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Abstract
Selection of novel molecular markers is an important goal of cancer genomics studies. The aim of our
analysis was to apply the multivariate bioinformatical tools to rank the genes – potential markers of
papillary thyroid cancer (PTC) according to their diagnostic usefulness. We also assessed the
accuracy ofbenign/malignant classification,basedongeneexpressionprofiling, forPTC. Weanalyzed
a 180-array dataset (90 HG-U95A and 90 HG-U133A oligonucleotide arrays), which included a
collection of 57 PTCs, 61 benign thyroid tumors, and 62 apparently normal tissues. Gene selection was
carried out by the support vector machines method with bootstrapping, which allowed us 1) ranking the
genes that were most important for classification quality and appeared most frequently in the classifiers
(bootstrap-based feature ranking, BBFR); 2) ranking the samples, and thus detecting cases that were
most difficult toclassify (bootstrap-based outlier detection). The accuracy of PTC diagnosis was 98.5%
for a 20-gene classifier, its 95% confidence interval (CI) was 95.9–100%, with the lower limit of CI
exceeding 95% already for five genes. Only 5 of 180 samples (2.8%) were misclassified in more than
10% of bootstrap iterations. We specified 43 genes which are most suitable as molecular markers of
PTC, among them some well-known PTC markers (MET, fibronectin 1, dipeptidylpeptidase 4, or
adenosine A1 receptor) and potential new ones (UDP-galactose-4-epimerase, cadherin 16, gap
junction protein 3, sushi, nidogen, and EGF-like domains 1, inhibitor of DNA binding 3, RUNX1,
leiomodin 1, F-box protein 9, and tripartite motif-containing 58). The highest ranking gene,
metallophosphoesterase domain-containing protein 2, achieved 96.7% of the maximum BBFR score.
Endocrine-Related Cancer (2007) 14 809–826
Introduction

Discrimination between benign thyroid nodules and

cancer is an important aspect of determining the optimal

extent of thyroid surgery. Currently, this is achieved by

routine morphologic assessment of cytopathology

samples. However, this method does not allow proper

classification of all thyroid tumors (Baloch & Livolsi
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2002, Franc et al. 2003). At several institutions, genomic

studies have been undertaken which besides focusing on

basic biological issues (Huang et al.2001,Giordano et al.

2005), also explore potential diagnostic applications

(Aldred et al. 2004, Chevillard et al. 2004, Finley et al.

2004a,b). Our recent microarray-based analysis brought

a 20-gene classifier to differentiate between papillary

thyroid cancer (PTC) and normal thyroid tissue (Jarzab
Britain
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et al. 2005), further verified using three independent

datasets (Eszlinger et al. 2006). Very large and easily

distinguishable differences between the molecular

profiles of PTC and normal thyroid have clearly

demonstrated the applicability of gene expression

findings to diagnostic purposes. However, even more

desirable for the clinician would be genomic profiling-

based capability to discriminate between malignant

tumors and various benign lesions. Therefore, we

decided to use a balanced mixture of samples from

malignant and benign tumors and normal thyroid tissue

to mimic the clinical situation, where the material from

any of these may be obtained and shall be properly

classified. This large 180-array dataset is derived

respectively from de novo studies (nZ40), previously

published own microarray data (nZ124; Eszlinger et al.

2001, 2004, Jarzab et al. 2005), and accessible datasets

published by other authors (nZ16; Huang et al. 2001).

We set the following goals for the study:

1. To assess accuracy of benign/malignant classi-

fication of thyroid specimens in relation to gene

set size, in the context of PTC and

2. To optimize the list of diagnostically relevant

genes in PTC.

To answer both questions, we used the support vector

machines (SVMs) method with bootstrapping. This

approach relies on iterative construction of SVM

classifiers based on randomly selected sets of specimens

(bootstrap samples) and testing the classifiers on

remaining samples. We applied bootstrap to obtain both

gene (feature) ranking and outlier detection. The ranking

of the genes that are most important for classification

quality was based on the frequency of their occurrence in

the classifiers of different size (bootstrap-based feature

ranking, BBFR). The ranking of themisclassified samples

allowed to detect outliers (bootstrap-based outlier detec-

tion, BBOD) and to obtain a reliable estimate of

classification accuracy with appropriate confidence

intervals (CI) for gene sets of different size.

Material and methods

Microarray data used in the study

Microarray datasets from three sources were included

in the analysis:

1. Dataset obtained in Gliwice, Poland; in total, 90

specimens analyzed with GeneChip HG-U133A

microarrays. The specimens were collected from

71 patients with PTC (9 males and 40 females;

mean age 36 years, range 6–71 years) and 22 with
810
other thyroid diseases, 6 with follicular adenoma,

13 with nodular or colloid goiter and 3 with

chronic thyroiditis (9 males and 13 females; mean

age 45 years, range 11–71 years). The thyroid

tissue specimens included 49 PTC tumors and 41

normal/benign thyroid tissue samples. The latter

samples were from patients with PTC (nZ17) or

other benign thyroid lesions (nZ24), among

them six follicular adenomas, four nodular

goiters, nine colloid goiters, and five cases of

thyroiditis, two of them taken from the contral-

ateral lobe from patients with PTC. Fifty

microarrays were included in our previously

published study and publicly available at

www.genomika.pl/thyroidcancer (Jarzab et al.

2005); 40 microarrays were from de novo studies.

All new samples were processed according to

description given in Jarzab et al. (2005).

2. Dataset obtained in Leipzig, Germany; 74 speci-

mens analyzed with GeneChip HG-U95Av2

microarrays. The specimens included 15 autono-

mously functioning thyroid nodules, 22 cold

thyroid nodules, and 37 samples of their respective

surrounding thyroid tissues. The analysis of these

datasets was published previously (Eszlinger et al.

2001, 2004) and the datasets are available at http://

www.uni-leipzig.de/innere/_forschung/schwer-

punkte/etiology.html.

3. Dataset obtained in Columbus, OH, USA; 16

specimens analyzed with GeneChip HG-U95A

microarrays. The specimens were derived from

eight patients and included both PTC tumors and

their surrounding thyroid tissues. The dataset

(Huang et al. 2001) is publicly available at http://

thinker.med.ohio-state.edu.

In total, the three analyzed datasets comprised 57

PTCs, 61 benign thyroid lesions, and 62 apparently

normal thyroid tissues analyzed on 180 GeneChips of

two different generations. Half of them were U133A

and the rest U95A platforms.

Data pre-processing and generation of datasets

Each dataset was pre-processed by the MAS5

algorithm. To compare the expression data generated

using the U95A GeneChips (12 625 probe sets) with

those from the U133A GeneChips (22 283 probe sets),

we used the ‘Human Genome U95 to Human

Genome U133 Best Match Comparison Spreadsheet’

(www.affymetrix.com/support/technical/comparison_

spreadsheets.affx) which yielded an intersection of

9530 probe sets. The obtained data were log2

transformed.
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Neighborhood analysis and recursive elimination

in gene selection

For selection of gene sets with diagnostic potential, we

applied here the recursive feature elimination (RFE)

algorithm (Guyon et al. 2002) which is computationally

less demanding than recursive feature replacement used

in our previous studies (Jarzab et al. 2005, Eszlinger et al.

2006). The introductory gene selection was performed

using neighborhood analysis (200 genes; Golub et al.

1999, Slonim et al. 2000), further selection of the 100

best genes set was carried out by RFE.

SVMs and classification

The linear SVM (Boser et al. 1992, Vapnik 1995) was

used for developing the classification rule. Asmentioned

earlier, the classifier was independently trained for

different numbers of selected genes (from 1 to 100).

Bootstrap for estimation of classifier accuracy

and its CI

In order to determine the accuracy of the developed

classifier, we performed classical bootstrap procedure

in 500 resampling iterations (selection with equal

probability and return of samples; Efron 1979).

Iterations of all stages of the classifier construction

(i.e. gene preselection, gene selection, and classifier

learning) were performed in each bootstrap, as

suggested previously (Simon et al. 2003). The

accuracy of the classifier was calculated using the

0.632 bootstrap estimator (Efron 1983). The distri-

bution of the misclassification rate obtained during all

bootstrap runs was used to estimate the 95% CI. The

accuracy of the classifier and the CI were calculated for

different numbers of selected genes (up to 100).

Bootstrap based feature ranking (BBFR) and

outlier detection (BBOD)

The primary purpose of the bootstrap used in this study

was to estimate the accuracy of the molecular classifier

for different sizes of gene subsets with appropriate CIs.

However, the computational effort for the bootstrap

technique may also be exploited to derive some

additional information. We apply two methods that

use the information collected during bootstrapping:

BBFR and BBOD. They are similar to the methods of

statistical learning based on resampling, such as

bagging and boosting. In both techniques, an ensemble

of many base classifiers is created. Each base classifier

is trained on different bootstrap subsamples. The final

decision is based on decisions of all base classifiers.

The simplest approach is bagging (bootstrap aggregat-

ing) originally proposed by Breiman (1996).
www.endocrinology-journals.org
In bagging, the subsamples are randomly drawn as in

classical bootstrapping where each observation is

picked with the same probability 1/m, where m is the

number of all observations. The final decision is the

decision of most base classifiers. In boosting, different

observations may be picked with different probability

and the final decision is weighted sum of decisions of

base classifiers. The well-known boosting algorithm is

AdaBoost (Freund & Schapire 1996).

In our approach, we do not create an ensemble

(committee) of many base classifiers but we use the

information collected during bootstrap-based vali-

dation step of the SVM classifier.

Let the data contain m instances (observations). One

instance is a vector of Nmax features (gene expression

values) with a corresponding class label specified by an

expert. Let LB be the number of bootstrap iterations.

In each run, we select (with equal probability and

return of samples) m instances from the dataset

(bootstrap sample). Then, the bootstrap sample is

used for feature selection and classifier learning.

Finally, the classifier is tested on the test set containing

all instances not belonging to the bootstrap sample.

To find the optimal size for the feature set, we select

N feature sets U1,U2,.,UN of sizes 1,2,.,N respect-

ively. In general, selected sets may not overlap, but in

most commonly used feature selection methods, based

on feature ranking or backward/forward searching,

feature subsets satisfy the relation

U13U23.3UN (1)
BBFR

Let rj(i) be a number of subsets Ui, iZ1,2,.,N where

the gene j belongs to. For gene selection methods

satisfying equation (1), we have

rjðiÞZNKðposition in the feature rankingÞC1: (2)

The BBFR score Rj of the feature j is defined as a

sum of rj(i) over all bootstrap runs as follows:

Rj Z
XLB

iZ1

rjðiÞ (3)

The maximum possible value of the BBFR score is

LBN.
BBOD

Let qk be the number of bootstrap iterations where the

observation k is chosen as a test instance (not a member
811
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of the bootstrap sample). Let qk true be the number of

bootstrap iterations where the instance j is correctly

classified at the test stage.

The BBOD score for k-th observation is

Qk Z
qk true

qk
(4)

The value of Qk belongs to the interval h0,1i and the

low value indicates outliers.
Comparison of different class prediction

methods

We used BRB ArrayTools (developed by Dr Richard

Simon and Amy Peng Lam) to compare different class

prediction algorithms (Compound Covariate Predictor,

Linear Diagonal Discriminant Analysis, Nearest Centroid,

1-Nearest Neighbor, 3-Nearest Neighbors and SVMs).

To compute misclassification rate, 0.632 bootstrap cross-

validation method was used. All genes with univariate

misclassification rate below0.2were used for this analysis.
Figure 1 Accuracy of bootstrapping-estimated benign–malig-
nant classification for different gene set sizes. The 95%
confidence interval is marked by dashed lines.
Results

Accuracy of malignant/benign classification and

redundancy of PTC gene classifiers

The huge difference in gene expression between PTC and

benign/normal thyroid tissues implies that many multi-

gene classifiers with similar classification ability may be

created. For preliminary assessment of accuracy of the

differentiation between PTC and benign lesions or normal

thyroid, we randomly divided the 180-array dataset into

two subgroups, according to sample number: A (odd

numbers) andB (evennumbers).Each subgroupcontained

data from similar number of benign and malignant tumor

specimens analyzed with U133A or U95A GeneChips.

We used set A to obtain a 20-gene classifier; this classifier

was tested on set B and the procedure was repeated, using

set B as a training set and testing the classifier on set A.

Using the classifier obtained from set A, we were able to

correctly predict 86 out of 90 samples (95.6%) within set

B, while using the classifier obtained from set B, we

accurately diagnosed 88 out of 90 samples in set A

(97.8%). Both classifiers differed partly from our previous

20-gene classifier (37) obtained on a smaller dataset.

To avoid a bias in gene selection and accuracy

estimation, related to the arbitrary selection of the training

set,we carried out the procedure of accuracy estimation by

bootstrapping, i.e. randomly selecting large numbers of

slightly different training sets and validating them on the

remaining samples. This procedure allows using suf-

ficiently large training setswhile simultaneously obtaining
812
a reliable estimation of classification accuracy. By

applying this method, we estimated the accuracy of

discrimination between benign and malignant samples to

be 98.6%, with a rather narrow CI (see Fig. 1). For small

gene sets, the accuracy was a bit lower (93.7% for one-

gene set, 96.9% for two-gene set, 97.9 for three-gene set,

and from98.3 to 98.6 for larger sets, up tonZ100). For the

20-gene classifier, the accuracy was 98.5% and the

estimated 95% CI was 95.9–100% for the classifiers

built from more than five genes.

We compared the results of classification by the best

500 genes (Fig. 2) with the classification by consecutive

500-gene sets (i.e. first 500, 500–1000, 1000–1500, etc).

We noted that only the first 500 genes allow accurately

classifying samples by single genes or small gene sets.

Genes ranked 500–1000 achieved 90% accuracy only for

classifiers larger than 50 genes, while genes beyond the

first 1000 hardly achieve this limit of accuracy.Whenwe

excluded all genes analyzed in Fig. 2 (8!500Z4000),

the accuracy obtained for small sets was only w60%,

close to random. However, the accuracy rose with gene

set size, and for classifier sets larger than 700 genes it

achieved90% (data not shown). These results support the

conclusion that the PTC transcriptome differs from the

normal one in thousands of genes; they also provide

evidence that optimizing a diagnostic gene set is a

necessary step of analysis in order to make this set useful

for molecular PTC classification.
Ranking of PTC genes for their classification

ability

To obtain the ranking of genes based on their usefulness in

the diagnostic context, we performed subsequent repeti-

tive gene selection process by bootstrapping of the whole

dataset.We ranked all genes according to the frequency of
www.endocrinology-journals.org



Figure 2 Accuracy of classification obtained by successive
gene set reduction. The accuracy of the best 500 genes was
evaluated in one iteration using the bootstrap technique, then
the selected 500-gene set was removed from the whole
dataset, and the next 500 genes were selected in the following
iteration. This procedure was repeated seven times, thus 3500
genes were excluded (line no. 8). To speed up the procedure,
only neighbourhood analysis (NA) was used for gene selection.

Endocrine-Related Cancer (2007) 14 809–826
appearance within the selected gene sets (BBFR). Genes

important for the majority of diagnostic datasets were

highly ranked, while less importance was given to

complementing transcripts, which exhibited higher
Figure 3 Result of bootstrap-based feature ranking (BBFR). Each
dot representsonegene,dashed linesdefinethesubsetof43genes
with BBFR score larger than half of the maximum one (black dots).

www.endocrinology-journals.org
variability (Fig. 3). During the selection process, 365

transcripts occurred at least once within the obtained

classifiers and some of them were present in nearly all

classifiers. The maximum theoretical score to be obtained

by a gene was 5!104 and the gene with the best rank,

encoding metallophosphoesterase domain-containing

protein 2 (MPPED2), had a score of 4.84!104, i.e.

96.7%of themaximumone. The first 20 geneswere given

scoresO3.74!104 (O77% of themaximum score), only

slightly lower than the top gene, and the first 100

transcripts were characterized by scores O0.64!104,

which is O13.2% of the maximum score obtained. In

total, 43 transcripts representing 41 genes scored higher

than half of the value for the top gene (O2.42!104,

Fig. 3). Among them, there were both genes known for

their changed expression in PTC or described in previous

microarray studies, some used already as single markers,

as well as new genes, not considered previously for their

diagnostic potential (Table 1).

We analyzed fold-change differences between PTC

and benign thyroid samples for the 43 selected

transcripts to evaluate the potential influence of inter-

platform differences on the obtained gene selection.

Twenty of them showed more than fourfold increase

(log ratio O2) and four transcripts were increased

more than twice, whereas the remaining 19 transcripts

were decreased. Generally, the consistency between

fold-changes observed in subsets from U95 and U133

arrays was good, although for some genes (e.g. the

well-known thyroid cancer markers fibronectin 1

(FN1) and MET or novel genes cadherin 16 (CDH16)

or gap junction protein b-3 (GJB3)) there were inter-

platform differences between the log ratios. However,

40 out of 43 selected genes exhibited more than

twofold change in both the U133 and the U95 subsets.

For all 43 genes, the PTC–benign difference was larger

than the difference between fold-changes obtained with

different GeneChip generation subsets. This confirms

that the selection performed was robust to inter-array

differences.
Misclassified thyroid samples

The algorithm with bootstrapping allows ranking the

samples according to the frequency of their misclassifi-

cation (Table 2). BBOF showed very frequent

misclassifications for two samples. One of them was

not properly classified by any gene set selected, and

this was sample no. 154 from the U133 dataset no. 1, a

small (10 mm in diameter) familial PTC found within a

larger follicular adenoma. It was observed in an

18-year-old woman. A year later her mother, 43

years old, was diagnosed with 0.7 cm PTC (follicular
813



Table 1 Ranking of papillary thyroid cancer (PTC) genes as assessed by bootstrap-based feature ranking (BBFR) approach. For each transcript selected, rank and score obtained by

the BBFR method are given, together with basic univariate statistics (log2 mean and log2 ratio)

Gene
symbol Gene name

Affy_ID
(U133) Rank Score

PTC
mean
log2

Benign
mean
log2

Log
ratio

Log ratio
U133

Log ratio
U95

References of microarray or other
high throughput studiesa

Referred to in
single studies of
thyroid cancer

Other data
relevant for

functional role in
thyroid cancer Gene functionb

MPPED2 Metallophosphoestera-
se domain-
containing protein 2

205413_at 1 48 449 4.66 7.82 K3.16 K3.46 K3.26 Aldred et al. (2003, 2004), Mazzanti et al.
(2004) and Griffith et al. (2006)

Fetal brain protein of unknown function

H/HBA2 Hemoglobin, a-1/hemo-
globin, a-2

209458_x_at 2 45 521 9.79 12.04 K2.25 K2.28 K1.87 Griffith et al. (2006) Onda et al. (2005) Oxygen transport

MET Met proto-oncogene
(hepatocyte growth
factor receptor)

213807_x_at 3 45 363 8.15 5.22 2.93 1.73 2.60 Barden et al. (2003), Wasenius et al.
(2003), Finley et al. (2004a,b), Prasad
et al. (2004), Zou et al. (2004) and
Giordano et al. (2005)

cBelfiore et al.
(1997) and
cIppolito et al.
(2001)

Ramirez et al.
(2000), Ruco
et al. (2001) and
Scarpino et al.
(2004)

Membrane tyrosine kinase receptor
enhances cell motility, invasiveness,
and chemokine production (Ruco
et al. (2001))

FN1 Fibronectin 1 210495_x_at 4 44 017 12.24 8.72 3.52 2.75 3.91 Chen et al. (2001), Barden et al. (2003),
Wasenius et al. (2003) Finley et al.
(2004a,b), Prasad et al. (2004), Giordano
et al. (2005), Hamada et al. (2005) and
Griffith et al. (2006)

Takano et al.
(1998), 1999
and cPrasad
et al. (2005)

Ghinea et al. (2002)
and Liu et al. (2005)

Extracellular matrix glycoprotein partici-
pates in cell adhesion, regulates
proliferation and survival of thyroid
cells via integrin receptors (Illario et
al. (2003))

GALE UDP-galactose-4-epi-
merase

202528_at 5 43 974 7.12 3.70 3.42 2.41 3.50 Converts glucose to galactose and
N-acetylglucosamine to its UDP-
derivatives

QPCT Glutaminyl-peptide
cyclotransferase
(glutaminyl cyclase)

205174_s_at 6 43 317 7.60 4.99 2.61 3.14 2.56 Barden et al. (2003), Chevillard et al.
(2004), Finley et al. (2004a,b) and
Griffith et al. (2006)

Converts glutaminyl peptides to cyclic
pyroglutamyl ones

NELL2 NEL-like 2 (chicken) 203413_at 7 42 953 9.68 7.56 2.12 2.02 2.53 Barden et al. (2003) and Finley et al.
(2004a,b)

Brain protein with six EGF-like repeats

PGCP Plasma glutamate
carboxypeptidase

203501_at 8 42 153 7.70 9.23 K1.53 K1.05 K1.33 Aldred et al. (2003, 2004), Barden et al.
(2003), Finley et al. (2004a,b), Weber
et al. (2005) and Sarquis et al. (2006)

Breakdown of secreted peptides, hom-
ologous to prostate membrane-
specific antigen (Gingras et al.
(1999))

DPP4 Dipeptidylpeptidase 4
(CD26, adenosine
deaminase com-
plexing protein 2)

203717_at 9 42 115 7.87 3.77 4.11 3.21 3.81 Huang et al. (2001), Takano et al. (2002,
2004), Prasad et al. (2004) and Griffith
et al. (2006)

Kehlen et al. (2003),
cKholova et al.
(2003a,b) and Ozog
et al. (2006)

Aratake et al.
(2006) and
Schagdarsurengin
et al. (2006)

Membrane enzyme, participates in
breakdown of secreted peptides

ADORA1 Adenosine A1 receptor 205481_at 10 41 699 7.16 4.85 2.30 2.00 2.81 Aldred et al. (2003, 2004) and Prasad
et al. (2004)

Lelievre et al.
(1998), Woodhouse
et al. (1998) and
Schnurr et al. (2004)

Membrane receptor, stimulates motility
and modulates proliferation

HMGA2 High-mobility group
AT-hook 2

208025_s_at 11 40 713 7.90 4.66 3.24 3.58 2.62 Baris et al. (2004, 2005) and Jacques
et al. (2005)

Fedele et al. (2001),
Berlingieri et al.
(2002) and Musholt
et al. (2006)

Architectural transcription factor (Noro
et al. (2003))

RYR1 Ryanodine receptor 1
(skeletal)

205485_at 12 40 473 6.96 4.70 2.27 2.53 1.92 Barden et al. (2003) and Finley et al.
(2004a,b)

Present mainly in
excitable cells

Calcium release channel of the sarco-
plasmic reticulum

CDH16 Cadherin 16, KSP-cad-
herin

206517_at 13 39 770 3.47 8.07 K4.60 K4.68 K1.43 Thought to be kidney
specific (Thomson
et al. (1995))

Calcium-dependent, membrane-associ-
ated glycoprotein, participates in cell
adhesion

GJB3 Gap junction protein b-
3, 31 kDa (connexin
31)

205490_x_at 14 39 526 6.49 4.04 2.44 2.71 0.62 Does not normally
appear in thyroid, in
adult mouse
becomes restricted
to epidermis, testis
and placenta (Tonoli
et al. (2000), Plum
et al. (2002) and
Green et al. (2005)

Forms incompatible hemichannels with
thyroidal connexin 43 (Dahl et al.
(1996))

EMID1 EMI domain containing
1

213779_at 15 39 505 6.44 8.12 K1.68 K1.09 K0.76 Barden et al. (2003), Cerutti et al. (2004)
and Finley et al. (2004a,b)

Extracellular matrix protein, able to
promote cell movements (Spessotto
et al. (2003))

NRIP1 Nuclear receptor-inter-
acting protein 1

202599_s_at 16 39 358 8.31 6.33 1.98 1.36 2.06 Barden et al. (2003) and Finley et al.
(2004a,b)

Interacts with nuclear receptors
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Table 1 (continued)

Gene
symbol Gene name

Affy_ID
(U133) Rank Score

PTC
mean
log2

Benign
mean
log2

Log
ratio

Log ratio
U133

Log ratio
U95

References of microarray or other
high throughput studiesa

Referred to in
single studies of
thyroid cancer

Other data
relevant for

functional role in
thyroid cancer Gene functionb

ENTPD1 Ectonucleoside tripho-
sphate diphospho-
hydrolase 1

209473_at 32 27 859 8.71 6.75 1.97 1.49 1.48 Weber et al. (2005) and Sarquis et al.
(2006)

Membrane bound enzyme converts
adenine nucleotides to adenosine,
interacts with caveolin 1 and 2 (Kittel
et al. (2004))

TPO Thyroid peroxidase 210342_s_at 33 27 658 7.29 12.24 K4.95 K4.93 K3.75 Barden et al. (2003), Cerutti et al.
(2004), Finley et al. (2004a,b) and
Griffith et al. (2006)

Arturi et al. (1997),
Lazar et al. (1999)
and

Furuya et al. (2004) Thyroid-specific enzyme crucial for
organification of iodine and synthesis
of thyroid hormones

KRT19 Keratin 19 201650_at 34 27 398 8.92 5.71 3.22 3.55 3.07 Barden et al. (2003), Chevillard et al.
(2004), Finley et al. (2004a,b), Prasad
et al. (2004) and Griffith et al. (2006)

Schelfhout et al.
(1989)

The smallest known keratin expressed
in some types of cancer

ID3 Inhibitor of DNA binding
3, dominant
negative helix-loop-
helix protein

207826_s_at 35 26 271 9.17 11.25 K2.08 K1.26 K1.29 Downstream target of pituitary tumor
transforming gene (PTTG)

RUNX1 Runt-related transcrip-
tion factor 1 (acute
myeloid leukemia 1;
aml1 oncogene)

209360_s_at 36 26 202 7.37 4.80 2.58 3.50 2.01 Kim et al. (2007) Transcription factor may promote E-
cadherin expression (Liu et al.
(2005))

LMOD1 Leiomodin 1 (smooth
muscle)

203766_s_at 37 26 044 5.60 7.80 K2.20 K2.77 K0.95 Present both in
thyroid cells and
eye muscle
(Kromminga
et al. (1998))

64 kDa antigen, considered for its role in
thyroid autoimmunity

RAB27A RAB27A, member RAS
oncogene family

209514_s_at 38 25 684 8.57 6.29 2.28 1.43 1.53 Barden et al. (2003), Finley et al.
(2004a,b), Weber et al. (2005) and
Sarquis et al. (2006)

See above information on the alterna-
tive probeset identifying the same
gene

FBXO9 F-box protein 9 212987_at 39 25 331 8.47 9.29 K0.83 K0.50 K0.57 Members of this gene family in
complexes may act as protein–
ubiquitin ligases

TRIM58 Tripartite motif-
containing 58

215047_at 40 25 304 3.91 6.99 K3.08 K2.27 K1.74 Not identified

– – 210524_x_at 41 25 302 9.73 12.70 K2.97 K2.95 K2.12 Not identified
MT1G Metallothionein 1G 204745_x_at 42 24 688 9.94 12.39 K2.45 K1.97 K4.00 Baris et al. (2004, 2005), Prasad et al.

(2004), Jacques et al. (2005) and Griffith
et al. (2006)

Cherian et al.
(2003)

Low molecular weight, cysteine-rich,
zinc-donating protein. Associated
with protection against DNA
damage, stress, and apoptosis
(Theocharis et al. (2004))

ICAM1 Intercellular adhesion
molecule 1 (CD54),
human rhinovirus
receptor

202638_s_at 43 24 534 8.18 5.61 2.57 1.70 2.40 Kawai et al. (1998) Epithelial adhesion molecule plays a key
role in lymphocyte infiltration into the
thyroid

aThe original papers (Eszlinger et al. 2001, 2004, Huang et al. 2001, Jarzab et al. 2005) containing datasets included in the present study were not cited here. RXRG was listed in our previous
microarray-based analysis (Jarzab et al. 2005), together with FN1, MET, KRT19, DPP4, HBB, QPCT, GJB3, and DTX4, also occurring in this table.
bOMIM-based information if not otherwise specified.
cDenotes immunohistochemistry studies.
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Table 2 Ranking of thyroid samples by tumor–normal misclassification frequency, assessed by bootstrap-based outlier detection

(BBOD) approach. The BBOD rank and score Qk, as defined in Material and methods, is given

Sample number Status Array Set Rank Score (%)

154 PTC U133 B 1 0.04

97 Benign U133 A 2 7.23

148 PTC U133 B 3 65.34

95 Benign U133 A 4 68.25

88 PTC U95v1 B 5 88.28

166 PTC U133 B 6 90.02

84 PTC U95v1 B 7 93.11

161 PTC U133 A 8 95.96

94 Benign U133 B 9 97.26

116 Normal U133 B 10 97.30

120 PTC U133 A 11 97.98

77 Normal U95v1 B 12 98.30

100 Benign U133 B 13 98.70

139 PTC U133 A 14 98.91

90 PTC U95v1 B 15 99.09

42 CTN U95v2 B 16 99.22

3 AFTN U95v2 A 17 99.28

37 CTN U95v2 A 18 99.36

147 PTC U133 A 19 99.38

40 CTN U95v2 B 20 99.41

64 samples (28 PTCs, 36 benign/normal) 21–84 99.46–99.98

96 samples (19 PTCs, 77 benign/normal) 85–180 100
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variant). The other one, properly classified only in 8%

of runs, was a benign follicular adenoma (diagnosed as

atypical) from the same dataset (sample no. 97) which

was derived from a 15-year-old boy of another family

with familial PTC. In this family, there were two PTC

cases (mother of the patient, diagnosed with

pT2BNxM0 PTC and her aunt who died of a

dissemination of PTC) and one follicular thyroid

cancer case (pT2bNxM0, 11 years old, sister of the

patient). These were the only two cases with a positive

family history of thyroid cancer among 49 Polish

patients included in the study. Two further samples

were properly classified in 65–68% of runs (one from

dataset no. 1 and one from dataset no. 3), again one

benign adenoma and one PTC, respectively. For the

fifth sample, the accuracy was much higher and it was

properly classified in 88% of the runs. Thus, only 5 out

of 180 samples (2.8%) were misclassified in more than
Table 3 Comparison of results obtained by different class predictio

Method Accuracy (%) Sensi

Compound covariate predictor 89

Nearest centroid 90

Linear diagonal discriminant analysis 92

One-nearest neighbor 98

Three-nearest neighbors 98

Support vector machines 99

PPV, positive predictive value; NPV, negative predictive value.

www.endocrinology-journals.org
10% of the runs, while a total of 14 samples (7.8%)

were misclassified in more than 1% of the runs.

Seventy samples were classified with an excellent

accuracy between 99 and 100%, and for further 64

cases no misclassification occurred during the boot-

strapping process.
Comparison of classification accuracy by

different class prediction methods

To evaluate our method, we compared the accuracy of

prediction by different class prediction methods

implemented in BRB-Array software. We based the

class prediction on all genes that showed the univariate

misclassification rate lower than 20%. We found out

that the classification accuracy ranged from 89%

(compound covariate predictor method) to 99%
n methods

tivity (%) Specificity (%) PPV (%) NPV (%)

85 88 77 93

86 89 79 93

87 92 83 94

94 99 98 97

93 100 99 97

95 99 98 98
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(SVM), and confirmed the best performance of SVM-

based methods to analyze these data (Table 3).
Discussion

Transcripts important for discriminating PTC

from benign and normal thyroid samples

In the study, we performed an advanced optimization

of putative PTC markers using a large group of benign

thyroid lesions and normal thyroid tissues and

proposed a list of 43 transcripts, selected by their

most frequent appearance in the classifiers.

An additional proof of their efficacy was obtained by

hierarchical clustering (all samples clustered correctly,

data shown in the web appendix to this article,

www.genomika.pl/thyroidcancer). Forty-one of them

(95.3%) could be attributed to 39 known genes, 32

well-defined ones, and 7 of unknown or not well-

defined function. There were 12 genes which had never

before been related to the thyroid gland nor mentioned

in genomic studies of thyroid cancer, while 29 genes

(74%) were identified in previous thyroid microarray

studies. However, only ten of them were discussed in

the original papers for their putative role in thyroid

carcinoma. Within the list of the well-known genes

which received high scores by BBFR, one should

mention gene encoding FN1, met proto-oncogene

(MET; both scored 4.4!104), dipeptidylpeptidase 4

(DPP4), adenosine A1 receptor (ADORA1), keratin

19, and B-cell CLL (BCL2) genes (Huang et al. 2001,

Wasenius et al. 2003, Baris et al. 2004, Chevillard

et al. 2004, Finley et al. 2004a, Wreesmann et al. 2004,

Giordano et al. 2005), all up-regulated with the

exception of BCL2. Their inclusion in our classifier

positively validates the applied criteria. All these genes

except ADORA1 were previously found by single gene

studies (see Table 1) and later confirmed by microarray

approaches. Moreover, in the recent meta-analysis of

thyroid cancer gene expression profile, MET and FN1

were included into top 12 candidates for consistent

gene expression markers (Griffith et al. 2006).

Similarly, thyroid-specific (down-regulated) genes,

deiodinase, iodothyronine, type I and thyroid per-

oxidase, were widely recognized previously for their

diagnostic significance both in microarray-based

(Eszlinger et al. 2001, Huang et al. 2001, Baris et al.

2004, Cerutti et al. 2004, Finley et al. 2004a,

Wreesmann et al. 2004) and single gene studies (Arturi

et al. 1997, Lazar et al. 1999, De Micco et al. 1999,

Czarnocka et al. 2001, Le Fourn et al. 2004,

Ambroziak et al. 2005, Arnaldi et al. 2005). Never-

theless, neither our approach nor the meta-analysis
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mentioned earlier indicated other thyroid-specific

genes, confirming the lesser diagnostic potency of

sodium iodide symporter, thyroglobulin, thyrotrophin

receptor, or thyroid-specific transcription factors,

shown to be down-regulated in previous single gene

studies (Arturi et al. 1997, Lazar et al. 1999, Shimura

et al. 2001, Scouten et al. 2004, Ambroziak et al. 2005,

Wagner et al. 2005).

The top gene identified by our effort,MPPED2, which

is lost in PTC, was not previously considered for its role

in PTC, although it was previously listed byAldred et al.

(2004, in the context of FTC) and by Mazzanti et al.

(2004). It is an ancient gene highly conserved from

Caenorhabditis elegans to mammals and expressed in

fetal brain. Its function is unknown.

Already the first microarray-based analysis of a PTC

gene expression profile (Huang et al. 2001) indicated

the dominant position of genes controlling cell–matrix

adhesion and cell–cell communication. Besides, FN1

mentioned earlier, and intercellular adhesion molecule

1 (ICAM-1; Kawai et al. 1998), it seems important to

mention syndecan 4 (SDC4), a transmembrane heparan

sulfate proteoglycan known to bind FN1 and function-

ing also as CXCL12 receptor in signal transduction

(Huang et al. 2001, Chevillard et al. 2004, Finley et al.

2004a). Loss of CDH16 (kidney-specific cadherin;

Thomson et al. 1998) was indicated for the first time in

our study, a gene closely related to cadherin E (CDH1),

which is well known to be lost in a subgroup of PTCs

with negative prognostic significance (Rocha et al.

2003), while cadherin P (CDH3) is up-regulated in

PTC (Jarzab et al. 2005). Other genes involved in cell

adhesion and present in our list comprise ectonucleo-

side triphosphate diphosphohydrolase 1 (ENTPD1)

(up-regulated) and less known genes such as NEL-like

2 (up-regulated) and sushi, nidogen, and

EGF-like domains 1 (down-regulated), both exhibiting

EGF-like repeats (Watanabe et al. 1996). The GJB3

gene (connexin 31) encodes the protein subunit of gap

junctions, essential for cell–cell communication.

DPP4 (CD26), ICAM1, and ENTPD1 (CD39) may be

considered as immune-related genes, although their

expression is not confined to immune or endothelial

cells. ICAM1 was shown to be present in thyroid cancer

cells (Kawai et al. 1998). ENTPD1 (ecto-ATPase), in

turn, has not been described before for the thyroid gland;

its expression was shown in some other organs like

salivary glands or exocrine pancreas (Kittel et al. 2004).

It converts adenine nucleotides to adenosine, thus

participating in the control of signal transduction.

DPP4, another membrane-bound enzyme which hydro-

lyzes peptides engaged in paracrine and autocrine
www.endocrinology-journals.org
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regulation, is up-regulated in PTCs both on RNA and

protein level (Huang et al. 2001, Kholova et al. 2003).

The contribution of various enzymes to our list is

striking: others, not described previously in the context of

thyroid gland, comprise UDP-galactose epimerase

(GALE) and glutaminyl-peptide cyclotransferase

(QPCT), both with virtually unknown expression

patterns. The latter was also indicated by the meta-

analysis of Griffith et al.Among gene encoding enzymes

lost in PTC are plasma glutamate carboxypeptidase,

plasma glutamate carboxypeptidase (Gingras et al.

1999), notmentioned in any thyroid-related study before;

carbonic anhydrase 4 (CA4), and even the well-known

homogentisate oxidase (encoding HGD), not previously

related to the thyroid in any context, although listed in

many microarray-based reports (Table 1).

Underexpression of hemoglobin transcripts

(HBA1/A2 and HBB scored at positions 2 and 25

respectively) was already discussed in our papers as a

very characteristic feature of PTC gene expression

profile (Jarzab et al. 2005). We believe that the down-

regulation of hemoglobin gene could be associated

with tumor hypoxia; HBA has also been considered a

tumor suppressor since transduction of this gene in an

anaplastic thyroid cancer cell line induces an anti-

proliferative effect (Onda et al. 2005).

Many of the genes listed in Table 1 participate in

signal transduction; among them are MET, ADOR-

A1,RAB27A as well as tumor-associated calcium signal

transducer 2, inositol 1,4,5-triphosphate receptor, type

1 (ITPR1), ryanodine receptor 1, all up-regulated in

PTC except for ITPR1. Some enzymes mentioned

above (DPP4, ENTPD1, and QPCT) contribute to

synthesis or breakdown of signaling molecules. On the

other hand, the list also includes many genes

participating in transcription regulation, among them

high-mobility group AT-hook 2, aryl hydrocarbon

receptor, retinoid X receptor, g, ID3, nuclear receptor-
interacting protein 1, and RUNX1. Both of these

functional classes are typical for cancer genes. We

noted only one gene clearly related to apoptosis (and

lost in PTC), the well-known BCL2. Interestingly

enough, some immunohistochemical studies report its

up-regulation in PTC (Aksoy et al. 2005).

Although the selected genes were obtained

by analysis of PTC, many of them may be found

also in other types of thyroid tumors (M Oczko-

Wojciechowska, J Starzyński, M Jarząb, Z Wygoda,

A Czarniecka, G Gala, M Kalemba, E Gubala &

B Jarząb, unpublished data). This is convincingly

illustrated by the overlapping results of our analysis
www.endocrinology-journals.org
and one of the studies which dealt with follicular

thyroid tumors only (Barden et al. 2003).
Accuracy of discriminating PTC from

benign/normal thyroid tissue

Our study is the first to define the classification

accuracy for thyroid cancer by 95% CIs and one of

the few dealing with the problem of diagnostic

accuracy of microarray-derived classifiers (Kerr &

Churchill 2001). Although the estimation of CIs by

Monte Carlo analysis has not gained a general

acceptance still, it is necessary to stress the very

good accuracy of PTC diagnosis in our study with the

lower range of the CI at 95%, obtained using a

sufficiently large study group, mimicking the real

clinical setting. From a clinical point of view, for a

PTC classifier, an even higher accuracy is required, as

the risk of diagnosing PTC in a thyroid nodule is only

about 5% (Hegedus 2004).

Our results stress the importance of multi-gene

approaches for the molecular diagnosis of cancer.

We observed that lower limits of accuracy CIs were

decreased in case of classification by gene sets with

less than ten genes. The initial conclusion from these

data is that any combination of more than five to ten

genes increases the reliability of distinguishing

between malignant and benign tissue samples. This

result is similar to that obtained by Hua et al. (2005),

who demonstrated on simulated and real breast cancer

data that for different classifiers the number of features

lower than five was usually much less effective than

larger classifiers. Recent paper reports a six-gene

molecular classifier, efficient for molecular diagnosis

of thyroid cancer (Kebebew et al. 2006).
Bootstrap-based multi-gene classification of PTC

microarray data

Selection of genes is an important goal of microarray

studies contributing to broader understanding of the

cancer transcriptome as well as yielding novel molecular

cancer markers. Such studies have been successfully

performed in PTC and large numbers of discriminating

physiologically relevant genes were proposed (Huang

et al. 2001, Wasenius et al. 2003, Aldred et al. 2004,

Chevillard et al. 2004, Finley et al. 2004a,b, Wreesmann

et al. 2004, Baris et al. 2005, Detours et al. 2005,

Giordano et al. 2005). However, in the majority of these

studies, the selection of important genes was based on

either fold-change or significance criteria obtained using

classical statistical tests. These approaches either favor

genes with large amplitudes, sometimes coming from a
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minor proportion of samples, or genes with low within-

group variance, thus rather stably expressed in all

analyzed tumor samples. Bearing in mind, complexity

of molecular changes in tumors, the widespread

skepticism about a single ‘cancer marker’ as well as

possible differences in histological subtypes or other

features of PTC, we decided to use SVM, a routine

machine-learning approach to construct classifiers based

onmultiple features of the analyzed objects. Thismethod

allows integrating the information carried bymany genes

in the gene sets. Thus, effective molecular multi-gene

classifiers may be built that rely on inter-gene

interactions rather than on combining single ‘best

markers’. SVMs have been confirmed as an effective

method of multi-gene set selection and this is supported

by our comparison to other class predictionmethods. Our

procedure helps us to optimize the list of markers which

are to be implemented to real-time quantitative PCR-

supported fine needle biopsy (Lubitz & Fahey 2006).

From the diagnostic point of view, the major

drawback of the SVM-based methods are the

fluctuations of gene content between classifiers of

different size or based on slightly different training

sets. To overcome this problem, we extended the

original algorithm with bootstrap iterations, as

recommended (Braga-Neto & Dougherty 2004).

A bootstrap iteration depends on creating a temporary

learning set (bootstrap sample) by performing selec-

tion from the original set with return of samples.

Then, the classification rule is derived based on a

bootstrap sample and applied to the rest of the original

set. Multiple selections of slightly different training

sets represent the variability, which may be observed

between different thyroid cancer collections, labora-

tories, etc. Indeed, our current data generated using

the bootstrap technique show much better agreement

with the results of other thyroid cancer studies

(Oczko-Wojciechowska et al. submitted) than data

created by leave-one-out cross-validation of the whole

dataset (Jarzab et al. 2005).

Originally, in a bootstrap iteration one counts only the

number of misclassifications. Since in all bootstrap

iterations every step of data processing (gene selection

and classifier training) has to be repeated (Simon et al.

2003), some additional knowledge can be gained. The

procedure used by us enables ranking of genes which are

most often present in the classifiers obtained from the

different subsets of the training set (BBFR). Furthermore,

it also estimates the accuracy with appropriate CIs.

Moreover, it allows ranking the samples according to the

frequency of misclassifications (BBOD). The use of

BBFR resulted in delineation of genes,whichwere either
820
novel or not recognized before for their contribution to

the PTC gene expression profile, even if they were

included in the large gene lists given in previous genomic

studies. BBOD allowed us to reveal ‘difficult’ samples

in the analyzed group. The two thyroid samples with the

poorest accuracy of diagnosis were derived frompatients

with familial thyroid tumors, which suggest that

their gene expression profiles may differ from sporadic

ones. For the remaining samples, in 175 out of

180 cases (O97%) the percentage of correct diagnoses

wasO90%.

Recently, Zhang et al. (2006) have published a SVM-

based recursive method of gene selection. This method,

called R-SVM, differs from the standard RFE algorithm,

used here, in modified criteria applied in elimination

steps. Moreover, the final gene subset is created on the

basis of any resamplemethodused at the validation stage,

which is similar to our approach presented here.

Nevertheless, our bootstrap-basedmethod allows detect-

ing outlier samples and provides the estimation of CIs for

the classification accuracy, which is much more

informative than the accuracy estimator alone.
PTC and normal/benign difference versus

inter-platform difference

To assure a sufficient number of tissue samples, it was

necessary to combine data obtained using different

generations of GeneChips, which cannot be compared

by a direct approach (Eszlinger et al. 2006). The use of

multi-gene classifiers allows, however, overcoming

this difficulty. We showed earlier that the classifier

selected using the U133 platform (Jarzab et al. 2005)

performs well on U95-obtained data and has high

classification accuracy (Eszlinger et al. 2006). In the

present paper, we demonstrate that it is possible, after

correctly matching genes from two different generation

microarrays, to derive an efficient multi-gene classifier.

When we included both benign and malignant samples

from both platforms, the vast majority of these samples

were properly classified. Using Affymetrix GeneChips,

Barden et al. (2003) and Finley et al. (2004a,b) had

previously reported 20 of 43 genes now confirmed by

us as diagnostically relevant for PTC. This is a level of

agreement rarely noted for inter-group comparisons of

microarray results.

Our analysis has been performed on microarray data

pre-processed by the standard MAS5 algorithm.

Although many authors demonstrate the superiority

of other pre-processing methods (e.g. RMA or

GC-RMA; Irizarry et al. 2003), for inter-platform

comparisons, the MAS5 method still seems to be a

reasonable approach. In the MAS5 algorithm, each
www.endocrinology-journals.org
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array is processed independently and the bootstrap

procedure does not have to involve this step. Use of

RMA pre-processing, which has to operate on the

whole dataset, would pose the question of whether this

step should also be bootstrapped. Presently, this is not

feasible due to huge computational demand of pre-

processing for large sample sets.
Redundancy of multi-gene cancer classifiers

This is inherently linked to the huge differences in

gene expression profiles of several tumors, originating

from the same tissue. This was indicated for the first

time by Ein-Dor et al. (2005) in breast cancer. These

authors re-analyzed the data of van’t Veer et al.

(2002) and showed that multiple similar classifiers

may be obtained; they have comparable classification

potency as van’t Veer’s original 70-gene classifier but

a different gene content. Ein-Dor et al. stressed also

that even slight differences in the training set

composition influenced the selected genes. Our

analysis demonstrates that similar redundancy is

present in PTC. This fact is frequently overlooked

by authors interpreting the results of gene expression

profile studies that involved only a few genes or

which were obtained in small groups of patients. In

this paper, we propose a method of ranking genes

according to their importance in multi-gene classifiers

and with appropriate CIs indicating the robustness of

the result.

To conclude, the primary goal of this study was to

validate a novel SVM-based approach to differen-

tiation of PTC from benign thyroid lesions. This goal

was achieved with a very satisfactory degree of

accuracy, over 95%. Simultaneously, we were able to

rank the genes most essential for the molecular

diagnosis of PTC. Although the presented list of

genes can be enlarged, we believe the first 40 genes

are especially suitable for further prospective studies

in fine needle biopsy material and may serve to

construct multi-gene classifiers with potential appli-

cation in clinical setting. The comparison with other

published microarray studies yields sufficient vali-

dation for the vast majority of them.
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