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Intestinal graft-versus-host disease (Gut-GVHD) is one of the major causes of mortality
after allogeneic hematopoietic stem cell transplantation (allo-HSCT). While systemic
glucocorticoids (GCs) comprise the first-line treatment option, the response rate for
GCs varies from 30% to 50%. The prognosis for patients with steroid-refractory acute
Gut-GVHD (SR-Gut-aGVHD) remains dismal. The mechanisms underlying steroid
resistance are unclear, and apart from ruxolitinib, there are no approved treatments for
SR-Gut-aGVHD. In this review, we provide an overview of the current biological
understanding of experimental SR-Gut-aGVHD pathogenesis, the advanced technology
that can be applied to the human SR-Gut-aGVHD studies, and the potential novel
therapeutic options for patients with SR-Gut-aGVHD.

Keywords: hematopoietic cell transplantation, steroid-refractory graft versus host disease, experimental mouse
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INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for
hematological malignancies, but graft-versus-host disease (GVHD) remains the major obstacle for
the widespread application of allo-HSCT (1–7). Systemic glucocorticoid (GC)-based
immunosuppressant therapies were applied more than a decade ago and are now a primary
therapy for acute GVHD (aGVHD) management (8–14), which is effective in approximately 50%
of cases, with a robust response being observed in approximately one-third of patients (15, 16). The
gastrointestinal (GI) tract is a prominent target of aGVHD, and it can be as high as 60%, although the
reported frequencies of Gut-aGVHD varied (17–20). Due to this, the severity of Gut-aGVHD
determines the outcome of allo-HSCT (20). Approximately 15% of aGVHD patients developed into
steroid-resistant or steroid-refractory Gut-aGVHD (SR-Gut-aGVHD) (17, 21–23), which is defined as
no improvement of clinical symptoms after 4 weeks of high-dose GC treatment, most often with
prednisone at 1.0–2.0 mg/kg per day (8, 23, 24). The prognosis of SR-Gut-aGVHD patients is poor,
especially in cases of grade III to IV Gut-GVHD, with more than 75% mortality (8, 25). Despite
considerable progress and expansion of the therapeutic armamentarium, including antibodies against
CD3/CD7, a4b7 integrin, and CD30, as well as targeting the IL-6/IL-6R signaling pathway, the lack of
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effective treatment remains a major issue (16, 26–30). More
recently, a single-arm phase II study (REACH-1) showed a
promising effect of JAK1/2 inhibitor, ruxolitinib, for the
treatment of SR-aGVHD (31). So far, ruxolitinib is the only
Food and Drug Administration (FDA)-approved agent for the
second-line treatment of SR-GVHD.

To timely capture the therapeutic opportunity for the benefit of
Gut-aGVHD patients, the identification of predictive biomarkers
for Gut-aGVHD development and/or prognosis has been a central
issue in the field. For example, markers that are specific for Gut-
GVHD including regenerating islet-derived 3-a (REG3a) and
TIM3 have been identified (25, 32, 33). In addition, clinical trials
with the Mount Sinai Acute GVHD International Consortium
(MAGIC) algorithm have identified patients at high risk for
developing SR-Gut-GVHD as early as 7 days after hematopoietic
cell transplantation (HCT), based on the extent of intestinal crypt
damage as measured by the concentrations of 2 serum biomarkers,
ST2 and REG3a (34–37). Another study that examined markers of
endothelial toxicity found follistatin and endoglin to be associated
with higher levels of grade III to IV aGVHD and non-relapsed
mortality (NRM) (38). Based on these discoveries, a trial of a-1-
antitrypsin (AAT), a serine protease inhibitor with demonstrated
activity against GVHD, was conducted in patients at high risk for
developing SR-GVHD. The trial concluded that real-time
biomarker-based risk assignment is feasible early after allogeneic
HCT, but the dose and schedule of AAT did not change the
incidence of SR-aGVHD (39). Overall, in the absence of a clearly
defined resistance mechanism, alternative therapeutic options
remain an open-ended question (8).

Experimental models have largely contributed to our
understanding of aGVHD pathophysiology (24, 40, 41), while
information about the disease’s mechanisms has been gathered
from human studies as well (42). Over the past years, many
attempts were made to identify the factors associated with poor
survival and low response rates in patients with SR-Gut-aGVHD
(21, 43). However, due to the lack of an adequate murine model,
the pathophysiology of SR-Gut-aGVHD remains largely
unknown. Instead of extensively reviewing previous literature,
we intend to highlight new insights into SR-Gut-aGVHD
pathogenesis provided by murine models and factors, which are
likely involved in the pathogenesis of SR-Gut-aGVHD, including
cytokines produced by alloreactive T cells in response to GCs, the
influence of microbiome and metabolites in Gut-GVHD, and the
suppressive role of myeloid-derived suppressor cells (MDSCs). In
the end, we will propose potential therapeutic targets for clinical
treatment based on what we have learned from basic immunology
and any available experimental data.
NEW INSIGHTS INTO STEROID
REFRACTORY-GUT-ACUTE GRAFT-
VERSUS-HOST DISEASE PROVIDED BY
NEWLY ESTABLISHED MURINE MODELS

Medical scientists have been attempting to understand the
pathogenesis of SR-Gut-aGVHD for decades, and the progress
Frontiers in Immunology | www.frontiersin.org 2
is gradual. Despite the extensive development of murine models
for aGVHD (44), a lack of clinically relevant animal models limits
our understanding of the pathophysiology of SR-GVHD. Several
attempts have been made to establish an experimental mouse
model for SR-GVHD research (45, 46). One of the studies aimed
at establishing SR-GVHD murine models using two different
clinically relevant models—MHC matched multiple minor
antigens (miHAs) mismatched model (C3H.SW (H-2b) donors
to C57BL/6 (H-2b) recipients), and MHC mismatched
haploidentical model (C57BL/6 (H-2b) donors to B6D2F1
(H-2b/d) recipients), as well as two different treatment
intervention schemes [early and late dexamethasone (DEX)
treatments (45)]. There is evidence that animals can experience
SR-GVHD regardless of when steroids are administered post-allo-
HSCT (45). Compared to steroid-responsive animals, an overall
increase in GVHD-specific histopathological damage to target
organs was observed in SR-GVHD animals, although the
differences between steroid-refractory and steroid-responsive
animals in regard to donor T-cell characteristics were not
statistically significant, suggesting that donor T cell-independent
mechanisms may play an increasingly important role in the
pathogenesis of SR-GVHD than was previously suspected (45).

Consistent with this mouse study, tissue transcriptomics
analysis from GVHD patients also showed no differences in T
cells including CD8+ T cells, naïve CD4+ T cells, and memory
CD4+ T cells between the new onset of aGVHD and SR-aGVHD,
but multiple T cell-independent mechanisms were found to be
related to SR-aGVHD (47). The study found that gut tissue
repair-associated gene amphiregulin (AREG) and the aryl
hydrocarbon receptor (AhR) expression levels were increased
at aGVHD onset and remained elevated in SR-Gut-aGVHD,
indicating potential interaction of host mucosa with microbiota
(47). The study also identified higher expression levels of
metallothioneins, metal-binding enzymes induced in stress
responses, and M2 macrophage genes in SR-Gut-aGVHD (47).
Furthermore, poorly surviving patients showed an indication of
greater DNA damage and a distinct microbial signature at
aGVHD onset as compared to prolonged surviving patients
(47). However, IL-22-producing T cells were not evaluated in
those studies, and although AhR is the critical nuclear factor for
regulating IL-22-producing T subsets (48–51), an increase of
AhR expression was observed in the SR-Gut-GVHD target
tissues of patients (47), and IL-22 from donor T cells were
reported to augment Gut-aGVHD in murine model (52, 53).

Meanwhile, we recently developed an MHC-mismatched
murine model of SR-Gut-aGVHD (C57BL/6 (H-2b) donors to
BALB/c (H-2d) recipients). Briefly, a single administration of
DEX on day 3 post-HSCT was found to ameliorate aGVHD,
while multiple DEX administrations on days 3, 10, 15, and 20
were not found to further improve neither GI-GVHD-associated
clinical symptoms (e.g., diarrhea and body weight loss) nor
overall survival. These mice that received sustained DEX
treatment were revealed as experiencing SR-Gut-aGVHD (46).
Following the establishment of a highly relevant model, we
analyzed the role of different Th/Tc subsets in the mesenteric
lymph nodes and colon tissues. We found that prolonged DEX
treatment (i.e., those which resulted in SR-Gut-aGVHD) led to
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an increase of Th/Tc22 cells in the colon as compared to a single
DEX prescription. A similar increase in Th/Tc22 cells was also
observed in a Xeno-GVHD model where human peripheral
blood mononuclear cells (PBMCs) were infused. By
neutralizing IL-22 with a monoclonal antibody specific against
IL-22 and by using IL-22-deficient T cells, we validated the role
of IL-22 in the development of SR-Gut-aGVHD (46). Our study
indicated that prolonged DEX treatment preferentially expands
IL-22-producing CD4+ and CD8+ T cell subsets such as Th/Tc22,
and overproduction of IL-22 causes dysbiosis. Prolonged DEX
treatment also resulted in the loss of CX3CR1hi mononuclear
phagocytes (MNPs) and the dysfunction of MNPs. These new
observations are in line with previous reports (52–54). These new
observations also identified the potential missing role of IL-22-
producing T cells in the murine models and patients of SR-Gut-
GVHD pathogenesis. We are now testing whether the expansion
of IL-22-producing T cells and loss of CX3CR1hi MNP cells
observed in the murine models truly reflect SR-Gut-aGVHD
pathogenesis in human.
DISTINCT SENSITIVITY OF TH SUBSETS
AND CYTOKINE PATHWAYS TO
GLUCOCORTICOID SUPPRESSION

As apoptosis of alloreactive T cells results in GVHD
amelioration, early in vitro experiments primarily explored
GC-induced apoptosis of human T cells by mixed lymphocyte
reaction (MLR) and found that T cells undergo GC-induced
apoptosis (55). Various evidence suggests that GCs can cause cell
death through various pathways, resulting in apoptotic or
necrotic morphologies depending on the presence or absence
of apoptotic machinery. These apoptotic morphologies might be
caused by the regulation of apoptosis genes, such as those from
the Bcl-2 family (56). The necrotic morphologies might also be
the result of detrimental effects of GCs on cell function, possibly
due to the effect of GC receptor autoinduction (57).
Furthermore, GC-induced apoptosis is also inhibited by the
cytokines IL-2, IL-4, IL-10, and IL-12 (58–60).

Conditioning chemoradiotherapy can induce tissue damage
leading to the release of inflammatory cytokines that initiate the
first phase of immune response and reinforce Th/Tc lineage
differentiations after allo-HSCT (61, 62). Several studies have
determined the susceptibility of Th subsets to GC-induced
apoptosis. In general, Th1 cells are sensitive to GCs, which not
only reduce their cytokine production but also increase in their
apoptosis (56, 63). Th2 cells are less sensitive, with a reduction of
their cytokine production but little increase in their apoptosis.
Th17 cells appear to be resistant to GCs, with little reduction in
their cytokine production or their increase in apoptosis (56, 64).
It is worth noting that induction of the proapoptotic protein,
BIM, by GCs makes Th1 cells more sensitive to GCs, whereas
high levels of anti-apoptotic proteins like BCL-2 make Th17 cells
more resistant to GCs (56). Apart from the effects of GCs on Th
cells, a lack of consensus exists in current studies regarding the
effects of GCs on regulatory T cells (Tregs). Several reports have
Frontiers in Immunology | www.frontiersin.org 3
shown that GCs induce apoptosis in Tregs (65–67), whereas
others suggest that GCs expand Tregs (68). Both Th1 cells and
Tregs are protected from GC-induced apoptosis by IL-2, while
Th2 cells are protected by IL-4 (63). Additionally, IL-15 and IL-7
protect both Tregs and effector T cells from GC-induced
apoptosis (65).

There are many ways that GCs can influence the apoptosis of
different Th subsets as well as influence the many different
pathways in which cytokines are produced by those Th
subsets. Some in vitro studies indicated that GCs decrease IFN-
g production by T cells from both healthy donors and patients
with rheumatoid arthritis (69, 70). Similar results were found in
the studies of GCs’ impact on Th2 cytokines IL-4, IL-5, and IL-13
(71–73). In primary Th17 cells, IL-17A and IL-17F productions
are resistant to GC suppression, but the effect of both cytokines
can be reduced by GCs (74–76). Accordingly, the resistance of
IL-17A and IL-17F to GCs is highly dependent on the tissue
microenvironment of those Th17 cells. A combination of LPS
and dopamine resulted in increased IL-6 production, which in
turn induced GCs resistance in Th17 cells (77, 78), while IL-6R-
blocking antibodies allow GCs to suppress IL-17A (79).
Furthermore, IL-22 that is shared by distinct Th subsets, such
as Th17, Th22, and Th1 (80), has been reported to respond in
a different manner to GCs. In patients with immune
thrombocytopenia, for example, Th22 cells and their IL-22
production are decreased by GCs (81). Moreover, it has been
demonstrated that GCs are able to suppress IL-22 production in
a mouse model of bacterial infection, while they are unable to
suppress IL-22 production in a Th17-adoptive transfer model of
airway inflammation (82, 83). Consistently, our recent study
found that the expansion of IL-22-producing allogeneic T cells
was associated with the pathogenesis of SR-Gut-aGVHD in our
experimental mouse model, and the elevated IL-22 level led to
dysbiosis and further augmented Gut-GVHD (46). These results
suggest that IL-22 could be either a friend or a foe depending on
the disease context.

In addition, GCs can increase the amount of neutrophils in
the blood (84), expand all stages of neutrophil development (85),
and inhibit neutrophil apoptosis (86). Neutrophils have been
found to facilitate the development of Gut-GVHD (87, 88).
Besides amplifying tissue damage via reactive oxygen species
(ROS) production (87), neutrophils not only promote
differentiation and chemotaxis of Th17 cells (89, 90) but also
augment T-cell expansion through antigen presentation on
major histocompatibility complex (MHC)-II (88). Thus, GCs
may trigger a positive feedback loop between pathogenic T cells
and neutrophils in the context of SR-Gut-aGVHD.

There appears to be a gradient of GC sensitivity among Th
cells and their cytokine pathways. Considering that Th subsets
have an extensive network of cross talk, the degree of sensitivity
may vary depending on the disease condition and the tissue
microenvironment. While cytokines IL-17A, IFN-g, and IL-4 are
generally considered as antagonistic, cross talk between unique
Th cells can lead to synergistic responses. It has been reported
that GC-resistant asthma patients have elevated levels of both IL-
17 and IFN-g (91). Furthermore, T cells that express both IL-4
and IL-17 were identified in a different group of patients with
February 2022 | Volume 13 | Article 844271
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GC-resistant asthma (92). In the setting of GVHD, Tc17 cells
were found to express high levels of multiple prototypic lineage-
defining transcription factors (TFs) (e.g., RORgt and T-bet) and
cytokines (e.g., IL-17A, IL-22, IFN-g, granulocyte-macrophage
colony-stimulating factor (GM-CSF), and IL-13) (93). A recent
study may provide an explanation for this cross talk: Puleston
et al. found that CD4+ helper T-cell lineage fidelity is governed by
polyamine metabolism, and polyamine-deficient T cells showed
severe deficiency to adopt correctly selected subsets, resulting in
the simultaneous expression of multiple lineage-defining TFs
and cytokines (94).

Therefore, it would be worthwhile to determine whether Th
cells having dual or multiple identities are sensitive to GCs based
on their cell identity and their cytokine profile. In the context of
SR-Gut-aGVHD, it will be necessary to see whether long-term
treatment of GCs results in a shift from GC-sensitive to GC-
resistant Th subsets and whether the GC-resistant Th subsets
have irregular lineage phenotype.
DUAL ROLE OF IL-22 IN PROMOTING
TISSUE REGENERATION AND
INFLAMMATORY RESPONSE IN THE
CONTEXT OF STEROID REFRACTORY-
GUT-ACUTE GRAFT-VERSUS-HOST
DISEASE

The role of IL-22 in the context of GVHD is controversial. It was
reported that IL-22 produced by donor T cells can enhance Gut-
aGVHD (52, 53), while IL-22-deficient grafts can increase Tregs
in the spleen and mesenteric lymph nodes of recipient mice (52).
Donor-derived IL-22 may also have a pathogenic effect via its
synergistic effects, with type I IFNs released during allogeneic
immune response (53). Additionally, our most recent study
showed that alloreactive donor T cell-derived IL-22 augmented
gut dysbiosis and enhanced bacterial translocation into the liver
of mice with SR-Gut-aGVHD. In contrast, infusion of IL-22-
deficient donor T cells was able to reverse dysbiosis and prevent
bacteria translocation, thus ameliorating SR-Gut-aGVHD (46).

In another study, Hanash et al. found that the IL-22 receptor
is expressed on intestinal stem cells (ISCs) as well as their
downstream progenitors. Deficiency of recipient-derived IL-22
resulted in increased crypt apoptosis, depletion of ISCs, loss of
epithelial integrity, and augmentation of Gut-aGVHD (95). In
vivo IL-22 administration after allo-HSCT promoted the
recovery of ISCs, increased epithelial regeneration, and reduced
intestinal pathology and mortality in an MHC-matched mice
model (LP (H-2b) donors to C57BL/6 (H-2b) recipients) (96). By
using ex vivo organoid culture, they found that group 3 innate
lymphoid cells (ILCs) secreted IL-22, which stimulated the
growth of small intestinal organoids. Moreover, recombinant
IL-22 treatment increased STAT3 expression in Lgr5+ ISCs,
which is critical for IL-22-mediated epithelial regeneration
(96). A phase 2 clinical study involving IL-22 IgG2-Fc (F-652)
treatment on subjects with grade II to IV lower Gut-aGVHD was
Frontiers in Immunology | www.frontiersin.org 4
conducted, and the preliminary data showed response to
treatment was 7/12 (58%) with high-risk, 3/4 (75%) with
intermediate-risk, and 4/4 (100%) with low-risk biomarkers
based on Ann Arbor Risk (97).

However, the role of IL-22 has yet to be fully established in
human GVHD, although it appeared to be elevated in both
aGVHD and chronic GVHD (cGVHD). During aGVHD,
Brüggen et al. observed an increase in IL-22 messenger RNA
and IL-22-producing CD4+ T cells in the skin (98). Similarly,
Lounder et al. reported that higher plasma IL-22 level is
positively correlated with the incidence of Gut-GVHD in
children (99). In cGVHD, on the other hand, Gartlan et al.
showed that donor CD4+ T cell-derived IL-22 significantly
exacerbated cutaneous cGVHD, and high levels of both IL-17A
and IL-22 expressions were present in the skin of cGVHD
patients (100). Due to the degree of MHC disparity, bone
marrow (BM) and T-cell doses, genetic manipulation of
specific cell populations, and control of the microbiome
environment, paradoxical results were observed regarding the
role of IL-22 in experimental GVHD. Given the dual
proinflammatory and anti-inflammatory properties of IL-22 in
the context of GVHD, it is likely that this duality will be the
greatest obstacle to its development as a therapeutic target.

To date, several underlying mechanisms have been identified
in the pathogenesis of SR-Gut-aGVHD such as the key role of T-
cell responses, which relate to donor T-cell characteristics,
inflammatory cytokine levels, and timing of steroid initiation
(45, 46). On the other hand, the approaches aiming to improve
tissue regeneration are also an important direction for SR-
GVHD therapy. In addition to IL-22, interferon-lambda
(IFNl, IL-28/IL-29) has been identified as a key protector of
Gut-GVHD immunopathology (101). In this study, PEGylated
IL-29 (PEG-rIL-29) treatment was found to improve survival,
reduce GVHD severity, and enhance epithelial proliferation and
ISC-derived organoid growth after allo-HSCT (101). However,
the question of whether IFNl contributes to the protection
against SR-Gut-aGVHD requires further study. Moreover,
intestinal goblet cells (102) and glucagonlike-peptide-2 (GLP-
2) produced by intestinal L cells (103) were found to play a
protective role in the setting of GVHD. Goblet cell damage in the
large intestine correlated with poorer survival of patients after
allo-HSCT (102). Pretransplant administration of interleukin-25
(IL-25), a growth factor for goblet cells, prevented bacterial
translocation, reduced plasma concentrations of interferon-g
(IFN-g) and IL-6, and ameliorated GVHD in mouse model
(102). Reduced intestinal GLP-2 levels were found in both
mice and patients with GVHD (103), treatment with GLP-2
agonist, teduglutide, not only reduced aGVHD but also
improved the outcome of SR-GVHD without compromising
graft-versus-leukemia (GVL) effects in multiple mouse models
(103), suggesting that GLP-2 agonist could be a novel
immunosuppressive approach in SR-GVHD therapy to be
tested in future clinical trials.

Therefore, to identify potential therapeutic targets, further
studies are required to examine the complex immune cell
interaction networks involving T cells, neutrophils, monocytes,
February 2022 | Volume 13 | Article 844271
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and non-immune cells such as goblet cells, Paneth cells,
and ISCs.
MICROBIAL COMMUNITY AND THEIR
METABOLITES IN REGULATING STEROID
REFRACTORY-GUT-ACUTE GRAFT-
VERSUS-HOST DISEASE

There is also an emerging understanding regarding the role of
the gut microbiome in Gut-GVHD in both murine and human
studies (104–106). Loss of flora diversity following allo-HSCT is
associated with the development of Gut-GVHD in addition to
increased mortality risk (107, 108). Some commensal microbiota
was found to expand Tregs (109), which is beneficial to the
outcome of Gut-GVHD, while pathogens such as Enterococcus
were considered as aGVHD risk factor (110).

One of the mechanisms by which the gut microbiome
influences Gut-GVHD is through its metabolites. Short-chain
fatty acids (SCFAs) are well-known bacterial products derived
from the gut microbiome (111). Butyrate, an important SCFA in
the allo-HSCT context, produced by strain Blautia, was
associated with better long-term outcomes for Gut-GVHD
(112–114). In correlation with that, an increase in aGVHD
severity was associated with a decrease in butyrate production
(113, 115, 116). Moreover, lower circulating concentrations of
SCFAs propionate and butyrate were found in day 100 plasma
samples from cGVHD patients when compared with those
who remained GVHD free (117). Mechanistically, GVHD
improvement via butyrate in a mouse model is dependent
upon the presence of SCFA receptor GRP43 (118).
Additionally, butyrate ameliorated the metabolic defect of
reduced succinate dehydrogenase A (SDHA) in allogeneic
intestinal epithelial cells (IECs), which in turn reduced the
severity of GVHD (119). Another study showed that high
butyrate-producing organisms Clostridia increased intestinal
Tregs, and those Tregs are involved in modulating gut
inflammation response through several mechanisms (i.e., IL-10
release) (120, 121) that decreased Gut-GVHD and increased
survival after allo-HSCT (113). Conversely, one study showed
that the presence of butyrogenic bacteria after the onset of
aGVHD was associated with subsequent SR-GVHD or
cGVHD due to the ability of butyrate to inhibit human colonic
stem cells from forming an intact epithelial monolayer (122).
Therefore, butyrate may be beneficial or harmful in the
pathogenesis of GVHD after the onset of aGVHD, depending
on the condition of the mucosa.

In addition to the fiber-derived metabolites, SCFA, another
metabolite derived from the intestinal microbiome known as
indoles, an amino acid-derived metabolites, was found to reduce
Gut-GVHD but did not have any impact on graft-versus-
leukemia (GVL) activity in an experimental mouse model
(123). Administration of indole-3-carboxaldehyde (ICA), an
indole derivative, increased gene expression associated with
type I interferon response, which has been shown to provide
protection against radiation-induced intestinal damage and
Frontiers in Immunology | www.frontiersin.org 5
minimized GVHD pathology (123). Furthermore, the
protective effect exerted by indoles seems to be mediated by
Th17 responses in the intestinal tract and by IL-22-mediated
effects on stem cells (124). Similar results were found in a human
study: in a cohort of 131 adult patients receiving allo-HSCT, the
study found that low levels of 3-indoxyl sulfate (3-IS) were
associated with higher transplant-related mortality and worse
outcome, mainly due to Gut-GVHD. The study also found that
3-IS urinary levels were correlated with gut microbiome diversity
with the great presence of Eubacterium rectale and
Ruminococcaceae, both taxa belonging to the Clostridia class
(125). Another amino acid-derived metabolite, TMAO, has been
identified as a fore for GVHD. TMAO augments alloreactive T-
cell proliferation and Th1 subset differentiation mediated by the
polarized M1 macrophages, resulting in higher severity of
GVHD (126).

Apart from those well-studied microbiome compounds,
researchers have indicated that polyamines, polycationic
molecules produced by commensal bacteria, are important not
only for Th subset fidelity (94) but also for epithelial proliferation
and CX3CR1+ macrophage differentiation in the colon (127).
Notably, in contrast to the decrease of SCFA and 3-IS after allo-
HSCT, an increase of polyamine metabolites was found in
recipients without GVHD (128, 129). Among the polyamine
group, a significant increase of 5-methylthioadenosine (MTA)
and N-acetylputrescine levels have been observed (128), which
might promote gut integrity (130) via the inhibition of
macrophage activation (131) and reduction of T-cell activation
(132, 133), suggesting that polyamine metabolites might play a
protective role in gut integrity in patients without Gut-GVHD.
Of note, GCs were reported to inhibit the activity of ornithine
decarboxylase (ODC), the rate-limiting enzyme in polyamine
biosynthesis in acute lymphocytic leukemia cells (134, 135).
However, the effects of polyamines in SR-Gut-aGVHD remain
unclear. Recently, our study found that IL-22-dependent
dysbiosis and reduction of CX3CR1hi MNPs contributed to the
pathogenesis of the SR-Gut-aGVHD in mice (46). It would be of
interest to test whether GC treatment inhibits ODC activity and
reduces polyamine metabolites in donor T cells as well as test
whether supplementation of polyamines such as spermidine will
benefit SR-Gut-aGVHD. It was also reported that the anti-
inflammatory effect of GCs is Treg-dependent (136), and oral
supplementation of a polyamine metabolite spermidine
promoted Treg expansion (137).

In addition, a recent study has drawn increasing attention to
the role of obesity in microbiota modulation during the
development of GVHD. It has been demonstrated that obesity
worsens experimental aGVHD associated with increased gut
permeability, endotoxin translocation into the bloodstream,
proinflammatory cytokine production, and reduced gut
microbiota diversity. Treatment with antibiotics partially
protected diet-induced obese (DIO) mice from lethal GVHD
(138), and microbiome abnormalities caused by obesity appear
to fuel the ongoing development of aGVHD (139). Consistent
with previous observations, patients with a high body mass index
had a decreased diversity of the gut microbiome and poorer
overall survival following allo-HSCT (138). Taking these findings
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together, it is apparent that metabolically unhealthy body
conditions related to microbiomes are important contributors
to poor overall survival and GVHD outcomes. It would be of
interest to investigate whether obesity is associated with SR-Gut-
aGVHD in the future.

Considering the positive effects of the gut microbiome
community and its metabolites on Gut-GVHD, fecal
microbiota transplants (FMTs) have been evaluated as a
therapy in patients suffering from SR-GVHD (140, 141). No
adverse side effects have been reported, and most of the patients
experienced various ranges of clinical benefits (114, 140, 142,
143). Nevertheless, all the reported studies involved only a small
number of individuals. Additional studies with a large cohort
should be designed to further investigate the effect of FMT on
clinical outcomes for treating SR-Gut-aGVHD.
MYELOID-DERIVED SUPPRESSOR CELLS
OF INTEREST AS A THERAPEUTIC
OPTION FOR STEROID REFRACTORY-
GUT-ACUTE GRAFT-VERSUS-HOST
DISEASE PATIENTS

The MDSCs are an immunosuppressive population of myeloid
cells that undergo systemic expansion in response to
inflammation or cancer (144). In humans, MDSC can be
subdivided into 3 subsets based on their characteristics:
granulocytic polymorphonuclear leukocyte (PMN)-MDSCs
defined by CD11b+CD14−CD15+, myeloid (M)-MDSC defined
by CD11b+CD14+HLA-DR−/loCD15−, and immature/early
MDSC defined by CD33+ in the absence of lymphoid lineage
and HLA-DR antigens. Generally, MDSCs are predominantly
derived from either mouse BM or human PBMCs (145, 146).

During al lo-HSCT, MDSCs have primari ly been
characterized by their ability to inhibit the proliferation of
allogeneic T cells. Currently, in the murine GVHD model, four
main mechanisms responsible for these immunosuppressive
properties have been identified in vitro and in vivo: nitric oxide
(NO) production, arginase 1-mediated L-arginine depletion,
indoleamine 2,3-dioxygenase (IDO)-mediated tryptophan
conversion, and promotion of T regulatory lymphocyte (i.e.,
Treg) survival (147–152). In human GVHD, some MDSC
subsets were found to be associated with a lower incidence of
aGVHD following allo-HSCT (153, 154). MDSCs isolated from
patients early after allo-HSCT have been reported to suppress
third-party CD4+ T-cell proliferation and Th1 differentiation
while promoting Treg development (155).

Even though MDSCs effectively suppress alloimmune
responses in vitro, their efficacy is limited in the context of
aGVHD due to inflammasome activation. It was reported that
during exposure to conditioning regimen and GVHD
inflammatory environment, MDSCs lose their suppressor
function in inhibiting GVHD lethality, which results from their
induced conversion to a mature inflammasome-active state (156).
Further study demonstrated that conditioning regimen-induced
Frontiers in Immunology | www.frontiersin.org 6
adenosine triphosphate (ATP) release plays a key role in MDSC
dysfunction through the engagement of ATP receptors (P2x7R)
and inflammasome activation of NLR family pyrin domain three
(NLRP3); and inhibiting NLRP3 inflammasome activation and IL-
1b secretion resulted in GVHD amelioration (157).

In terms of SR-Gut-aGVHD, the role of MDSCs has been
poorly explored in either animal models or human studies. We
found recently in our mouse model that the development of SR-
Gut-aGVHD was associated with the reduction of donor-derived
CD11b+CX3CR1hi MNPs. Infusion of this population resulted
in amelioration of Gut-aGVHD mediated by IFN-g−IL-22+

alloreactive T cells (46), suggesting that donor-derived
CD11b+CX3CR1hi MNPs is likely to serve as MDSCs. It has
been reported that M2 macrophages were enhanced in human
SR-GVHD gut tissue when compared with both aGVHD at onset
and normal biospy (47). Further study is required to determine
whether the loss of CD11b+CX3CR1high MNPs in our SR-Gut-
aGVHD mouse model is associated with the expansion of M2
macrophages. We are further investigating the phenotype and
function of the donor-derived CD11b+CX3CR1hi MNPs in the
mouse model of SR-Gut-aGVHD as well as in patients.
IMAGING MASS CYTOMETRY WILL
FACILITATE PROGRESS IN STEROID
REFRACTORY-GUT-ACUTE GRAFT-
VERSUS-HOST DISEASE
TRANSLATIONAL RESEARCH

Increasing insights into human immune responses that drive
GVHD are closely connected with the technological advances
that enable us to investigate immune response mechanisms at
different levels including gene expression (e.g., single-cell RNA
sequencing), epigenetic modification (e.g., ATAC sequencing),
proteins (e.g., proteomics), tissue transcriptomics, dual host/
microbe RNA-Seq, and intestinal organoid-based platform and
cells (e.g., mass cytometry). Various tools have been utilized in a
variety of human study areas including viral infection,
autoimmune disease, and cancer (158–160). In addition,
multiplexed imaging methods are becoming increasingly
important not only for basic science research but also for
clinical research (161–166).

Tissue transcriptomics was proven invaluable for describing
heterogeneous cell populations within GVHD target organs in
both non-human primate (NHP) aGVHD model and human
GVHD studies (47, 167). Dual RNA-sequencing that utilizes
RNA-Seq applications enabled by next-generation sequencing
(NGS) can be used to investigate transcriptional changes in both
infected bacteria and host cells. Dual RNA-Seq can provide unique
insights into bacterial infection processes and corresponding host
responses by simultaneously examining both organisms from an
individual biological sample (168–170). Both tissue transcriptomics
and dual host/microbe RNA-Seq have been applied to human SR-
GVHD study and led to the discovery of T cell-independent
mechanisms in mediating SR-GVHD (47). Meanwhile, it has
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been found that donor T cells or TNF-a induced death of cultured
human organoids was achieved by utilizing an ex vivo intestinal
organoid-based platform (171). Therefore, the ex vivo organoid
culture systems can serve as a platform for testing pathogenic or
protective lymphocytes that are involved in SR-GVHD
development or in selecting drug candidates for prospective
therapy (172).

On the other hand, imaging mass cytometry (IMC) is another
new technique that not only allows for tissue transcriptomics
analysis but also can help us locate and visualize the complex
immune mediators in a GVHD target organ such as the intestine
without disturbing the original tissue structure, and it allows
imaging of the immune system at subcellular resolution (173).
With IMC, it is now possible to examine 30–40 parameters on a
single tissue section at one time, and this capability is extremely
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relevant for several applications including cancer and diabetes
research, as well as the determination of complex immune subsets
in a specific tissue microenvironment (174–178). The development
of IMC represents a landmark technological advance since it allows
for increased numbers of markers to be stained, and they can be
acquired and visualized simultaneously as compared to traditional
tissue imaging technology. More importantly, the IMC platform
enables the analysis of numerous cell types in their native
microenvironment concurrently, which consists of a complex
matrix of fluids, proteins, and cells. The evaluation of a certain
cell in its respected microenvironment determines how it is
phenotypically characterized and how it functions within a given
organ in both healthy and pathological states (179, 180).

To this point, the primary application of IMC has been in the
study of cancer and autoimmune diseases such as type 1 diabetes
FIGURE 1 | Mechanism of steroid-refractory acute gut graft-versus-host disease (GVHD) (SR-Gut-aGVHD) and potential therapeutic approaches. With tissue damage
due to conditioning, prolonged glucocorticoid (GC) treatment causes dysbiosis with expansion of pathogenic bacteria Escherichia coli. GC treatment may inhibit ornithine
decarboxylase (ODC) activity in donor T cells resulting in the reduction of polyamine metabolites. At the same time, dysbiosis alters the microbiome metabolites, which
may also lead to the reduction of polyamines. The reduction of polyamine metabolites causes Th lineage dysregulation and expansion of steroid-resistant Th/Tc clones
that produce multiple proinflammatory cytokines (e.g., IL-22 and IFN-g), along with the reduction of Tregs. Proinflammatory cytokines and chemokines such as IL-22 and
IFN-g attract neutrophils and myeloid cells to infiltrate colon tissues. The presence of inflammatory cytokines, tissue DNA damage, and the activation of inflammasomes
cause CX3CR1hi mononuclear phagocytes (MNPs) to become inflammatory CX3CR1lo/− cells and subsequently drive myeloid-derived suppressor cells (MDSCs) to lose
their ability to suppress inflammation. Loss of protective mucus layers, increase of intestinal epithelial permeability, and dysfunctional CX3CR1hi MNPs allow bacterial
invasion into the tissues, further triggering the production of inflammatory cytokines such as TNFa, IL-6, and IL-23, which further expand the steroid-resistant Th clones.
In addition, GC treatment can also augment neutrophil migration and infiltration into the intestine and cause tissue damage via reactive oxygen species (ROS) production.
Therefore, under prolonged GC treatment, the infiltrating T cells that produce IL-22 and/or IFN-g, as well as proinflammatory dendritic cells (DCs) and CX3CR1neg-/lo

myeloid cells and neutrophils, form a feed-forward pathogenic inflammatory cycle, resulting in full-blown SR-Gut-aGVHD. Based on these mechanisms, we propose the
following potential therapeutic approaches: 1) targeting IL-22-producing donor T cell; 2) restoring polyamine metabolism; 3) modulating MDSC dysfunction; 4) targeting
M2 macrophage; and 5) promoting epithelial and goblet cell regeneration. Figure is created with BioRender.com.
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(174–176). IMC utilization in those areas provided helpful
information regarding the location and interactions between
multiple subsets of cells. Up to now, some GVHD mechanism
studies with patient biopsy tissues suffer from limited tissue
sample size and limited markers (only 2–5) that traditional
immunochemistry or immunofluorescent staining can achieve.
Therefore, the application of IMC will likely become an
indispensable tool for atlas studies of immune cell composition,
interactions, and anatomical location in situ, which will further
characterize the immune networks that are active during various
stages of GVHD including SR-Gut-aGVHD. Nevertheless, tread
lightly when using this technology especially when converting raw
IMC data to the high-dimensional plot by cell segmentation,
particularly in defining “novel” cell clusters. Since IMC offers a
large number of parameters, the prospect of identifying potential
“novel” cell subsets is indeed very tempting. The underlying
problem of this cell segmentation feature remains imperfect
because it is often affected by the different target antigen signal
performances in the distinct tissue microenvironment, potentially
leading to incorrect classification of new cell phenotypes. At best,
the phenotypic information provided by IMC should be further
validated using more robust single-cell techniques such as flow or
mass cytometry (181). Through merging IMC with other high-
dimensional assays, we anticipate that IMC will be vital to our
understanding of the etiology of SR-Gut-aGVHD as well as to our
ability to make rapid clinical decisions.
CONCLUSIONS

In conclusion, according to the findings from basic immunology
and the experimental murine model of SR-Gut-aGVHD, we would
like to highlight the following points: a) cytokines produced by
specific Th subsets have distinct sensitivity to GC treatment in the
setting of SR-Gut-aGVHD, and the GC-insensitive cytokines such
Frontiers in Immunology | www.frontiersin.org 8
as IL-22 contribute to the pathogenesis of the disease. b) During the
development of SR-Gut-aGVHD, the evolution of steroid-resistant
T-cell clones is likely to be characterized as co-expression of
multiple inflammatory cytokines. c) IL-22 serves a dual role of
being proinflammatory and anti-inflammatory, respectively,
depending on the context of the immune microenvironment. d)
Dysbiosis contributes to the pathogenesis of SR-Gut-aGVHD, and
further investigation into the role of microbiome metabolites will
improve our understanding of the interaction between the
microbiome and immune response in the setting of SR-Gut-
aGVHD. e) MDSCs potentially could regulate alloreactive T-cell
response in the context of SR-Gut-aGVHD. In this review, we
would like to propose the prospective mechanisms and potential
therapeutic approaches for SR-Gut-aGVHD pathogenesis, as
depicted in Figure 1. Additional studies are needed to further
define the transcriptional networks and epigenetic programs that
reinforce the functional state of T cells’ resistance to GCs. In
addition, incorporating advanced technology like IMC to assess
the immune cross talk between T cells, MDSCs, and microbiome
metabolites will help us identify potential therapeutic interventions.
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Pereira-Neves A, et al. G-CSF–Induced Suppressor IL-10+Neutrophils
Promote Regulatory T Cells That Inhibit Graft-Versus-Host Disease in a
Long-Lasting and Specific Way. J Immunol (2016) 197:3725–34. doi:
10.4049/jimmunol.1502023

152. Van Der Merwe M, Abdelsamed HA, Seth A, Ong T, Vogel P, Pillai AB, et al.
Recipient Myeloid-Derived Immunomodulatory Cells Induce PD-1 Ligand–
Dependent Donor CD4+Foxp3+ Regulatory T Cell Proliferation and
Donor–Recipient Immune Tolerance After Murine Nonmyeloablative
Bone Marrow Transplantation. J Immunol (2013) 191:5764–76. doi:
10.4049/jimmunol.1302191

153. Vendramin A, Gimondi S, Bermema A, Longoni P, Rizzitano S, Corradini P,
et al. Graft Monocytic Myeloid-Derived Suppressor Cell Content Predicts the
Risk of Acute Graft-Versus-Host Disease After Allogeneic Transplantation
of Granulocyte Colony-Stimulating Factor–Mobilized Peripheral Blood Stem
Cells. Biol Blood Marrow Transplant (2014) 20:2049–55. doi: 10.1016/
j.bbmt.2014.09.011

154. Fan Q, Liu H, Liang X, Yang T, Fan Z, Huang F, et al. Superior GVHD-Free,
Relapse-Free Survival for G-BM to G-PBSC Grafts Is Associated With
Higher MDSCs Content in Allografting for Patients With Acute Leukemia.
J Hematol Oncol (2017) 10:135. doi: 10.1186/s13045-017-0503-2

155. Guan Q, Blankstein AR, Anjos K, Synova O, Tulloch M, Giftakis A, et al.
Functional Myeloid-Derived Suppressor Cell Subsets Recover Rapidly After
February 2022 | Volume 13 | Article 844271

https://doi.org/10.1182/blood-2018-03-838193
https://doi.org/10.1016/j.immuni.2013.08.003
https://doi.org/10.1182/blood-2015-04-638858
https://doi.org/10.1182/blood.2019003990
https://doi.org/10.1182/blood.2019003990
https://doi.org/10.1038/s41467-021-22212-1
https://doi.org/10.1038/s41467-019-13498-3
https://doi.org/10.1182/blood-2018-99-110441
https://doi.org/10.1182/blood-2018-99-110441
https://doi.org/10.1152/ajpgi.00201.2007
https://doi.org/10.1097/00003246-200004001-00007
https://doi.org/10.1158/2326-6066.CIR-13-0120-T
https://doi.org/10.1158/2326-6066.CIR-13-0120-T
https://doi.org/10.1080/2162402X.2016.1184802
https://doi.org/10.1038/s41419-018-0625-7
https://doi.org/10.1073/pnas.78.9.5669
https://doi.org/10.1016/j.immuni.2020.07.002
https://doi.org/10.1016/j.jaci.2020.04.037
https://doi.org/10.1016/j.jaci.2020.04.037
https://doi.org/10.1126/scitranslmed.aay7713
https://doi.org/10.3389/fimmu.2021.752484
https://doi.org/10.1182/blood-2016-05-717652
https://doi.org/10.1182/blood-2016-05-717652
https://doi.org/10.1182/blood-2019-127063
https://doi.org/10.3324/haematol.2016.154351
https://doi.org/10.3389/fimmu.2018.02195
https://doi.org/10.1038/s41577-020-00490-y
https://doi.org/10.4049/jimmunol.1000901
https://doi.org/10.1016/j.immuni.2010.05.010
https://doi.org/10.1016/j.immuni.2010.05.010
https://doi.org/10.1126/scitranslmed.3010435
https://doi.org/10.1182/blood-2010-06-287839
https://doi.org/10.1111/j.1365-2567.2009.03048.x
https://doi.org/10.1111/j.1365-2567.2009.03048.x
https://doi.org/10.4049/jimmunol.174.4.1841
https://doi.org/10.4049/jimmunol.1502023
https://doi.org/10.4049/jimmunol.1302191
https://doi.org/10.1016/j.bbmt.2014.09.011
https://doi.org/10.1016/j.bbmt.2014.09.011
https://doi.org/10.1186/s13045-017-0503-2
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Song et al. Steroid-Refractory Gut Graft-Versus-Host Disease
Allogeneic Hematopoietic Stem/Progenitor Cell Transplantation. Biol Blood
Marrow Transplant (2015) 21:1205–14. doi: 10.1016/j.bbmt.2015.04.015

156. Koehn BH, Apostolova P, Haverkamp JM, Miller JS, McCullar V, Tolar J,
et al. GVHD-Associated, Inflammasome-Mediated Loss of Function in
Adoptively Transferred Myeloid-Derived Suppressor Cells. Blood (2015)
126:1621–8. doi: 10.1182/blood-2015-03-634691

157. Koehn BH, Saha A, McDonald-Hyman C, Loschi M, Thangavelu G, Ma L,
et al. Danger-Associated Extracellular ATP Counters MDSC Therapeutic
Efficacy in Acute GVHD. Blood (2019) 134:1670–82. doi: 10.1182/
blood.2019001950

158. Friedrich M, Pohin M, Jackson MA, Korsunsky I, Bullers SJ, Rue-Albrecht K,
et al. IL-1-Driven Stromal–Neutrophil Interactions Define a Subset of
Patients With Inflammatory Bowel Disease That Does Not Respond to
Therapies. Nat Med (2021) 27:1970–81. doi: 10.1038/s41591-021-01520-5

159. Yeh AC, Varelias A, Reddy A, Barone SM, Olver S, Chilson K, et al. CMV
Exposure Drives Long-Term CD57+ CD4 Memory T Cell Inflation
Following Allogeneic Stem Cell Transplant. Blood (2021) 138(26):2874–85.
doi: 10.1182/blood.2020009492

160. Watson RA, Tong O, Cooper R, Taylor CA, Sharma PK, de Los Aires AV, et al.
Immune Checkpoint Blockade Sensitivity and Progression-Free Survival
Associates With Baseline CD8(+) T Cell Clone Size and Cytotoxicity. Sci
Immunol (2021) 6:eabj8825. doi: 10.1126/sciimmunol.abj8825

161. Lin J-R, Fallahi-Sichani M, Sorger PK. Highly Multiplexed Imaging of Single
Cells Using a High-Throughput Cyclic Immunofluorescence Method. Nat
Commun (2015) 6:8390. doi: 10.1038/ncomms9390

162. Gut G, Herrmann MD, Pelkmans L. Multiplexed Protein Maps Link
Subcellular Organization to Cellular States. Science (2018) 361:eaar7042.
doi: 10.1126/science.aar7042

163. Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M, Vazquez G, et al.
Deep Profiling of Mouse Splenic Architecture With CODEX Multiplexed
Imaging. Cell (2018) 174:968–981.e915. doi: 10.1016/j.cell.2018.07.010

164. Gerdes MJ, Sevinsky CJ, Sood A, Adak S, Bello MO, Bordwell A, et al. Highly
Multiplexed Single-Cell Analysis of Formalin-Fixed, Paraffin-Embedded
Cancer Tissue. Proc Natl Acad Sci (2013) 110:11982–7. doi: 10.1073/
pnas.1300136110

165. McKinley ET, Sui Y, Al-Kofahi Y, Millis BA, Tyska MJ, Roland JT.
Optimized Multiplex Immunofluorescence Single-Cell Analysis Reveals
Tuft Cell Heterogeneity. JCI Insight (2017) 2(11):e93487. doi: 10.1172/
jci.insight.93487

166. Michael, Kastenmuller W, Ifrim I, Kabat J, Ronald. Histo-Cytometry: A
Method for Highly Multiplex Quantitative Tissue Imaging Analysis Applied
to Dendritic Cell Subset Microanatomy in Lymph Nodes. Immunity (2012)
37:364–76. doi: 10.1016/j.immuni.2012.07.011

167. Tkachev V, Kaminski J, Potter EL, Furlan SN, Yu A, Hunt DJ, et al.
Spatiotemporal Single-Cell Profiling Reveals That Invasive and Tissue-
Resident Memory Donor CD8(+) T Cells Drive Gastrointestinal Acute
Graft-Versus-Host Disease. Sci Transl Med (2021) 13(576):eabc0227. doi:
10.1126/scitranslmed.abc0227

168. Marsh JW, Humphrys MS, Myers GSA. A Laboratory Methodology for Dual
RNA-Sequencing of Bacteria and Their Host Cells In Vitro. Front Microbiol
(2017) 8:1830. doi: 10.3389/fmicb.2017.01830

169. Westermann AJ, Vogel J. Host-Pathogen Transcriptomics by Dual RNA-Seq.
Methods Mol Biol (2018) 1737:59–75. doi: 10.1007/978-1-4939-7634-8_4.

170. Marsh JW, Hayward RJ, Shetty AC,Mahurkar A, Humphrys MS, Myers GSA.
Bioinformatic Analysis of Bacteria and Host Cell Dual RNA-Sequencing
Experiments. Brief Bioinf (2017) 19(6):1115–29. doi: 10.1093/bib/bbx043
Frontiers in Immunology | www.frontiersin.org 13
171. Matsuzawa-Ishimoto Y, Hine A, Shono Y, Rudensky E, Lazrak A, Yeung F,
et al. An Intestinal Organoid–Based Platform That Recreates Susceptibility to
T-Cell–Mediated Tissue Injury. Blood (2020) 135:2388–401. doi: 10.1182/
blood.2019004116

172. Zeng D. Mouse Models Usher in Precision Medicine. Blood (2020)
135:2331–3. doi: 10.1182/blood.2020005679

173. Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B,
et al. Highly Multiplexed Imaging of Tumor Tissues With Subcellular
Resolution by Mass Cytometry. Nat Methods (2014) 11:417–22. doi:
10.1038/nmeth.2869

174. Schulz D, Zanotelli VRT, Fischer JR, Schapiro D, Engler S, Lun X-K, et al.
Simultaneous Multiplexed Imaging of mRNA and Proteins With Subcellular
Resolution in Breast Cancer Tissue Samples by Mass Cytometry. Cell Syst
(2018) 6:25–36.e25. doi: 10.1016/j.cels.2017.12.001

175. Damond N, Engler S, Zanotelli VRT, Schapiro D, Wasserfall CH, Kusmartseva I,
et al. AMap of Human Type 1 Diabetes Progression by ImagingMass Cytometry.
Cell Metab (2019) 29:755–68.e755. doi: 10.1016/j.cmet.2018.11.014

176. Wang YJ, Traum D, Schug J, Gao L, Liu C, Atkinson MA, et al. Multiplexed
In Situ Imaging Mass Cytometry Analysis of the Human Endocrine Pancreas
and Immune System in Type 1 Diabetes. Cell Metab (2019) 29:769–783.e764.
doi: 10.1016/j.cmet.2019.01.003

177. Li N, Van Unen V, Abdelaal T, Guo N, Kasatskaya SA, Ladell K, et al.
Memory CD4+ T Cells Are Generated in the Human Fetal Intestine. Nat
Immunol (2019) 20:301–12. doi: 10.1038/s41590-018-0294-9

178. Zhao Y, Uduman M, Siu JHY, Tull TJ, Sanderson JD, Wu Y-CB, et al.
Spatiotemporal Segregation of Human Marginal Zone and Memory B Cell
Populations in Lymphoid Tissue. Nat Commun (2018) 9:3857. doi: 10.1038/
s41467-018-06089-1

179. Sachs PC, Mollica PA, Bruno RD. Tissue Specific Microenvironments: A Key
Tool for Tissue Engineering and Regenerative Medicine. J Biol Eng (2017)
11:34. doi: 10.1186/s13036-017-0077-0

180. Oliver AJ, Lau PKH, Unsworth AS, Loi S, Darcy PK, Kershaw MH, et al.
Tissue-Dependent Tumor Microenvironments and Their Impact on
Immunotherapy Responses. Front Immunol (2018) 9:3857. doi: 10.3389/
fimmu.2018.00070

181. Gerdtsson E, Pore M, Thiele J-A, Gerdtsson AS, Malihi PD, Nevarez R, et al.
Multiplex Protein Detection on Circulating Tumor Cells From Liquid
Biopsies Using Imaging Mass Cytometry. Converg Sci Phys Oncol (2018)
4:015002. doi: 10.1088/2057-1739/aaa013

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Song, Nasri and Zeng. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.
February 2022 | Volume 13 | Article 844271

https://doi.org/10.1016/j.bbmt.2015.04.015
https://doi.org/10.1182/blood-2015-03-634691
https://doi.org/10.1182/blood.2019001950
https://doi.org/10.1182/blood.2019001950
https://doi.org/10.1038/s41591-021-01520-5
https://doi.org/10.1182/blood.2020009492
https://doi.org/10.1126/sciimmunol.abj8825
https://doi.org/10.1038/ncomms9390
https://doi.org/10.1126/science.aar7042
https://doi.org/10.1016/j.cell.2018.07.010
https://doi.org/10.1073/pnas.1300136110
https://doi.org/10.1073/pnas.1300136110
https://doi.org/10.1172/jci.insight.93487
https://doi.org/10.1172/jci.insight.93487
https://doi.org/10.1016/j.immuni.2012.07.011
https://doi.org/10.1126/scitranslmed.abc0227
https://doi.org/10.3389/fmicb.2017.01830
https://doi.org/10.1007/978-1-4939-7634-8_4
https://doi.org/10.1093/bib/bbx043
https://doi.org/10.1182/blood.2019004116
https://doi.org/10.1182/blood.2019004116
https://doi.org/10.1182/blood.2020005679
https://doi.org/10.1038/nmeth.2869
https://doi.org/10.1016/j.cels.2017.12.001
https://doi.org/10.1016/j.cmet.2018.11.014
https://doi.org/10.1016/j.cmet.2019.01.003
https://doi.org/10.1038/s41590-018-0294-9
https://doi.org/10.1038/s41467-018-06089-1
https://doi.org/10.1038/s41467-018-06089-1
https://doi.org/10.1186/s13036-017-0077-0
https://doi.org/10.3389/fimmu.2018.00070
https://doi.org/10.3389/fimmu.2018.00070
https://doi.org/10.1088/2057-1739/aaa013
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Steroid-Refractory Gut Graft-Versus-Host Disease: What We Have Learned From Basic Immunology and Experimental Mouse Model
	Introduction
	New Insights Into Steroid Refractory-Gut-Acute Graft-Versus-Host Disease Provided by Newly Established Murine Models
	Distinct Sensitivity of Th Subsets and Cytokine Pathways to Glucocorticoid Suppression
	Dual Role of IL-22 in Promoting Tissue Regeneration and Inflammatory Response in the Context of Steroid Refractory-Gut-Acute Graft-Versus-Host Disease
	Microbial Community and Their Metabolites in Regulating Steroid Refractory-Gut-Acute Graft-Versus-Host Disease
	Myeloid-Derived Suppressor Cells of Interest as a Therapeutic Option for Steroid Refractory-Gut-Acute Graft-Versus-Host Disease Patients
	Imaging Mass Cytometry Will Facilitate Progress in Steroid Refractory-Gut-Acute Graft-Versus-Host Disease Translational Research
	Conclusions
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


