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Abstract

Motivation: It is a challenging problem in systems biology to infer both the network structure and dynamics of a
gene regulatory network from steady-state gene expression data. Some methods based on Boolean or differential
equation models have been proposed but they were not efficient in inference of large-scale networks. Therefore, it is
necessary to develop a method to infer the network structure and dynamics accurately on large-scale networks
using steady-state expression.

Results: In this study, we propose a novel constrained genetic algorithm-based Boolean network inference (CGA-
BNI) method where a Boolean canalyzing update rule scheme was employed to capture coarse-grained dynamics.
Given steady-state gene expression data as an input, CGA-BNI identifies a set of path consistency-based constraints
by comparing the gene expression level between the wild-type and the mutant experiments. It then searches
Boolean networks which satisfy the constraints and induce attractors most similar to steady-state expressions. We
devised a heuristic mutation operation for faster convergence and implemented a parallel evaluation routine for exe-
cution time reduction. Through extensive simulations on the artificial and the real gene expression datasets, CGA-
BNI showed better performance than four other existing methods in terms of both structural and dynamics predic-
tion accuracies. Taken together, CGA-BNI is a promising tool to predict both the structure and the dynamics of a
gene regulatory network when a highest accuracy is needed at the cost of sacrificing the execution time.

Availability and implementation: Source code and data are freely available at https://github.com/csclab/CGA-BNI.

Contact: kwonyk@ulsan.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent high-throughput sequencing technologies have yielded a
mass of gene expression data (Hughes et al., 2000; Quackenbush,
2001), which provides an opportunity to investigate the underlying
gene-regulatory mechanism from a system-level perspective. It is a
challenging problem in systems biology to infer gene regulatory net-
works (GRNs) from these high-throughput gene expression data,
and many computational methods have been developed for it (Banf
and Rhee, 2017; Chai et al., 2014; De Smet and Marchal, 2010).
Specifically, the problem aims to infer not only a set of regulatory
genes for a target gene (i.e. network structure inference), but also
the regulatory rules between genes (i.e. network dynamics infer-
ence). In fact, most previous methods based on Bayesian networks
(de Matos Simoes and Emmert-Streib, 2012; Liu et al., 2016),
graphical Gaussian models (Krämer et al., 2009; Menéndez et al.,
2010), information theory approaches (Margolin et al., 2006; Xiao

et al., 2016), correlation approaches (Yu et al., 2017; Zuo et al.,
2014) and supervised learning approaches (Huynh-Thu et al., 2010;
Kotera et al., 2012) have focused on only the network structure in-
ference. On the other hand, a few methods using Boolean models
(Kauffman, 1969; 1993), or differential equation-based models
(Coddington and Levinson, 1955) have been proposed to predict
both the network structure and dynamics. Although the differential
equation-based models can offer higher precision predictions, they
involve a large number of parameters which are difficult to opti-
mize. In contrast, a Boolean model is the simplest model using the
smallest number of parameters to simulate the dynamics of a system,
and hence many Boolean model-based algorithms have been devel-
oped to infer the GRNs (Barman and Kwon, 2017; Berestovsky and
Nakhleh, 2013; Han et al., 2015). However, we note that most
existing methods for Boolean network inference use time-series gene
expression data as an input whereas a few studies proposed a
Boolean network inference method using steady-state expression
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data (Almudevar et al., 2011; Chevalier et al., 2019; Lim et al.,
2016). A recent study (Chevalier et al., 2019) addressed the syn-
thesis of the Boolean networks from constraints on their domain
and emerging dynamical properties of the resulting network, but
it requires a prior knowledge about a network structure as well as
the biological dynamical constraints, which depend on the
assumptions about the phenotypes. Another study (Almudevar
et al., 2011) proposed a Bayesian method to infer a Boolean GRN
from steady-state expression data by directly evaluating a model
uncertainty. However, it was applicable to only small-scale net-
works consisting of a few genes because of the expensive compu-
tational cost in the Bayesian model. A swarming hill climbing
search-based method (Lim et al., 2016) was suggested to refine or
reconstruct Boolean models from single-cell expression data. IT is
basically a local search which iteratively improves a known net-
work structure. In addition, it explores all neighborhood solutions
of a currently selected Boolean model which limits the inference
of large-scale networks. Taken together, the previous methods of
inferring Boolean network from steady state expression have limi-
tations in handling large-scale networks or in obtaining a priori
biological information.

To overcome the limitation, we propose a novel constrained gen-
etic algorithm-based Boolean network inference (CGA-BNI)
method. Given steady-state gene expression data as an input, the
method first identifies a set of path consistency-based constraints by
comparing the gene expression level between the wild-type and the
mutant experiments. Next, a genetic algorithm searches not only a
network structure to meet the consistency-based constraints but also
a set of Boolean update functions to best fit the gene expression dy-
namics. Our method is a global-search algorithm and intrinsically
slow, thus we devised a heuristic mutation operation in the genetic
algorithm for faster convergence and implemented the evaluation
step in parallel by using Java multi-core programming to make
CGA-BNI be applicable to larger networks. Through extensive sim-
ulations on three kinds of datasets such as the DREAM challenge
data, the artificial data and the large-scale E. coli gene expression
data, CGA-BNI showed consistently better performance than five
other well-known existing methods, CellNOptR, ARACNE,
GENIE3, BC3NET and BTR in terms of both structural and dynam-
ics prediction accuracy. Considering that the execution time of
CGA-BNI was second slowest among the five models, it is most suit-
able when a highest prediction accuracy is expected at the cost of
sacrificing the execution time.

2 Materials and methods

In this section, we explain the basic concept of a Boolean network
model employed in CGI-BNI and introduce the Boolean network in-
ference problem from steady-state gene expression data.

2.1 A Boolean network model
A Boolean network is one of the simplest computational models to
describe network dynamics (Kauffman, 1969; 1993), and it has been
frequently used to investigate the complex behaviors of biological
networks (Helikar et al., 2008; Le and Kwon, 2011; Trinh et al.,
2014). It is represented by a directed graph G ¼ V;Að Þ where V ¼
v1; v2; . . . ; vNf g is a set of nodes and A is a set of ordered pairs of

the nodes called directed links (V and A denote the number of nodes
and links, respectively). A directed link vi; vjð Þ 2 A represents a posi-
tive (activating) or a negative (inhibiting) regulation from vi to vj.
Each vi 2 V has a state value of 1 (on) or 0 (off). The state of vi at
time t þ 1 denoted by viðt þ 1Þ is established by the values of ki

other nodes vi1 ; vi2 ; . . . ; viki
with a link to vi at time t by a Boolean

function fi : 0;1f gki ! 0; 1f g and the states of all nodes are syn-
chronously updated. Here, we employed a nested canalyzing func-
tion (NCF) model (Kauffman et al., 2004) to represent an update
rule as follows:

fi vi1 tð Þ; vi2 tð Þ; . . . ; viki
tð Þ

� �

¼

O1 if vi1 ðtÞ ¼ I1

O2 if vi1 ðtÞ 6¼ I1 and vi2 ðtÞ ¼ I2

O3 if vi1 tð Þ 6¼ I1 and vi2 tð Þ 6¼ I2 and vi3 tð Þ ¼ I3

..

.

Oki
if vi1 tð Þ 6¼ I1 and � � � and viki�1

tð Þ 6¼ Iki�1 and viki
tð Þ ¼ Iki

Odef otherwise

8>>>>>>>>>><
>>>>>>>>>>:

where all Im and Om ðm ¼ 1; 2; . . . ;kiÞ denote the canalyzing and
canalyzed Boolean values, respectively, and Odef is set to 1�Oki

in
general. For convenience, we denote fi as ðI1; O1ÞðI2; O2Þ
� � � ðIki

; Oki
ÞOdef , which is a sequence of pairs of canalyzing and

canalyzed values, followed by the default value. In this study, each
NCF is randomized by specifying every Im and Om between 0 and 1
uniformly at random. We note that many molecular interactions
were successfully represented by NCFs in previous studies (Samal
and Jain, 2008; Trinh and Kwon, 2016).

A network state at time t can be denoted by an ordered list of
state values of all nodes, v tð Þ ¼ v1ðtÞv2ðtÞ � � � vNðtÞ 2 0; 1f gN. Since
a synchronous update scheme was considered in this study, every
network state transits to another network state through a set of
Boolean update functions F ¼ f1; f2; . . . ; fNf g in a deterministic way.
Hence, a network state trajectory starting from an initial network
state eventually converges to either a fixed-point or a limit-cycle at-
tractor. These attractors can represent diverse biological network
behaviors such as multi-stability, homeostasis and oscillation. We
define the attractor more rigorously as follows.

Definition. Given a Boolean network G ¼ V;Að Þ where V ¼
v1; v2; . . . ; vNf g and A � V � V and a set of Boolean update func-

tions F ¼ f1; f2; . . . ; fNf g, let v 0ð Þ; v 1ð Þ; � � � ; be a network state tra-
jectory starting at v 0ð Þ. The attractor is defined as an ordered list of
network states a ¼ v sð Þ; v sþ 1ð Þ; . . . ; v sþ p� 1ð Þ

� �
where s ¼

minarg ðt v tð Þ ¼ v t þ pð ÞÞ for some p with v ið Þ 6¼ v jð Þ for 8i 6¼ j 2
s; sþ 1; . . . ; sþ p� 1f g (herein, p is called a length of the attractor).

2.2 Boolean network inference problem
The Boolean network inference problem tackled in this study is a
problem of inferring a Boolean network which best fits the observed
steady-state gene expression data (Fig. 1). As shown in the figure, a
steady-state expression dataset of real values can be obtained from
an unseen underlying target network G V;Að Þ. The dataset is repre-
sented by a matrix consisting of N columns of genes and R rows of
experiments. Then, it is transformed into a dataset of binary values
by a discretization method and we herein used the K-means cluster-
ing-based discretization method (MacQueen, 1967), which groups
all of the expression values of a gene into two clusters, and assigns 1
(the ‘on’ state) and 0 (the ‘off’ state) to the clusters having relatively
higher and lower average values, respectively. As a result, we can
construct the set of steady-state Boolean gene expression matrix E
where a row corresponding to an experiment is represented by an
N-dimensional Boolean expression vector i.e. e 2 0; 1f gN. In add-
ition, the experimental information about the mutated gene (avail-
able in case of a perturbation experiment), the type of experiments
(i.e. one of wild-type or perturbation experiments) and the base
wild-type experiment are annotated by ‘MG’, ‘ET’ and ‘WT’ fields,
respectively. For example, the fifth experiment in Figure 1 describes
a knockout perturbation subject to gene v3 and the base wild-type
experiment is ‘WT01’ which means the first wild-type experiment.
A Boolean network inference method uses both the dataset E and
the experimental information as inputs, and produces an inferred
network G

0
V;A

0� �
as a result. Unlike most previous methods which

do not focus on the inference of a regulatory function, we defined
the problem such that the inference result should include an esti-
mated update Boolean rule for each gene because it is required to
evaluate the dynamics accuracy of the inferred network.
Specifically, the dynamics accuracy is calculated by comparing the
Boolean steady-state expression in E and the attractor which is
derived from the inferred network. Consider an arbitrary Boolean
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expression e 2 E and let eb the Boolean expression of the base ex-
periment of e (Note that eb is equivalent to e if e is the case of the
wild-type experiment). To compute the corresponding attractor of
the inferred network, the initial state of G

0
is specified to eb and the

trajectory is simulated by the inferred update function until an at-
tractor is obtained. For example, the third experiment in Figure 1
describes a knock-out perturbation (KO) experiment subject to v1

where the base wild-type experiment is the second experiment
denoted by WT02. Thus, the inferred network state is initialized to
eb ¼ 11010½ � by referring to the Boolean steady-state expression of
WT02 in E. Then the gene v1 is assumed to be knocked out and the
attractor which G

0
converges to is examined. Assume that a fixed-

point attractor 00100½ � is found as shown in Figure 1. Then, it is
compared with the Boolean expression of the third experiment in E,
e ¼ 00000½ �, to compute the dynamics accuracy. In this way, we ob-
tain the attractor by simulating G

0
for each steady-state expression

e 2 E and construct the resultant set of attractors E0.
In this study, we consider two types of inference performance.

The first one is the structural performance by comparing A and A
0
,

and we employed three well-known metrics, precision, recall and
structural accuracy. Precision is defined as the ratio of correctly
inferred connections out of all positive predictions, as follows:

Precision ¼ TP

TPþ FP
; (1)

where TP (true positive) and FP (false positive) denote the numbers
of correctly and incorrectly predicted connections, respectively.
Recall is the ratio of inferred connections among the true connec-
tions in G V;Að Þ:

Recall ¼ TP

TPþ FN
; (2)

where FN (false negative) means the number of non-inferred con-
nections in G V;Að Þ. Structural accuracy is the ratio of correct pre-
dictions, as follows:

Structural Accuracy ¼ TPþ TN

TPþ FPþ FN þ TN
; (3)

where TN (true negative) is the number of correct negative
predictions.

The second performance type is the network dynamics accuracy
by comparing E and E

0
. Let e ¼ e1e2 � � � eN ðei 2 f0;1gÞ a steady-

state Boolean expression in E and ae ¼ v 1ð Þ; v 2ð Þ; . . . ; v pð Þ
� �

the

Fig. 1. Overview of a Boolean network inference problem. An unseen target network G V;Að Þ produces a steady-state gene expression dataset that is converted to a Boolean

steady-state dataset E by a discretization method. An inference algorithm trains the Boolean dataset E along with experimental information as an input and infers a Boolean

network G
0

V;A
0� �

as an output. The inference performance is evaluated in terms of a structural accuracy by comparing the inferred connections A
0

to the true connections A

and a dynamics accuracy by comparing the derived Boolean attractors E
0

to the observed data E. MG, ET, WT, KO and OE denote ‘mutated gene’, ‘experiment type’, ‘wild-

type’, ‘gene knockout’ and ‘gene overexpression’, respectively

A constrained GA-based Boolean network inference method i385



attractor in E
0
corresponding to e (p is the attractor length). For con-

venience, we first define the similarity of ith gene between e and ae

as follows:

si e; aeð Þ ¼
1

p

Xp

t¼1

I ei ¼ vi tð Þð Þ;

where vi tð Þ means the state value of ith gene in v tð Þ and I �ð Þ is an in-
dicator function that returns 1 if the condition is true, or 0 other-
wise. Then the similarity function between e and a denoted by
sðe; aeÞ means the average similarity of all genes between e and ae as
follows:

s e; aeð Þ ¼
1

N

XN
i¼1

si e; aeð Þ:

Then, we evaluate the network dynamics performance of the
inferred network using a dynamics accuracy function defined as
follows:

Dynamics Accuracy ¼ 1

jEj
X
e2E

s e; aeð Þ (4)

In other words, the network dynamics accuracy represents the
average similarity between the steady-state Boolean expression set
ðEÞ and the attractor set ðE0 Þ of the inferred network. We also note
that most previous studies have focused on the structural inference
performance larger than the dynamics one (Maucher et al., 2011),
which is considerably crucial, though, because the network inference
ultimately aims to characterize various cellular dynamical behaviors
through complex molecular interactions.

In our proposed method, it is necessary to assess how accurately
the inferred update function of each target gene fits the steady-state
expression dataset (see section ‘A constrained Genetic Algorithm for
Boolean network inference’ for details). In this regard, we define the
average similarity of ith gene over all experiments as follows:

�s ið Þ ¼ 1

jEj
X
e2E

si e; aeð Þ : (5)

2.3 Overall framework of the proposed Boolean

network inference algorithm
In this work, we propose a constrained genetic algorithm-based
Boolean network inference method called CGA-BNI. We first intro-
duce a procedure to generate path consistency-based constraints
from steady-state gene expression data. The set of constraints as
well as the steady-state expressions are used as input for our genetic
algorithm to infer the Boolean network.

2.3.1 Path consistency-based constraints

A path-consistency constraint can efficiently reduce the cost in
searching a feasible network structure. In this study, we devised
two measures to establish a path-consistency constraint between a
pair of genes using the steady-state expression data. The first
measure is the gene–gene coherency which is deduced by compar-
ing the gene expressions between the wild-type and the mutant
experiments. Consider a pair of a perturbation experimental
Boolean expression vector e ¼ e1e2 � � � eN ðe 2 0;1f gNÞ and a cor-
responding wild-type experimental Boolean expression vector

w ¼ w1w2 � � �wN ðw 2 0; 1f gNÞ, and let k ðk 2 f1; . . . ;NgÞ the
index of the mutated gene in e. For every gene index l 6¼ k, the
gene–gene coherency is defined as D k; lð Þ ¼ ek �wkð Þ � el �wlð Þ.
A positive or negative value of D k; lð Þ means that two genes have a
consistent or inconsistent trend of change in the expression level,
which eventually implies the positive or negative path from gene
vk to gene vl. Next, the second measure is the Pearson correlation
coefficient to quantify the strength of a linear association between
two genes, which is denoted by rðk; lÞ as follows:

r k; lð Þ ¼
P

e2E ek ��ekð Þ � el ��elð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
e2E ek ��ekð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
e2E el ��elð Þ2

q ; (6)

where �ei ¼ 1
jEj
P

e2E ei denotes the average Boolean expression

value of gene vi in the steady-state Boolean expression dataset E. As
the linear association of gene vk and vl gets stronger, the value of
rðk; lÞ is closer to either þ1 or -1 depending on the sign of the rela-
tionship. As shown in Table 1, we established two criteria of condi-
tions to identify the path consistency-based constraint. The first
condition is the positiveness condition based on the signs of D k; lð Þ
and rðk; lÞ. If both of them are positive (or negative), the network is
supposed to contain a positive (resp., negative) path from gene vk to
gene vl. The second condition determines the directness of the path.
If the correlation is relatively strong (jrðk; lÞj � b), a direct path is
presumed. On the other hand, if the correlation is relatively weak
(a < rðk; lÞ < b), an indirect path is presumed. We note that the
parameters a and b were heuristically set to 0.1 and 0.5, respective-
ly, in this study. As a result, there can be four types of a regulatory
path relation between an ordered pair of genes, if applicable,
according to the positiveness and the directedness conditions. The
set of all identified regulatory paths are used as the path-consistency
constraints which the candidate network should meet during the
network inference process.

2.3.2 A constrained genetic algorithm for Boolean network

inference

Our proposed genetic algorithm (GA) takes the set of path-consist-
ency constraints and the Boolean steady-state gene expression as
inputs and infers a Boolean network which satisfies the constraints
and induces the dynamics as close as to the experimental Boolean
gene expression data. The procedure of the proposed method is out-
lined in Figure 2. Our GA starts with an initial population of 200
random Boolean networks which are generated by using the
Barabási-Albert (BA) model (Barabási and Albert, 1999) (see
Supplementary Fig. S1 for the pseudo-code) such that the network
topology satisfies the path-consistency constraints. Then, the GA
creates the next population of networks by conducting the following
steps:

i. The fitness of each network is scored by the dynamics accuracy

(see Equation 4 in Section 2). We note that this task was imple-

mented in parallel by using multi-threaded Java programming

where each network is assigned to a Java thread for calculation.

This parallel implementation can reduce the computation cost

in evaluating a candidate network.

ii. Some best networks in the current population with higher fit-

ness are chosen as elite, and they are passed to the next popula-

tion. In this study, we set the number of elite networks to 2.

Table 1. Path consistency-based constraints in CGA-BNI

Positiveness condition

D k; lð Þ > 0 and rðk; lÞ > 0 D k; lð Þ < 0 and rðk; lÞ < 0

Directedness Condition rðk; lÞ � b Direct and positive Direct and negative

a < rðk; lÞ < b Indirect and positive Indirect and negative
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iii. A parent network is chosen among the current population. The

selection probability of a network is linearly proportional to its

fitness.

iv. A new network is produced by applying the rule-based muta-

tion operator to the parent network.

v. The new network replaces the parent network in the

population.

The GA stops when the best network in the population is not
improved during 200 past generations. We note that our GA did not
involve a crossover operator unlike other traditional genetic algo-
rithms. In addition, the path consistency constraints are hard condi-
tions. This is the reason why such mutations that satisfy the path-
consistency constraints are allowed in the middle of GA operations.
In other words, the constraints must be satisfied by any feasible solu-
tion. In the following sub-sections, we introduce the details of our
GA including the chromosomes encoding, the selection operation
and the mutation operation.

Chromosomal codification
In GAs, a solution to a problem is called a chromosome and a

population consists of a set of chromosomes. In this study, we repre-
sent a chromosome by a set of NCF rules, f1; f2; . . . ; fNf g where fi is
the Boolean update function for ith gene (see Methods for the defin-
ition of NCF). Let fi be a Boolean NCF update function with m
regulatory inputs which is represented by the following sequence:

fi ¼ vi1 ; I1;O1ð Þ; . . . ; vim ; Im;Omð Þ;Odef

� �
: (7)

In addition, we can further divide m tuples in fi into two disjoint
subgroups: the fixed-path subgroup (FPS) and the variable-path sub-
group (VPS). A tuple is classified into FPS or VPS if it is necessary to
meet the path-consistency constraints or not, respectively. For ex-
ample, a tuple vj; Ij;Oj

� �
in fi implies the existence of a directed

interaction from gene vj to gene vi (Note that the sign of the

interaction is determined by the values of Ij and Oj). If vj; Ij;Oj

� �
is

an element of FPS, it is prohibited that the mutation operator in our
GA disrupt the path information of the tuple. On the other hand, if
it is an element of VPS, there is no restriction about the disruption
by the mutation operator.

Selection
Our GA selects a parent chromosome among a population to

produce a new chromosome for the next population. We adopted
the traditional roulette wheel selection scheme where the selection
probability of a chromosome x is proportional to the fitness value of
x as follows:

Pr xð Þ ¼ fitnessðxÞP
y2P fitnessðyÞ ; (8)

where fitnessðxÞ means the dynamics accuracy of x (see Equation 5).
Mutation
In our GA, the mutation operator is used to generate a new

chromosome by changing the parent chromosome. Let
f1; f2; . . . ; fNf g be a parent chromosome selected among the popula-

tion. Then the mutation operator first randomly chooses one update
rule fk such that i) the gene-wise dynamics consistency of the gene vk

is not perfect (i.e. �s kð Þ < 1) and ii) �s kð Þ is not converged during
100 previous consecutive generations with a 2% tolerance rate. Our
GA implemented the following six different types of mutation oper-
ators (Fig. 3 and Supplementary Fig. S2 in Supplementary
Information), and one of them is randomly applied to the update
rule fk.

• Canalyzing-value reversion: A tuple v; I;Oð Þ is randomly selected

among the VPS of fk and it is replaced by v;1� I;Oð Þ. In other

words, this mutation operator flips the corresponding canalyzing

value and thus causes to switch the type of molecular interaction

between v and vk from a positive interaction to a negative one

and vice versa (Fig. 3a).
• Canalyzed-value reversion: A tuple v; I;Oð Þ is randomly selected

among the VPS of fk and it is replaced by v; I; 1�Oð Þ. In other

words, this mutation operator flips the corresponding canalyzed

value and thus causes to switch the type of molecular interaction

between v and vk from a positive interaction to a negative one

and vice versa (Fig. 3b). Although the structural change by this

mutation operator is same with that by the canalyzing-value

Fig. 3. Illustrations of canalyzing/canalyzed-value reversion mutation types in the

CGA-BNI algorithm. See Supplementary Figure S2 for other mutations types

Fig. 2. Overall framework of the CGA-BNI algorithm. Our GA takes the path con-

sistency-based constraints C and the observed steady-state data E as inputs and

returns a Boolean network such that the topology satisfies C and the induced dy-

namics is most similar to E. First, an initial population of random feasible Boolean

networks (BNs) are generated by using the Barabási-Albert (BA) model (see

Supplementary Fig. S1 for the pseudo-code). Some elite BNs are kept in the next

population. In addition, the GA selects the parent BNs, produces the new BNs by

applying the rule-based mutation operator to the parent BNs, and insert them into

the next population. This generation is repeated until a stop condition is met

A constrained GA-based Boolean network inference method i387
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reversion, the difference is that the relationship between v and vk

is changed from a conjunction logical function to a disjunction

one and vice versa.
• Canalyzing and canalyzed values reversion: A tuple v; I;Oð Þ is

randomly selected among the FPS and VPS of fk and it is replaced

by v; 1� I;1�Oð Þ. This mutation operator flips both the corre-

sponding canalyzing and canalyzed values and thus causes to

change only the relationship between v and vk from a conjunc-

tion logical function to a disjunction one and vice versa (see

Supplementary Fig. S2a in Supplementary Information). We note

that this mutation does not affect the type of molecular inter-

action between v and vk.
• Canalyzing and canalyzed values swapping: Two FPS tuples or

two VPS tuples of fk, v; I;Oð Þ and v
0
; I
0
;O

0� �
, are randomly

selected and their orders in the sequence of fk are swapped (see

Supplementary Fig. S2b in Supplementary Information). It

changes the precedence of two regulatory inputs v and v
0

in

updating the state value of vk.
• Canalyzing and canalyzed values removal: A tuple v; I;Oð Þ is

randomly selected among the VPS of fk and is removed from fk

(see Supplementary Fig. S2c in Supplementary Information). This

mutation represents the loss of the molecular interaction between

v and vk.
• Canalyzing and canalyzed values insertion: A new tuple v; I;Oð Þ 6
2 fk such that v 6¼ vk is randomly generated and it is then

inserted into the first position in the VPS part of fk (see

Supplementary Fig. S2d in Supplementary Information). This

mutation represents the gain of a new molecular interaction be-

tween v and vk. The mutation can be applied only if r v; vkð Þ > a.

Note that if a chosen mutation operator generates a network
which does not meet any path-consistency constraint, it is discarded
and another mutation is randomly selected until a feasible network
is generated.

3 Results

To validate our approach, we tested it with the artificial, the
DREAM challenge and a real large-scale gene expression dataset.

3.1 Performance on DREAM and artificial datasets
DREAM challenge gives a series of noisy gene expression datasets
and gold benchmark networks, which were selected from source net-
works of real species, E.coli and Yeast. In this section, we use the
steady-state gene expression data from DREAM3 challenge. There
are three synthetic datasets: dataset10, dataset50 and dataset100,
which contain 10, 50 and 100 genes with variable number of edges,
respectively. They express the steady state levels for the wild-type
and the null-mutant strains for each gene. The continuous-valued
gene expression data was converted to Boolean-valued data by using
the K-means clustering algorithm (MacQueen, 1967). To show that
our method is stable against the Binarization result, we generated 50
different Boolean-valued gene expression datasets by varying the
starting centroids in the K-means clustering algorithm. Then the
Boolean-valued steady-states of all genes were used as an input to
execute the CGA-BNI.

In addition, we generated artificial datasets as follows. Ten
groups of random Boolean networks with different network sizes
(V ¼ 10; 20; . . . ; 100 and A ¼ 2� V � 3) are created by using the
Barabási-Albert (BA) model (Barabási and Albert, 1999) (see
Supplementary Fig. S1 in Supplementary Information for the
pseudo-code). For each group, 20 networks were generated and thus
a total of 200 BA random networks were created. For each network,
the update rules of all genes were randomly generated. The number

of initial-states was set to 10000, and the corresponding wild-type
attractors were computed. In addition, each gene was subject to a
knockout perturbation and the corresponding mutated attractor
was calculated. In both of DREAM and random BA networks data-
sets, CGA-BNI outputs an inferred network structure and predicts
wild-type and mutated attractors of all genes. Accordingly, we ana-
lyzed the performance of CGA-BNI in terms of both structural and
dynamics accuracies.

To verify that the inference problem is not trivial, we examined
the ratio of ‘0’ value for each gene in one of the binarized steady-
state gene expression datasets (see Supplementary Fig. S5 in
Supplementary Information). As shown in the figure, most of them
are not biased to 0 or 1. This implies that a simple regulatory rule
which almost outputs a constant value cannot be a good solution.

Structural accuracy analysis
To compare performance, we applied CGA-BNI, CellNOptR,

ARACNE, GENIE3, BC3NET and BTR to the DREAM and ran-
dom BA networks datasets and examined the structural accuracies
with respect to the inferred networks (Fig. 4 and Supplementary Fig.
S3 in Supplementary Information). CellNOptR is an open-source R
package for building predictive logic models of signaling networks
by training networks derived from prior knowledge to signaling
data (Terfve et al., 2012). ARACNE (Margolin et al., 2006) repre-
sents one of the most widely used reverse engineering algorithms,
and it uses an information theoretic framework based on the data
processing inequality to identify direct regulatory relationships be-
tween transcriptional regulator proteins and target genes. GENIE3
(Huynh-Thu et al., 2010) exploits a variable importance score
derived from Random Forests to retrieve the regulators of each tar-
get gene, and it showed high performance in both the DREAM4 and
DREAM5 challenges. BC3NET (de Matos Simoes and Emmert-
Streib, 2012) is an ensemble method based on bagging the C3NET
algorithm (Altay and Emmert-Streib, 2010) and it is a Bayesian ap-
proach with non-informative priors. BTR is an approach based on
the swarming hill climbing strategy, in which a population of mul-
tiple solutions are heuristically searched in an iterative way until
they are converged. We note that both BTR and our method are
based on a search strategy in a solution space. However, BTR is
more geared toward a local search and it even requires an initial net-
work structure. In fact, BTR was not so scalable that it failed to infer
a network in the cases of dataset50 and dataset100 in the DREAM
datasets and the cases of the networks with >10 genes in the artifi-
cial BA datasets. We used default values for the parameters in all the
compared methods.

To achieve a stable performance, we conducted the simulations
50 trials and retrieved the average results of precision, recall and
structural accuracy over DREAM (Fig. 4a–c) and BA
(Supplementary Fig. S3a–c) in Supplementary Information) datasets.
As shown in the Figure 4a and Supplementary Figure S3a, CGA-BNI
showed significantly higher precision values than those of the other
methods (P-values < 0.05), and CellNOptR showed a second-best
precision. In terms of recall, CellNOptR was best in both DREAM
datasets (Fig. 4b) and BA random datasets (Supplementary Fig.
S3b). We note that CellNOptR utilizes priori information about the
network structure. All other methods were obviously worse than
those three methods in both precision and recall. As a result, CGA-
BNI, CellNOptR and BC3NET significantly showed the highest
structural accuracy in all datasets (Fig. 4c and Supplementary Fig.
S3c). We note that our proposed method showed best performance
robustly against the network size. In addition, the binarization par-
ameter has little impact on the performance of our method.

Dynamics accuracy analysis
Boolean networks with different structures can produce the same

dynamics. In this regard, it is also important to verify the network
inference performance in terms of the dynamics accuracy.
Therefore, we examined the dynamics accuracy (see Methods sec-
tion for the definition) of the inferred networks by the CGA-BNI,
CellNOptR, ARACNE, GENIE3, BC3NET and BTR methods over
the DREAM (Fig. 4d) and random BA networks datasets
(Supplementary Fig. S3d in Supplementary Information). We note
that the original ARACNE, GENIE3 and BC3NET methods are not
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available to infer the regulatory functions. In this regard, we added
a ‘regulatory-function-search’ routine which tries to find the optimal
update function for each gene in the network structure found by
those methods (see Supplementary Fig. S4 in Supplementary
Information). In fact, it is equivalent to CGA-BNI except that the
canalyzing and canalyzed values removal/insertion mutation opera-
tions (see Supplementary Fig. S2c and d in Supplementary
Information) are excluded from consideration because they will
change the network structure. As shown in the Figure 4d and
Supplementary Figure S3d, CGA-BNI showed significantly higher
dynamics accuracy than all other methods (P-values < 0.05).
Similar to the structural accuracy, the binarization parameter has lit-
tle impact on the dynamics accuracy of our method.

Computation time
We compared the running time of CGA-BNI with those of the

CellNOptR, ARACNE, GENIE3, BC3NET and BTR methods
over the DREAM and random BA networks datasets (Fig. 4e and
Supplementary Fig. S3e in Supplementary Information). In regard
to ARACNE, GENIE3 and BC3NET, we measure the time spent
for only finding regulatory interactions (i.e. ‘regulatory-function-
search’ execution time was not included). The running time of
CGA-BNI was significantly smaller than those of GENIE3 and
BTR in both types of datasets. In particular, BTR is another global
search algorithm as our method, but it was not applicable for large
network of V > 10. ARACNE and BC3NET achieved the smallest
and second-smallest running times in all datasets, but we note that
they inferred only the regulatory structure. Despite of the inher-
ently expensive costs, the running time of our method was com-
parable because the fitness calculation routine in CGA-BNI was
implemented in parallel by using the multithreaded Java
programming.

3.2 Performance on a real gene expression dataset
In order to evaluate the performance of a real expression dataset, we
retrieved the largest public E.coli microarray dataset
(‘E_coli_v4_Build_6’) available from the Many Microbe
Microarrays database (M3D) (Faith et al., 2008). Among 4297
genes of 446 samples, we extracted 44 knockout/overexpression
samples with 32 mutated genes and 11 related wild-type samples
(see Supplementary Table S1 in Supplementary Information for
details). The real-valued gene expression was converted to the
Boolean values using a K-means clustering algorithm-based discret-
ization method (MacQueen, 1967). We generated 50 different
Boolean-valued gene expression datasets by varying the starting
centroids in the K-means clustering algorithm. Next, we obtained a
list of genes from the RegulonDB database which curates the largest
and best-known information on the transcriptional regulation of E.
coli (Salgado et al., 2013). In this analysis, we focused on the inter-
section between the M3D and the RegulonDB. Considering a small
portion of knockout/overexpression samples, we reduced the net-
work by retaining only out-going interactions of the 32 mutated
genes. Consequently, we constructed a E. coli network including
925 genes and 1346 transcriptional interactions as a gold standard
(see Supplementary Table S2 in Supplementary Information for
details). We note that BTR was not applicable for this analysis due
to the unfeasible computational time.

As shown in Table 2, CGA-BNI achieved the highest precision
and recall values among all methods. With respect to the structural
accuracy metric, the number of actual and predicted interactions
were less than 2000 among 925�924�2 possible interactions in
the E. coli network with 925 genes, and thus the comparison was
not effective because of a huge number of true negative cases in in-
ference of a large-scale network. Moreover, CGA-BNI showed

Fig. 4. Comparison of precision, recall, structural accuracy, dynamic accuracy and running time between CGA-BNI and other methods in DREAM datasets. (a–e) Results of

precision, recall, structural accuracy, dynamic accuracy and running time, respectively. In all subfigures, the three synthetic datasets (dataset10, dataset50 and dataset100)

from DREAM3 challenge with different network sizes V ¼ 10; 50; 100, respectively, were used. Y-axis value and error bar represent the average and 95% confidence interval,

respectively
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significantly higher dynamics accuracy than all the other methods. It
seems that our GA search might easily find regulatory rules fitting
the expression data. In addition, the small standard deviation means
that the performance of our method was stable against the binariza-
tion parameter. In regard to the running time, we compared the time
to infer both structure and regulatory function. In other words, the
execution time of ‘regulatory-function-search’ routine for the cases
of GENIE3, ARACNE and BC3NET are also included in the total
running time. As shown in the table, CGA-BNI was second slowest
among them. ARACNE and BC3NET were fastest but their accur-
acy performances were not acceptable. Taken together, these results
indicate that CGA-BNI method is suitable to infer both regulatory
interactions and functions of large-scale GRNs when high accuracy
is desired at the cost of sacrificing the running time.

4 Conclusions

In this study, we proposed a novel constrained genetic algorithm-
based Boolean network inference method, CGA-BNI. Through ex-
tensive simulations on the benchmark datasets from DREAM chal-
lenge, artificial datasets and a large-scale gene expression dataset in
E. coli, CGA-BNI showed consistently better performance than four
well-known existing methods, ARACNE, GENIE3, BC3NET and
BTR in terms of both structural and dynamics prediction accuracy.
It turns out that the GA search combining with path consistency-
based constraints and network dynamics is efficient to infer a net-
work from gene expression data. CGA-BNI also showed acceptable
running time for the large-scale dataset. Taken together, CGA-BNI
is a promising tool for predicting both the structure and the dynam-
ics of a gene regulatory network.

There are some notable issues to be discussed. First, we used the
synchronous update scheme for the Boolean network model. In fact,
it is more likely that the genes are asynchronously updated in the
real signaling networks. However, the asynchronous update scheme
requires some additional parameters such as the update order of
genes, which are generally unknown. Considering that they affect
the network dynamics greatly, it is not guaranteed that the asyn-
chronous update scheme can describe the dynamics of a real signal-
ing network more accurately than the synchronous scheme. In
addition, we employed NCFs to randomly specify the update rule. It
is known that NCFs can represent various types of regulatory inter-
actions (Samal and Jain, 2008; Trinh and Kwon, 2016). Despite of
the effectiveness of NCFs, a more realistic representation model of
the regulatory interaction can improve the usefulness of our tool.
Another issue is that CGA-BNI can include a way to help the search
to avoid local optima. In fact, it already has some characteristics to
keep the diversity of a population such as a relatively large popula-
tion size, no crossover operation and the replacement of a parent so-
lution with a worse new solution. Finally, it is necessary to validate
our approach through other evaluation framework using a single-
cell transcriptomic data (Pratapa et al., 2020).
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