved
Drosophila Dcp-1 (Asp216) 1:100 (Cell Signaling) and DAPI 1:100 (Sigma). Secondary anti-
bodies used were goat or donkey Alexa Fluor 488 or 555 conjugates at 1:400 (Life Technolo-
gies), and goat or donkey Cy5 conjugates at 1:200 (Life Technologies/Jackson
Immunochemicals). Confocal images were captured on a Nikon A1RSi confocal microscope
and processed with Adobe Photoshop software.

Adult fly guts were dissected in PBS, fixed in 4% paraformaldehyde for 45 mins to 1hr and
washed with PBS+0.1% Triton X-100. Specifically, adult wg-lacZ guts were fixed in sodium
cacodylate buffer [48] for 25 mins, and for Delta antibody staining, guts of desired genotypes
were fixed in sodium cacodylate buffer for 20 mins. After blocking with PBS+0.1% Tween-
20+10% BSA for 1h at room temperature, the samples were incubated with primary antibody
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(diluted in PBS+0.5% Triton X-100) at 4°C overnight. Secondary antibody incubation was car-
ried out at room temperature for 2 hrs. The samples were subsequently stained with DAPI
(2 μg/ml) and mounted in Prolong Gold Antifade Reagent (Life Technologies). Larval guts
were immunostained in the same way except that the wandering 3rd instar larvae were dis-
sected and fixed for only 20 mins. More than 20 guts of desired genotypes were examined
unless specified and the representative image is shown. The non-autonomous ISC overproli-
feration defects were observed in both anterior and posterior midguts, and the specific subre-
gions shown in the figures are indicated in the figure legends.

Quantification and statistics
Quantification of fz3-RFP and nkd-lacZ expression level in posterior midgut was performed by
NIS-Elements software. Stat-GFP intensity was analyzed via Imaris software (Bitplane). For
ISC quantification, flies were stained with anti-Delta and anti-Prospero antibodies. 60x images
of posterior midgut region (R4-R5) were obtained and the total number of Delta positive cells
in the field was counted. T-tests were performed using Prism (GraphPad software, USA).

Clonal analysis
MARCM clones were generated as described [40,41]. To induce clones during development, 1st

and 2nd instar larvae were heat shocked in a 37°C water bath for 2–3 hrs, except for crosses
driven by one MARCM 82B driver [79], which were induced during larval-pupal transition.
For specific MARCM lines, the heat-shock was repeated the next day. To generate MARCM
clones during adulthood, progeny of the desired genotype were collected within 2 days after
eclosion and were heat-shocked in a 37°C water bath. The length of the heat shock varied with
the MARCM line, from one 30-min heat shock to four 90-min heat shocks over 2 days. The
adult clones were examined 7–10 days later. For larval clones, 1st and 2nd instar larvae were
heat-shocked for 2–3 hrs and guts of wandering 3rd instar larvae were examined.

Quantification of expression levels of candidate ligands
15–20 fly guts of proper genotype and age were dissected and homogenized in Trizol (Invitro-
gen). Total RNA was extracted according to the protocol from the Drosophila Genomics
Resource Center or using the RNA miniprep kit (Zymo research). The RNA was subsequently
treated with RQ1 DNase (Promega). 1 μg of RNA was reverse transcribed using p(dT)15 prim-
ers (Roche) and M-MLV reverse transcriptase (Invitrogen). Expression level of candidate
ligands was quantified using the StepOne Real-time PCR system (Life Technologies) with
SYBR green (Life Technologies/Biorad) and the results were presented as mean fold change
with standard deviation.

The primers for rpl32 (internal control), upd3 and Socs36e were adapted from [28], whereas
primers for krn were adapted from [88]. The other primer sequences were: dpp F: 5’- TCT
GCT GAC CAA GTC GG -3’, dpp R: 5’- GCG GGA ATG CTC TTC AC -3’, upd2 F: 5’- TGG
TAT TCG CTC ATC GTG A -3’, upd2 R: 5’- GGC AAA TCA GAG ATC CCG -3’. puc F: 5’-
CAC ATC AGA ACA TCA AGC AGT AC –3’, puc R: 5’-GTA GGC GAT GGC AAT GG -3’
and Keap1 F: 5’-TAC AAG AGT CCA GCG ATC CA –3’ and keap1 R: 5’-GTC ACC GAA
ACA TGG CGT-3’.

Supporting Information
S1 Fig.Wg is enriched in the epithelium and surrounding muscle at adult intestinal com-
partmental boundaries. (A) Schematic presentation of the Wnt/Wg signaling pathway. (B)
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Luminal view of wg expression inside cardia via wg-lacZ. Note that the expression is enriched
in the anterior half of cardia. Scale bar: 50μm. (C) Two lines of wg-lacZ expression are detected
in the muscle layer overlying the R4 region. Scale bar: 50μm. (D-D”)Wg expression delineates
the anterior border of the rectal papillae. Fas3 marks the cell-cell junctions of the rectal epithe-
lium. DAPI is enriched inside rectal papilla. Scale bar: 100μm. (E-E”) Boundary-enriched
expression of wg-lacZ is retained in the 30-day-old fly guts. The only obvious difference is that,
at this stage, strong wg expression is not only present anterior to the R2-R3 border (E and E’),
but also inside R3 (E and E”). The red arrows in (E) point to the constriction sites around R3.
Scale bar: (E) 100μm and (E’ and E”) 50μm.
(TIF)

S2 Fig. Boundary-enriched wg expression is also revealed by wg:mcherry. (A)Wg expression
pattern revealed by wg:mcherry construct is very similar to that of wg-lacZ. Anterior to the left.
Enrichedmcherry signal is detected at major intestinal compartment boundaries, including
F-M, cardia-R1, R2-R3 and R5-HPZ (M-H). It is also present as a ring-shape in the rectum.
The green arrows point to the two major constriction sites that denote the position of R3. Scale
bar: 100μm. (B-E)Higher magnification view of (A).Wg:mcherry expression is enriched at the
anterior half of the cardia epithelium (B and B’), muscle fibers anterior to the R2-R3 border (C
and C’, white bracket) as well as both muscle (D and D’, white bracket) and epithelium (E and
E’, white bracket) anterior to the R5-HPZ boundary. Scale bar: 50μm.
(TIF)

S3 Fig. Boundary-enrichedWg expression is also detected in wg>lacZ flies. (A)Wg expres-
sion pattern along the fly gut revealed by wg-gal4 knock-in line driving UAS-lacZ. Anterior to
the left. Enriched signal is detected at all major intestinal compartment boundaries, including
F-M (epithelium), cardia-R1 (epithelium), R2-R3 (muscle and epithelium), R3-R4 (epithelium)
and R5-HPZ (M-H) (muscle and epithelium). It is also present as a ring-shape in the rectum.
The red arrows point to the two major constriction sites that denote the position of R3. Scale
bar: 100μm. (B-C’)Higher magnification view of wg>lacZ expression inside cardia, both at
basal (B and B’) and luminal levels (C and C’). Phalloidin staining outlines the cardia struc-
ture. Scale bar: 50μm. (D-D”‘)Wg>lacZ expression around the R3 compartment. (D and D’)
In the muscle layer (which is marked by the striated pattern of phalloidin), wg>lacZ signal can
be detected as two lines across the region. This expression is overall weak but greatly enriched
in a domain anterior to the R2-R3 boundary. (D” and D”‘) In the epithelial layer, wg>lacZ is
strongly expressed in the border cells separating R2 from R3 as well as R3 from R4. Note that
the epithelial expression at R2-R3 boundary is variable. The red arrows point to the two major
constriction sites that denote the position of R3. Scale bar: 100μm. (E-E”‘)Wg>lacZ expression
around the R5-HPZ region. (E and E’) In the muscle layer, wg>lacZ signal can also be detected
in two lines across the region: this expression is overall weak but greatly enriched in a small
domain (orange bracket) anterior to the border of R5-HPZ. (E” and E”‘) In the epithelial layer,
wg>lacZ is strongly expressed in the cells delineating R5-HPZ border. It is also highly
expressed in around 16 rows of terminal midgut cells. Scale bar: 50μm.
(TIF)

S4 Fig. EpithelialWg is specifically expressed inside enterocytes. (A-B”‘)Wg expression
inside the gut epithelia revealed by wg>lacZ is specifically detected inside enterocytes, but not
progenitors or enteroendocrine cells. DAPI labels the nuclei and indicates their ploidy. Combi-
nation of Arm, Prospero and DAPI differentiates gut cell types: big polyploid cells are entero-
cytes (white arrow), small hollow (Prosperoneg) diploid cells are progenitors (orange arrow)
and small solid (Prosperopos) diploid cells are enteroendocrine cells (yellow arrowhead).
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(A-A”‘) Epithelial wg expression anterior to the R5-HPZ boundary. (B-B”‘) Epithelial wg
expression at the R3-R4 boundary. Scale bar: 10μm.
(TIF)

S5 Fig. Wg pathway activation inside rectum. (A-A”) Expression of fz3-RFP and nkd-lacZ
overlaps inside the rectum. DAPI labels the nuclei and is enriched inside the rectal papilla.
Scale bar: 100μm.
(TIF)

S6 Fig.Wg expression that emanates frommuscle and epithelial sources is also enriched at
the compartment boundaries of the larval intestine. (A) Expression pattern of wg-lacZ in the
larval gut is analogous to its adult counterpart. Anterior to the left. DAPI stains the gut cell
nuclei. Bracket indicates the posterior terminal midgut region. Scale bar: 100μm. (B-D)Higher
magnification view of wg-lacZ expression inside larval cardia, the middle domain, and HPZ.
Strong wg expression is detected in the imaginal rings located in both larval cardia (B) and
HPZ (D), indicating the presence of wg expression at the larval F-M and M-H boundaries. In
(D), strong wg expression is also detected at the larval posterior terminal midgut. The blue dot-
ted line marks the larval ureter while the orange bracket indicates the terminal posterior mid-
gut. Scale bar: 50μm. (E-F”)Wg-enriched middle domain overlaps with the phalloidin-labeled
muscle fibers and adjoins the anterior border of the Ferritin-GFPpos larval iron cell region.
(E-E”) Scale bar: 10μm. (F-F”) Scale bar: 50μm. (G-J’)Wg knock-in gal4 driving UAS-lacZ
exhibits very similar wg expression pattern with wg-lacZ in cardia (G-H’), middle (G, I-I’) and
HPZ (G, J-J’) except that wg>lacZ also exhibits wg expression inside anterior ileum (J-J’).
Scale bar: (G) 400 μm, (H-I’) 50μm and (J-J’) 100μm.
(TIF)

S7 Fig. Wg pathway activity is enriched at larval gut compartment boundaries. (A)Wg
pathway activity along the larval gut is enriched at compartment boundaries, as indicated by
fz3-RFP expression. Anterior to the left. DAPI labels the gut cell nuclei. Scale bar: 500μm.
(B-D’)Higher magnification view of fz3-RFP around larval compartment boundaries, includ-
ing larval cardia (B and B’), HPZ (C and C’) and middle region (D and D’). In (C), the green
dotted line marks the larval ureter. Midgut is on the top. Fz3-RFP is also detected inside com-
partment, but is restricted to AMPs (D and D’, white arrows). Scale bar: (B-C’) 50μm and (D
and D’) 100μm. (E) Summary of wg expression pattern and Wg pathway activation along the
larval intestine.
(TIF)

S8 Fig. Wg signaling is transduced in AMPs at larval compartment boundaries. (A-E”‘)
GFP-marked MARCM clones were induced during early larval development and examined in
3rd instar larval guts. DAPI labels the nuclei of gut cells. AMPs are identified as clusters of
small diploid cells, while larval enterocytes are large polyploid cells. Fz3-RFP serves as the
reporter for Wg pathway activity. Scale bar: 10μm. (A-A”‘) Fz3-RFP expression is not affected
in wild-type clones. (B-B”‘) Pygomutant clones at the middle boundary. Fz3-RFP is lost within
larval progenitor AMPs (orange arrow) but not in enterocytes (white arrow). (C-C”‘) Pygo
mutant clones at the middle boundary. Fz3-RFP expression is specifically lost inside larval pro-
genitor AMPs (orange arrow) but not in peripheral cells (white arrow). (D-D”‘) Dshmutant
clones inside larval gut compartment. Fz3-RFP expression inside AMPs is largely unaffected
(orange arrow). (E-E”‘) AMPs are responsive to Wg signaling along the larval gut. Ectopic
fz3-RFP signal is detected within AMPs (orange arrow) but not enterocytes (blue arrow) of the
Apc2 Apc1 double mutant MARCM clones.
(TIF)
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S9 Fig. Wg pathway is activated primarily in ECs, but not ISCs, at compartment bound-
aries during homeostasis. (A-E”‘)MARCM clones of Wg pathway mutants were induced and
assessed in the same way as in Fig 3. Scale bar: 10μm. Orange arrows indicate progenitor cells
while white arrows point to enterocytes. (A-A”‘) Nkd-lacZ expression is specifically lost within
enterocytes of dshmutant clones at compartment boundaries. (B-D”‘) Fz3-RFP expression is
specifically lost within enterocytes of Wg pathway mutant clones at all compartment bound-
aries. (E-E”‘) Around the specific R5-HPZ border, fz3-RFP is lost in both progenitors and
enterocytes.
(TIF)

S10 Fig. Wg pathway is activated primarily in ECs, but not ISCs, inside compartments dur-
ing homeostasis. (A-C”‘)Mutant clones inside compartments also lose Wg pathway activity
exclusively within enterocytes. Scale bar: 10μm. Orange arrows indicate progenitor cells, white
arrows point to enterocytes and blue arrows indicate enteroendocrine cells. (A-A”‘) Nkd-lacZ
is specifically lost in enterocytes, but not in enterendocrines cells in dshmutant clones. Nkd-
lacZ expression in the subpopulation of enteroendocrine cells is not dependent onWg signal-
ing. (B-C”‘) Fz3-RFP is specifically lost in enterocytes, but not in progenitor cells in fz Dfz2
(B-B”‘) or dsh (C-C”‘)mutant clones.
(TIF)

S11 Fig. All gut cell types are capable of responding to Wg exposure. (A-B”‘) GFP-marked
Apc2 Apc1mutant MARCM clones exhibit aberrantly high fz3-RFP signals in all gut cell types
inside compartments, including progenitors (orange arrow), enterocytes (white arrow) and
enteroendocrine cells (blue arrow), as indicated by Arm and Prospero staining. Scale bar:
10μm. (C-C”‘) GFP-marked Apc2 Apc1mutant MARCM clones also exhibit hyperactivated
Wg signaling inside hindgut. Scale bar: 10μm.
(TIF)

S12 Fig. Disruption of Wg signaling elicits non-autonomous overproliferation of neigh-
boring wild-type ISCs. (A-B”) Abnormal clustering of wild-type gut cells is observed in the
gut epithelium bearing adult dsh mutantMARCM clones (inside R2) (A-A”) or arrmutant
MARCM clones (inside R4) (B-B”). Higher magnification view focused on the boxed region
near the clone (orange box, A’ and B’) or at a distance from the clone (white box, A” and B”)
indicates that wild-type cells adjacent to the dsh or arrmutant cells are affected. Beta-galactosi-
dase staining marks the clones in (B-B”) while GFP marks the clones in (C-C”). Combination
of Arm and Prospero differentiates gut cell types (as described above). Scale bar: (A) 50μm,
(A’-A”) 20μm, (B) 25μm, (B’-B”) 10μm. (C-D) Phospho-histone H3 labels cells that are under-
going mitosis and serves as a marker for proliferation. Compared with the wild-type control
(C), many more pH3+ cells are observed in guts bearing pygo clones (D). Scale bar: 50μm.
(TIF)

S13 Fig. Wg signaling in enterocytes is required to prevent non-autonomous over-prolifer-
ation of ISCs during homeostasis. (A-F) Compared with wild-type (A), disrupting Wg signal-
ing inside adult enterocytes via RNAis or overexpressing dnTCF results in increased number of
progenitor cells and disorganized gut epithelium (B-F). Scale bar: 10μm. (G-H) The non-
autonomous effect is elicited during adulthood and is not observed when the disruption is
induced during development and examined shortly after eclosion. Scale bar: 10μm. (J-O) Sev-
eral components of the Wg pathway were knocked down specifically in progenitor cells either
at adulthood (J-L) or during development (M-O). Decreased Wg signaling within progenitor
cells does not affect or mildly affects the gut epithelium. Scale bar: 10μm.
(TIF)
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S14 Fig. Disruption of Wg signaling inside adult enterocytes induces JAK-STAT pathway
overactivation. (A) Of the candidate ligands, only upd2 and upd3 are specifically induced
whenWg signaling is disrupted in enterocytes. (B) Socs36e, a direct target gene of JAK-STAT
pathway, is also greatly induced upon diminishing Wg signaling in ECs. Target genes of JNK
and Nrf2 pathway (two stress response pathway), puc and Keap1, however, are not affected. (C
and D) Apoptosis is induced in the enterocytes by overexpressing rpr (reaper). Cell death can
be specifically detected using the Dcp-1 antibody. Scale bar: 50μm. (E and E’)No obvious apo-
ptosis is detected whenWg signaling is disrupted during adulthood (pygo clones inside R4).
Scale bar: 50μm.
(TIF)

S15 Fig. Disruption of Wg signaling at R5-HPZ boundary induces masses of “tightly-
packed” cells. (A)Quantification of the penetrance of the two classes of cell fate specification
defects upon diminishing Wg pathway activity. Number of guts examined: WT (2A) (n = 148)
and fz Dfz2 (n = 136). (B) These “tightly-packed” defects uponWg pathway inactivation can
become very severe. A huge fz Dfz2 clone (marked by GFP) is captured around the midgut-
hindgut boundary. The clone is hollow (revealed by the cross-section), entirely extends outside
the gut with a big cloud of DAPI inside. Scale bar: 50μm. (C-C”‘) A dshMARCM clone cross-
ing the midgut-hindgut boundary. The cellular structure is disorganized and the nuclei present
an intermediate size between midgut and hindgut, resulting in a novel aberrant territory span-
ning the border. Scale bar: 10μm. (D-D”‘) Even at a distance away from the midgut-hindgut
boundary, tightly packed fz Dfz2mutant clones express Fas3 at high levels similar to that of the
hindgut. In addition, high-level Fas3 signal is localized at the inner surface of the fz Dfz2 clone,
and is absent from its outline. Scale bar: 10μm. (E-E”‘) The tightly packed fz Dfz2 clones (yel-
low arrow) do not ectopically express cut, which is a differentiated cell marker for renalcytes of
malpighian tubules (the fly “kidney” normally forms near the R5-HPZ border) (white arrow).
Scale bar: 50μm.
(TIF)

S16 Fig. Disruption of Wg signaling at R5-HPZ boundary induces large cells. (A-A”‘) The
abnormally large cells resulted from arrmutant clones (orange arrows) can cross the midgut-
hindgut boundary. Scale bar: 10μm. (B-B”‘) Unlike the tightly packed clones, these aberrant
larger cell clones have normal low-level midgut Fas3 expression and are contiguous with the
midgut epithelium. Scale bar: 50μm. (C-C”‘) The mutant fz Dfz2 clones bearing large cells
(white arrow) have normal looking Deltapos ISCs (orange arrow) and Prosperopos EEs (yellow
arrow). Scale bar: 10μm.
(TIF)

S17 Fig. Wg signaling also specifies cell fate inside cardia. (A-A”‘)Wild-type clones in the
cardia do not affect nuclei morphology or cellular structure. Scale bar: 50μm. (B-B”“)Wg path-
way mutant clones (fz Dfz2) disrupt the normal nuclei alignment (yellow and white arrows),
alter nuclei and cell size (white arrows) and can extend outside the cardia (white arrows). Wg
pathway activity is diminished inside the clones, as indicated by loss of fz3-RFP. Scale bar:
50μm. (C-C”) Pygomutant clones cross the foregut-midgut boundary, resulting in ectopic
nuclei on the midgut side. Scale bar: 50μm. (D-D”) Pygomutant clones can also disrupt the
normal cardia nuclei alignment and have cells with aberrant nuclei and cell size (white arrows).
Scale bar: 50μm.
(TIF)
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