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Abstract

Objective—To examine the effects of diets varying in carbohydrate and glycemic index (GI) on 

changes in body composition, resting metabolic rate (RMR) and metabolic adaptation during and 

after weight loss.

Methods—Adults with obesity (n = 91) were randomized to one of four provided-food diets for 

17 wk. Diets differed in percentage energy from carbohydrate (55% or 70%) and GI (low or high), 

but were matched for protein, fiber and energy. Body weight, body composition, RMR, and 

metabolic adaptation (measured RMR – predicted RMR) were measured during weight loss and 

subsequent weight stability.

Results—No effect of dietary carbohydrate content or GI on body weight loss or percentage of 

weight lost as fat mass was observed. Measured RMR was significantly lower (−226 kJ/d [95%CI: 

−314 kJ/d, −138 kJ/d] P < 0.001) than predicted RMR following weight loss, but this difference 

was attenuated after 5 wk weight stability. Metabolic adaptation did not differ by dietary 

carbohydrate content or GI, and was not associated with weight regain 12 mo later.

Conclusion—Moderate-carbohydrate and low-GI diets did not preferentially reduce fat mass, 

preserve lean mass, or attenuate metabolic adaptation during weight loss compared to high-

carbohydrate and high-GI diets.
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Introduction

Obesity rates remain at epidemic levels in part because weight regain following weight loss 

is common (1). One frequently cited hypothesis for weight regain is that there is a 

‘metabolic adaptation’ to weight loss (2, 3), which can be defined as a reduction in resting 

metabolic rate (RMR) greater than can be accounted for by weight loss alone (4). Several 

groups have observed this phenomenon during active weight loss (5–9), but whether 

metabolic adaptation can be influenced by dietary factors, persists after weight stabilizes, or 

contributes to weight regain is controversial (4, 10, 11).

Dietary carbohydrate quantity and glycemic index (GI) are among the factors thought to 

influence metabolic adaptation. Some studies (12–14), but not others (15–19), have 

suggested that low-carbohydrate (< 45% energy from carbohydrate) or low-GI diets 

attenuate reductions in RMR during and following weight loss, with postulated mechanisms 

including altered substrate availability and endocrine-mediated effects on anabolic and 

catabolic pathways (12). In addition, some (16, 20–22), but again, not other (13, 19,23–25) 

studies have suggested that low-carbohydrate or low-GI diets may promote a preferential 

loss of fat mass (FM) and preservation of fat free mass (FFM) during weight loss, which 

would also attenuate reductions in RMR. However, few studies have directly assessed the 

effects of dietary carbohydrate content and GI on metabolic adaptation and change in body 

composition with weight loss while carefully controlling dietary composition. Moreover, 

whether high-carbohydrate (≥ 65% total energy) diets adversely affect these outcomes is 

unclear.

To address these gaps, and to determine the effects of dietary GI and the relative proportions 

of dietary energy from carbohydrate versus fat on changes in body weight, body 

composition and metabolic adaptation during and after weight loss, we designed and 

provided protein-matched diets containing moderate or high amounts of carbohydrate (and 

therefore moderate or low in fat) with low or high GI. We hypothesized that dietary 

carbohydrate composition would not influence body weight, body composition or metabolic 

adaptation when potentially confounding dietary factors were controlled.

Methods

Study population

Men and postmenopausal women (45–65 y; BMI 28–38 kg/m2) were recruited from the 

Boston, MA metro area. Exclusion criteria included abnormal thyroid, liver, and kidney 

function tests, LDL cholesterol ≤ 100 mg/dL, fasting triglycerides ≥ 400 mg/dL, chronic 

illness, diabetes, and taking medication for elevated blood lipids. The study was conducted 

at the Jean Mayer United States Department of Agriculture Human Nutrition Research 

Center on Aging at Tufts University between 2000 and 2004 with approval by the Tufts 

University Health Sciences Institutional Review Board. All participants gave written, 

informed consent prior to participating, and received a stipend.
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Study design

The primary study objective was to assess the effects of altering dietary carbohydrate-to-fat 

ratio and GI on body weight, and biomarkers of cardiometabolic health in an adult 

population with overweight and obesity. This report concerns the study’s secondary 

objectives, specifically the effects of dietary carbohydrate composition on body composition 

and metabolic adaptation during and following weight loss. The moderate- and high-

carbohydrate diets used reflect common recommendations at the time of study conception to 

consume low-fat diets for weight loss and cardiometabolic health. Though high-

carbohydrate weight loss diets have somewhat fallen out of favor in the intervening years, 

investigating the metabolic effects of these diets remains of interest given concerns over the 

long-term health effects of low-carbohydrate diets (12), which are likely to grow in lieu of 

emerging evidence linking gut bacteria metabolites of common low-carbohydrate diet 

components to inflammatory bowel and cardiovascular diseases (26).

The study design included three controlled-diet phases totaling 22 wk, followed by a 12-mo 

ad libitum-diet follow-up period (Figure 1). All food and energy-containing beverages were 

provided to participants throughout the first three phases, and volunteers were instructed to 

abstain from dietary supplement use. The provided diets were matched for dietary protein, 

fiber and energy density, and differed only in carbohydrate-to-fat ratio and GI (Table 1).

Phase 1 was a 5-wk weight maintenance phase in which weight maintenance energy needs 

were determined by adjusting provided energy intake to maintain stable weight. Mean Phase 

1 energy intake was 12.2 MJ/d with 48% energy provided as carbohydrate, 16% as protein 

and 36% as fat. Following Phase 1, participants were randomized by the study statistician to 

their Phase 2 dietary assignment using computer-generated randomization. The four diets 

differed in carbohydrate content (55%, ModCarb or 70%, HighCarb of total energy) and 

dietary GI (< 60, LowGI or ≥ 80, HighGI), and were provided for 12 wk at 67% of the 

weight maintenance energy intake determined in Phase 1. Participants were allowed to 

increase their energy intake during Phase 2 by requesting additional, randomization-

appropriate foods from the metabolic kitchen if too hungry to be adherent. Phase 3 was a 5-

wk weight maintenance phase during which food was provided according to randomization. 

Energy intake during Phase 3 was prescribed to support weight maintenance at the new, 

lower body weight, and was predicted from body weight and energy intake measured at the 

end of Phase 2, with adjustment for self-reported physical activity. Phase 4 was a 12-mo 

follow-up period during which participants selected and prepared their own meals after 

being provided with instructions on following the diet to which they were randomized.

Participants reported to the center 3–5 d/wk during Phase 1, and 3 d/wk during Phases 2 and 

3 to be weighed, return study materials, pick up study foods, and eat a meal under staff 

supervision. Participants were required to return all empty food containers and any uneaten 

foods for documentation of leftover food items. Diet adherence was assessed by dietary 

staff, and non-adherence was defined as incomplete consumption of provided foods. During 

Phase 4, interaction with study personnel was limited to quarterly visits and monthly phone 

calls with a nutritionist.
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Diet composition was analyzed using the Nutrition Data System for Research v 4.0.4 

(Nutrition Coordinating Center, University of Minnesota, Minneapolis, MN) and verified by 

chemical analysis of each diet (Covance Laboratories, Madison, WI). GI was lowered 

without creating differences in macronutrient composition primarily by substituting low-GI 

foods for higher GI foods that had similar macronutrient proportions. Pilot-testing confirmed 

lower postprandial glycemia following consumption of low-GI versus high-GI experimental 

meals. Glycemic load and GI (white bread as reference) were recently updated using the 

Nutrition Data System for Research 2010.

Study outcomes

Participants were blinded to their randomization during Phases 1–3, and outcomes were 

measured by trained staff who were also blinded. Pre-study height was measured using a 

wall-mounted stadiometer. Fasting body weight was measured during each study visit using 

a calibrated digital scale.

Body density was measured in duplicate at the end of Phases 1 and 2, and once at the end of 

Phase 3 by air displacement plethysmography (BOD POD; Life Measurement Instruments, 

Concord, CA) according to standard procedure (27). FM and FFM were calculated from 

measured body density (27). The CV for duplicate measures of body fatness was 1.8% and 

1.7% at the end of Phases 1 and 2, respectively.

RMR was measured in duplicate at the end of Phases 1 and 2, and once at the end of Phase 3 

by indirect calorimetry using a portable metabolic cart (Deltatrac metabolic monitor; 

SensorMedics, Anaheim, CA). Participants were instructed to fast for ≥ 12 hr, and avoid 

vigorous exercise for ≥ 24 hr prior to measurements. Measurements were completed over 40 

min following a 30 min rest period, and under thermo-neutral conditions. The final 30 min 

of data were used to calculate RMR using Weir’s equation (28). The CV for duplicate 

measures was 3.4% and 3.0% at the end of Phases 1 and 2, respectively.

Metabolic adaptation was calculated as the difference between RMR measured at the end of 

each phase and the predicted RMR for that phase (i.e., measured RMR – predicted RMR). 

Predicted RMR for each phase was calculated by entering FM and FFM measured at the end 

of that phase into a regression model developed from baseline age, sex, FM, FFM, and RMR 

(29).

Statistical analysis

Sample size calculations indicated 20 participants per group was required to detect a 3% 

difference in body weight by carbohydrate-content and GI-level at α = 0.05 and power = 

0.80. Using previously published work from our group (15), this sample size was 

determined sufficient for detecting a between-group RMR difference of 105 kcal/d (α = 

0.008, power = 0.80), an effect size consistent with previous findings on the effects of low-

glycemic impact diets on RMR (13).

All outcomes were assessed for normality. Repeated measures ANCOVA was used to test 

for main effects of carbohydrate- and GI-level, and their interaction over time on body 

weight. Body composition, RMR and respiratory quotient (RQ) were analyzed by 2-factor 
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(carbohydrate and GI) ANCOVA within Phase 2, and Phases 2 and 3 combined. End of 

Phase 1 value (i.e. baseline) was entered as a covariate in ANCOVA models. Metabolic 

adaptation was analyzed by 2-factor (carbohydrate and GI) ANOVA. Pearson’s correlation 

was used to examine associations.

Missing data for two study completers without Phase 3 RMR measurements were imputed 

using multiple imputation (30). Two individuals randomized to HighCarb+LowGI were 

classified as outliers based on having measured Phase 3 RMR change scores > 3 times the 

interquartile range above the 75th percentile in that group. Including outliers did not alter the 

statistical significance of any analyses, and RMR and RQ results are presented with outliers 

excluded. Only study completers were included in analyses because the aims of this analysis 

concerned the effects of diet adherence and not diet randomization.

SPSS version 20.0 was used for analyses. Values are reported as mean ± SD or mean 

difference (M [95% CI]) unless otherwise noted. All tests were two-sided and considered 

statistically significant at P < 0.05.

Results

Seventy-nine of 91 randomized participants completed all three controlled-diet phases 

(Figure 1 and Table 1). The sex (P = 0.34), age (P = 0.65), and BMI (P = 0.42) of study 

drop-outs did not differ from completers.

Diet adherence, defined as the percentage of individuals within each group with ≤ 1 

occurrence/wk of incomplete consumption, was ≥ 77% within the full cohort during Phases 

2 and 3, and did not differ by carbohydrate content (P ≥ 0.19), by GI (P ≥ 0.55), or across 

groups (P ≥ 0.36) during either phase (Table 1). To further evaluate adherence, the energy 

deficit required to elicit the measured Phase 2 weight loss was estimated using group means 

and the National Institutes of Health body weight simulator (31). The 4.0 MJ/d prescribed 

energy deficit was 1.2 MJ/d (ModCarb+HighGI), 1.5 MJ/d (HighCarb+HighGI), 0.8 MJ/d 

(ModCarb+LowGI), and 0.8 MJ/d (HighCarb+LowGI) lower than the simulator-estimated 

energy deficit. The non-significant differences in weight loss (see below) indicate these 

values were not different across groups.

The combined cohort lost 7.5% ([95% CI: −8.4%, −6.6%] P < 0.001) of initial body weight 

(Figure 2a), with losses occurring primarily during Phase 2 (−6.1 kg ([95% CI: −6.8 kg to 

−5.4 kg], P < 0.001). A modest additional mean weight loss of 0.9 kg ([95% CI −1.3 kg to 

−0.5 kg], P < 0.001) was documented during Phase 3. Total weight loss did not differ by 

carbohydrate content (P = 0.60), by GI (P = 0.52), or across groups (P-interaction = 0.69; 

Table 2). At the end of Phase 3, the proportion of total weight loss attributable to FM and 

FFM did not differ by carbohydrate content (P = 0.94), by GI (P = 0.70), or across groups 

(P-interaction = 0.97) (Figure 2b).

At the end of Phase 2 (active weight loss), measured RMR was 6.5% [95% CI: −7.7%, 

−5.3%] lower than baseline in the combined cohort, and was 226 kJ/d ([95% CI: −314 kJ/d, 

−138 kJ/d] P < 0.001) lower than predicted RMR. Neither the decrease in measured RMR 

during Phase 2, including after adjusting for weight change, nor the difference between 
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measured and predicted RMR at the end of Phase 2, differed by carbohydrate content, by GI, 

or across groups (Table 2). Measured and predicted RMR were strongly correlated at the end 

of Phase 2 (r = .91, P < 0.001; Figure 3a). The difference between measured and predicted 

RMR was not correlated with Phase 2 weight loss (r = −.04, P = 0.72). RQ decreased 0.1 

units ([95% CI −0.02, 0.00], P = 0.01) during Phase 2 in the combined cohort, but the 

decrease did not differ by carbohydrate content (P = 0.50), by GI (P = 0.16), or across 

groups (P-interaction = 0.53; Table 2).

At the end of Phase 3, measured RMR remained 6.2% lower ([95% CI: −7.9%, −4.5%] P < 

0.001) than baseline in the combined cohort, and 172 kJ/d ([95% CI: −280 kJ/d, −63 kJ/d] P 

= 0.002) lower than predicted RMR whereas RQ did not differ from baseline (P = 0.16). The 

difference between measured and predicted RMR was not statistically significant after 

controlling for weight change during Phase 3 (P = 0.11), and was not correlated with total 

weight loss (r = .05, P = 0.69). Neither the total measured change in RMR or RQ during 

Phases 2 and 3, nor the difference in measured and predicted RMR at the end of Phase 3 

differed by carbohydrate content, by GI, or across groups (Table 2). Measured and predicted 

RMR were strongly correlated at the end of Phase 3 (r = .91, P < 0.001; Figure 3b). Re-

analyzing Phase 2 and Phase 3 body weight, body composition, RMR and metabolic 

adaptation data using only adherent volunteers did not alter the statistical significance of any 

comparison.

Body weight change during Phase 4 was measured in 60 participants. Attrition during Phase 

4 did not differ according to diet (χ2 = 0.67, P = 0.88), but men (n = 13) tended to be more 

likely to drop-out than women (n = 6; χ2 = 3.63, P = 0.06). Relative to Phase 4 completers, 

participants not completing Phase 4 lost slightly less weight during the controlled 

intervention (−6.0% ± 3.2% vs. −8.1% ± 4.1%, P = 0.05), but did not experience a greater 

relative decline in RMR (−5.8% ± 3.2% vs. −6.5% ± 6.2%, P = 0.72) or exhibit greater 

metabolic adaptation (−209 ± 477 kJ/d vs. −293 ± 448 kJ/d, P = 0.84).

Within the cohort of Phase 4 completers, there was an average weight regain of 4.3 kg [95% 

CI: 3.3 kg, 5.3 kg], equivalent to 58% of the weight lost during Phases 2 and 3. Weight 

regain did not differ by carbohydrate content (P = 0.34), by GI (P = 0.92), or across diet 

groups (P-interaction = 0.54), including after adjusting for prior weight loss. Therefore, the 

full cohort was combined to examine relationships between changes in RMR and weight 

regain. Neither measured RMR at the end of Phase 3 (r = .13, P = 0.27), percent change in 

RMR during Phases 2 and 3 (r = −.19, P = 0.15), nor metabolic adaptation measured at the 

end of Phase 3 and expressed as a percent of baseline RMR (r = .01, P = 0. 94; Figure 4a) 

was correlated with weight change during Phase 4. There were no differences in metabolic 

adaptation measured at the end of Phase 3 when compared across tertiles of subsequent 

weight change during Phase 4 (P = 0.77, Figure 4b).

Discussion

The major findings of this study were that when potentially confounding dietary factors 

were controlled: 1) moderate-carbohydrate and low-GI diets relative to high-carbohydrate 

and high-GI diets did not show differences for preserving FFM or attenuating metabolic 
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adaptation during weight loss, and 2) that metabolic adaptation tended to dissipate with 

weight stability following weight loss and did not predict subsequent weight regain. 

Collectively, these findings indicate that although adaptive variations in energy expenditure 

can be measured, they are unrelated to dietary carbohydrate content and GI within the levels 

of carbohydrate and GI tested in this study.

One major finding was that neither dietary GI nor the percentage dietary energy from 

carbohydrate impacted the quality of weight loss (FFM relative to FM losses). Meta-

analyses have suggested that low-carbohydrate diets may help preserve FFM relative to FM 

loss during negative energy balance (21, 32). However, low-carbohydrate diets are 

commonly high in protein, which has also been associated with preservation of FFM (21, 

33), thereby confounding many previous studies in this area. By providing all food to our 

subjects and designing the diets to be matched for confounding factors such as dietary 

protein, the results of this study pertain specifically to the ratio of fat to carbohydrate energy 

at high and moderate carbohydrate levels, and GI. Concerning GI, our current results are 

consistent with the majority of the evidence base (22, 34–36), and with the few previous 

studies that have isolated effects of GI by providing complete low-GI and high-GI diets 

matched for percent energy from carbohydrate, fat and protein (25, 35, 36).

Study results also indicated that moderate-carbohydrate and low-GI diets relative to high-

carbohydrate and high-GI diets did not differentially effect metabolic adaptation. Previous 

work suggested that reducing dietary carbohydrate and GI (12, 13) may mitigate reductions 

in RMR through mechanisms related to substrate availability, and hormonal and autonomic 

activity. However, our current findings are consistent with previous findings from our group 

and others that do not substantiate a benefit for low-GI diets in attenuating metabolic 

adaptation (15, 16, 34). Reasons for the incongruent results are unclear, but the inability to 

reliably separate the effects of a diet’s carbohydrate content and glycemic impact from 

confounding factors such as differences in protein and/or fiber intake between groups (12, 

13,15, 16), or a reliance on self-reported dietary intake (34), may be important. Our findings 

begin to resolve these issues, demonstrating that when these confounders are controlled for, 

carbohydrate quantity and GI, within the levels of carbohydrate and GI tested in this study, 

do not appear to influence RMR adaptation during weight loss. However, by design, our 

results cannot determine whether GI would attenuate metabolic adaptation at low-

carbohydrate intakes.

This study also provided data relevant to the question of whether metabolic adaptation 

during weight loss increases susceptibility to subsequent weight regain. Consistent with 

most previous studies (5–9), we found that RMR did decrease to a greater extent during 

weight loss than anticipated from FM and FFM losses. However, following 5 wk of relative 

weight stability there was no measurable metabolic adaptation after controlling for acute 

weight change. Moreover, as noted in some (37–39), but not all (40) studies, individual 

variability in RMR following weight loss relative to baseline RMR did not predict weight 

change over the subsequent 12 mo period, and no difference in metabolic adaptation 

between weight re-gainers and those who maintained weight loss was observed. One 

possible explanation for conflicting results in previous studies is that metabolic adaptation 

may only be seen during the dynamic phase of weight loss. For experimental validity it may 

Karl et al. Page 7

Obesity (Silver Spring). Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be important to have an extended period of energy balance prior to RMR measurements to 

prevent the influence of acute effects of overeating or undereating (38). Clearly, energy 

expenditure is adaptive to acute changes in energy balance, but based on the results of this 

study and other comparable investigations (38), there appears to be minimal sustained 

metabolic adaptation response to weight loss once weight has stabilized.

Several study strengths and weaknesses should be acknowledged. Important strengths 

include the tight control of diet composition and intake over an extended period, and 

duplicate measurements of body composition and RMR which were used to improve 

accuracy. However, weight changes were not, by design, large, and study results may not 

reflect changes occurring with greater body weight losses. Further, the 2-comparment model 

used to assess body composition does not account for differential changes in organ masses 

during weight loss which could influence metabolic adaptation calculations (5). Though 

volunteers were instructed to maintain habitual activity levels, we could not verify 

adherence to this instruction which precludes determining whether changes in physical 

activity patterns differed between groups or affected study outcomes. Additionally, body 

weight simulator estimations suggested that actual energy intake was somewhat greater than 

prescribed. This could indicate a moderate degree of diet non-adherence that could have 

attenuated between-group differences in diet composition. However, subjects were provided 

additional randomization-appropriate food if hungry, and to what extent the estimated 

difference in intake was due to consumption of additional provided foods, non-adherence to 

diet or activity instruction, or variability associated with model assumptions could not be 

determined. Attrition during the follow-up period could bias results, though RMR adaptation 

in study drop-outs did not differ from study completers, lessening the risk of bias. This study 

did not include low carbohydrate levels, which may be of additional interest. Finally, though 

we found no evidence for effect modification by sex in any analysis, this study was not 

adequately powered to address sex differences.

Conclusion

Neither low-GI relative to high-GI diets nor moderate-carbohydrate relative to high-

carbohydrate diets showed differences with respect to effects on changes in body 

composition or resting metabolism during weight loss when confounding dietary factors 

were tightly controlled in a study providing all food for 22 weeks, and individual variability 

in metabolic adaptation following weight loss did not predict weight regain over 12 months. 

These findings demonstrate that adaptive variations in energy expenditure can be measured, 

but are unrelated to dietary carbohydrate content and GI within the levels of carbohydrate 

and GI tested in this study.
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GI glycemic index

FM fat mass

FFM fat free mass

HighCarb 70% of total energy from carbohydrate

ModCarb 55% of total energy from carbohydrate

RMR resting metabolic rate

RQ respiratory quotient
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What is already known about this subject?

• Reduced carbohydrate and low-glycemic index diets have been suggested to 

enhance fat mass loss during weight loss, and deter weight regain by attenuating 

reductions in energy expenditure during weight loss, but these proposed effects 

are uncertain because previous study designs were potentially confounded.

What does this study add?

• When confounding dietary factors were controlled, moderate-carbohydrate 

(55% total energy) and low-GI diets did not preferentially reduce fat mass, 

preserve lean mass, or attenuate metabolic adaptation during weight loss 

compared to high-carbohydrate (70% total energy) and high-glycemic index 

diets.
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Figure 1. 
CONSORT diagram and study design. GI, glycemic index; HighCarb, 70% energy from 

carbohydrate; ModCarb, 55% energy from carbohydrate.
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Figure 2. 
A) Weight loss and B) percentage of total weight loss attributable to fat mass and fat free 

mass while consuming provided-food diets differing in glycemic index (GI), and percent 

energy from carbohydrate (55%, ModCarb and 70%, HighCarb) for 17 wk (n = 79). Values 

are mean ± SEM. Weight loss analyzed by repeated measures ANCOVA, body composition 

by 2-factor ANOVA. a,bMain effect of time; asignificant decrease from baseline (P < 

0.001), bsignificant difference from Phase 2 end (P < 0.001). No diet effects (main effects or 

interactions) for any comparisons.
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Figure 3. 
Measured versus predicted resting metabolic rate (RMR) at the end of A) Phase 2 and B) 
Phase 3 (n = 77; Pearson’s correlations). Solid line, measured = predicted; dashed line, 

regression line between measured and predicted. GI, glycemic index; HighCarb, 70% energy 

from carbohydrate; ModCarb, 55% energy from carbohydrate.

Karl et al. Page 15

Obesity (Silver Spring). Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Adaptation of resting metabolic rate (RMR) and subsequent 12-mo weight change (n = 60). 

A) Association between RMR adaptation measured at the end of Phase 3 and subsequent 12-

mo weight change during Phase 4 (Pearson’s correlation). B) RMR adaptation by tertile of 

weight regain during Phase 4. Differences between tertiles were not statistically significant; 

1-way ANOVA, P = 0.77. Bars are mean – SEM. Glycemic index (GI); HighCarb, 70% 

energy from carbohydrate; ModCarb, 55% energy from carbohydrate.
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Table 1

Volunteer characteristics at the end of the weight maintenance run-in diet (Phase 1), and diet composition 

during active weight loss (Phase 2) and relative weight stability (Phase 3).

ModCarb+
HighGI

HighCarb+
HighGI

ModCarb+
LowGI

HighCarb+
LowGI

Volunteer characteristics1

Age (y) 55 ± 5 56 ± 5 57 ± 8 56 ± 5

M/F (n) 10/10 9/10 10/10 10/10

Height (cm) 168 ± 7 168 ± 7 169 ± 12 168 ± 7

Body weight (kg) 89.1 ± 11.1 94.0 ± 9.7 95.7 ± 13.7 92.9 ± 13.6

BMI (kg/m2) 32.2 ± 3.4 33.4 ± 2.6 33.6 ± 4.2 32.3 ± 3.4

Body fat (%) 39.5 ± 7.7 41.6 ± 6.5 41.3 ± 9.1 40.7 ± 7.0

RMR (kJ/d) 6760 ± 1042 6974 ± 1013 7058 ± 1088 6798 ± 938

RQ 0.83 ± 0.03 0.84 ± 0.06 0.83 ± 0.03 0.83 ± 0.04

Diet composition2

Energy (kJ/d)3 8079 8205 8192 8192

Carbohydrate (%) 54 70 54 68

Fat (%) 29 14 31 16

Protein (%) 16 16 16 15

Fiber (g/ 1000 kcal) 14 14 14 15

Glycemic index 80 86 51 59

Glycemic load 193 283 124 188

Diet adherence4

Phase 2 (%) 79 77 94 72

Phase 3 (%) 79 73 88 67

1 kcal = 4.186 kJ. Carb, carbohydrate; GI, glycemic index; Mod, moderate; RMR, resting metabolic rate; RQ, respiratory quotient.

1
Mean ± SD. 1-way ANOVA; no between-group differences.

2
Prescribed intake; macronutrient composition and fiber content measured by chemical analysis. GI calculated with white bread as reference.

3
During Phase 2.

4
Diet adherence assessed by study staff, and was defined as the percentage of individuals having ≤ 1 occurrence/wk of incomplete consumption of 

the provided study foods.
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