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Abstract

The lack of explainability is one of the most prominent disadvantages of deep learning applications in omics. This ‘black
box’ problem can undermine the credibility and limit the practical implementation of biomedical deep learning models.
Here we present XOmiVAE, a variational autoencoder (VAE)-based interpretable deep learning model for cancer
classification using high-dimensional omics data. XOmiVAE is capable of revealing the contribution of each gene and latent
dimension for each classification prediction and the correlation between each gene and each latent dimension. It is also
demonstrated that XOmiVAE can explain not only the supervised classification but also the unsupervised clustering results
from the deep learning network. To the best of our knowledge, XOmiVAE is one of the first activation level-based
interpretable deep learning models explaining novel clusters generated by VAE. The explainable results generated by
XOmiVAE were validated by both the performance of downstream tasks and the biomedical knowledge. In our experiments,
XOmiVAE explanations of deep learning-based cancer classification and clustering aligned with current domain knowledge
including biological annotation and academic literature, which shows great potential for novel biomedical knowledge
discovery from deep learning models.
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Introduction

High-dimensional omics data (e.g. gene expression and DNA
methylation) comprise up to hundreds of thousands of molecu-
lar features (e.g. gene and CpG site) for each sample. As the num-
ber of features is normally considerably larger than the number
of samples for omics datasets, the genome-wide omics data
analysis suffers from the ‘the curse of dimensionality’, which
often leads to overfitting and impedes wider application. There-
fore, performing feature selection and dimensionality reduction
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prior to the downstream analysis has become a common prac-
tice in omics data modelling and analysis [24]. Standard dimen-
sionality reduction methods like principal component analysis
[32] learn a linear transformation of the high-dimensional data,
which struggles with the complicated non-linear patterns that
are intractable to capture from omics data. Other non-linear
methods such as t-distributed stochastic neighbor embedding
[41] and uniform manifold approximation and projection [23]
have become increasingly popular but still have limitations in
terms of scalability.

https://academic.oup.com/
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Deep learning has proven to be a powerful methodology for
capturing non-linear patterns from high-dimensional data [19].
Variational autoencoder (VAE) [17] is one of the emerging deep
learning methods that have shown promise in embedding omics
data to lower-dimensional latent space. With a classification
downstream network, the VAE-based model is able to classify
tumour samples and outperform other machine learning and
deep learning methods [2, 15, 45, 46]. Among them, OmiVAE
[46] is one of the first VAE-based multi-omics deep learning
models for dimensionality reduction and tumour type classi-
fication. An accuracy of 97.49% was achieved for the classifi-
cation of 33 pan-cancer tumour types and the normal control
using gene expression and DNA methylation profiles from the
Genomic Data Commons (GDC) dataset [12]. Similar to OmiVAE,
DeePathology [2] applied two types of deep autoencoders, con-
tractive autoencoder and VAE, with only the gene expression
data from the GDC dataset, and reached accuracy of 95.2% for
the same tumour type classification task. Hira et al. [15] adopted
the architecture of OmiVAE with maximum mean discrepancy
VAE and classified the molecular subtypes of ovarian cancer
with an accuracy of 93.2–95.5%. Zhang et al. [45] synthesized
previous models and developed a unified multi-task multi-omics
deep learning framework named OmiEmbed, which supported
dimensionality reduction, multi-omics integration, tumour type
classification, phenotypic feature reconstruction and survival
prediction. Despite the breakthrough of aforementioned work,
a key limitation is prevalent among deep learning-based omics
analysis methods. Most of these models are ‘black boxes’ with
lack of explainability, as the contribution of each input feature
and latent dimension towards the downstream prediction is
obscured.

Various strategies have been proposed for interpreting deep
learning models. Among them, the probing strategy, which
inspects the structure and parameters learnt by a trained model,
has been shown to be the most promising [3]. Probing strategies
generally fall into one of three categories: connection weights-
based, gradient-based and activation level-based approaches
[25]. The connection weight-based approach sums the learnt
weights between each input dimension and the output layer
to quantify the contribution score of each feature [10, 28]. Way
and Greene [43] and Bica et al. [4] adopted this probing strategy
to explain the latent space of VAE on gene expression data.
However, the connection weight-based approach can be limited
or even misleading when positive and negative weights offset
each other, when features do not have the same scale or when
neurons with large weights are not activated [35]. In the gradient-
based approach, contribution scores (or saliency) are measured
by calculating the gradient when the inputs are perturbed [36].
Dincer et al. [8] applied a gradient-based approach, integrated
gradients [39], to explain a VAE model for gene expression
profiles. This approach overcomes limitations of the connection
weights-based method. Despite this, it is inaccurate when small
changes of the input do not effect the output [35]. The activation
level-based approach conquers these drawbacks by comparing
the feature activation level of an instance of interest and a
reference instance [3]. An activation level-based method named
layer-wise relevance propagation (LRP) has been used to explain
a deep neural network for gene expression [13]. Nevertheless,
LRP can produce incorrect results with model saturation [35].
Deep SHAP [22], which applies the key principles from DeepLIFT
[35], has been used in a variety of biological applications [20,
40]. However, there is a lack of research on the application of
Deep SHAP to interpret the latent space of VAE models and the
VAE-based cancer classification using gene expression profiles.

Here we proposed explainable OmiVAE (XOmiVAE), a VAE-
based explainable deep learning omics data analysis model for
low-dimensional latent space extraction and cancer classifica-
tion. OmiVAE took advantage of Deep SHAP [22] to provide the
contribution score of each input molecular feature and omics
latent dimension for the cancer classification prediction. Deep
SHAP was selected as the interpretation approach of XOmiVAE
due to its ability to provide more accurate explanations over
other methods, which likely provides better signal-to-noise ratio
in the top genes selected. With XOmiVAE, we are able to reveal
the contribution of each gene towards the prediction of each
tumour type using gene expression profiles. XOmiVAE can also
explain unsupervised tumour type clusters produced by the VAE
embedding part of the deep neural network. Additionally, we
raised crucial issues to consider when interpreting deep learning
models for tumour classification using the probing strategy. For
instance, we demonstrate the importance of choosing reference
samples that makes biological sense and the limitations of the
connection weight-based approach to explain latent dimensions
of VAE. The results generated by XOmiVAE were fully validated
by both biomedical knowledge and the performance of down-
stream tasks for each tumour type. XOmiVAE explanations of
deep learning-based cancer classification and clustering aligned
with current domain knowledge including biological annotation
and literature, which shows great potential for novel biomedical
knowledge discovery from deep learning models.

Methods
Datasets and pre-processing

The Cancer Genome Atlas Program (TCGA) [27] pan-cancer
dataset, which comprise gene expression profiles of 33 various
tumour types, was used in the experiment as a example to
demonstrate the explainability of XOmiVAE. A total of 9081
samples from TCGA were selected for training and testing our
proposed model, of which 407 were normal tissue samples. The
TCGA dataset was downloaded from UCSC Xena data portal [11]
(https://xenabrowser.net/datapages/, accessed on 1 May 2019).
We followed the same omics data pre-processing step as OmiVAE
[46] and OmiEmbed [45]. Genes targeting the Y chromosome,
genes with zero expression level in all samples and genes with
missing values (N/A) in more than 10% of the samples were
removed to ensure the gene expression data were fair and clean
across samples. Furthermore, the remaining N/A values that did
not reach the 10% threshold were replaced by the expression
level of corresponding genes. The fragments per kilobase of
transcript per million mapped reads values were normalized
to the unit interval of 0 to 1 to the meet input requirement
of the network. The phenotype data of each sample were also
downloaded from UCSC Xena, which is comprised of age and
gender of the subjects and primary site and disease stage of
the samples. The detailed cancer subtype information of each
tumour sample was obtained from Sanchez-Vega et al. [33].

Explainable OmiVAE (XOmiVAE)

Based on vanilla OmiVAE, we proposed an interpretable deep
learning model for cancer classification using high-dimensional
omics data, named explainable OmiVAE, aka XOmiVAE. The
overall architecture of XOmiVAE was illustrated in Figure 1. The
input omics data, which were genome-wide gene expression
profiles here, were first passed through a VAE embedding net-
work to reduce the dimensionality of the input data from 58 043

https://xenabrowser.net/datapages/


XOmiVAE: an interpretable deep learning model 3

Figure 1. (A) Overall architecture of the XOmiVAE model in the supervised scenario. We can reveal the contribution score of each gene towards each cancer classification,

the contribution score of each omics latent dimension learnt by VAE towards each cancer classification and the contribution score of each gene towards each omics

latent dimension. The output values and contribution scores listed in the tables are just for demonstration. (B) Overall architecture of the XOmiVAE model in the

unsupervised scenario. The importance of each omics latent dimension for separating two selected clusters can be obtained using the Welch’s t-test. The contribution

score of each gene can be revealed by the Deep SHAP explanation approach. The P-values and contribution scores listed in the tables are just for demonstration.

(C) Illustration of how to appraise the contribution score of each gene. SHAP values were calculated for multiple samples of interest and then averaged to provide the

average feature importance for each gene. To the right, we demonstrate that the SHAP values for each sample among different genes sum up to the difference between

the average output value of the reference samples and the output value of the sample of interest on the same output dimension, which is another representation of

the ‘summation-to-delta’ property.

to 128. The encoder of the embedding network contained two
output vector, the mean vector μ and the standard deviation
vector σ , which defined the Gaussian distribution N (μ, σ ) of the
latent variable z given the input omics data x. In order to enable
backpropagation for the sampling step, the reparameterization
trick was applied according to Equation (1):

z = μ + σε (1)

where ε is a random variable sampled from a unit Gaussian
distribution N (0, I). The VAE network of XOmiVAE was optimized
by maximizing the variational evidence lower bound (ELBO)
defined in Equation (2):

ELBO = Eqφ (z|x) [− log qφ (z|x) + log pθ (x, z)] . (2)

qφ (z|x) is the variational distribution introduced to approximate
the true posterior distribution pθ (z|x), where φ is the set of

learnable parameters of the encoder and θ is the set of learnable
parameters of the decoder. Equation (2) can further transform to
Equation 3:

ELBO = Ez∼qφ (z|x) log pθ (x|z) − DKL
(
qφ (z|x)‖pθ (z)

)
(3)

where pθ (x|z) is the conditional distribution and DKL is the
Kullback–Leibler (KL) divergence between two probability
distributions.

A three-layer classification neural network was attached to
the bottleneck layer of the VAE deep embedding network for the
tumour type classification downstream task. The latent vector μ

was fed to the classification network as the input and passed
through two hidden layers with 128 neurons and 64 neurons,
respectively, before the probability of each tumour type was
obtained by the softmax activation function in the output layer.
We defined the loss function of the classification network as
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Table 1. Hyper-parameters used in the model

Hyper-parameter Value

Latent dimension 128
Learning rate 1e-3
Batch size 32
Epoch number—unsupervised 50
Epoch number—supervised 100

the cross-entropy between the ground-truth tumour type y and
predicted tumour type y′, as shown in Equation (4):

Lclass = CE(y, y′). (4)

Thus, the overall loss function of the whole model was a
weighted combination of the VAE loss LVAE and the classification
loss Lclass, which was defined in Equation (5):

Ltotal = αLVAE + βLclass (5)

α and β weighted the two losses during training. The hyper-
parameters used to train this model were listed in Table 1.

XOmiVAE has the ability to explain both the supervised
tumour type classification results, which was illustrated in
Figure 1A, and the unsupervised omics data clustering results,
which was illustrated in Figure 1 (B). Based on the vanilla
OmiVAE, we integrated the Deep SHAP explanation approach
to XOmiVAE in a customized way. Deep SHAP inherited the
key principle from DeepLIFT, which is the ‘summation-to-delta’
property. This property means that the sum of the attributions
over the input equals the difference-from-reference of the
output [35], which can be formalized by Equation (6):

n∑

i=1

C�xi�o = �o (6)

where �o is the difference between the output of the reference
sample and the output of the target sample, which is �o = f (x) −
f (r), x is the target gene expression profile, r is the reference gene
expression profile, �xi = xi − ri, i is the gene index and n is the
number of genes used in the experiment [22]. Another represen-
tation of the ‘summation-to-delta’ property was demonstrated
in Figure 1C. This property enables the calculation of the Shapley
values, which indicate how to allocate contribution of each pre-
diction result among the input features. Larger Shapley values,
therefore, represent more important genes for the prediction of
certain tumour type.

As for the implementation, a trained network was first
passed to the Deep SHAP explainer object of XOmiVAE alongside
the reference values to calculate the SHAP values from. The
computation graph of the model was then able to effectively
guide the explainer through the network to calculate the
activation of neurons according to principles used by DeepLIFT.
The original Deep SHAP was also modified to ensure it could take
either the latent vector or the classification output vector as the
output values for the contribution analysis. As recommended by
Shrikumar et al. [35], we used the pre-activation output instead of
the post-softmax probabilities to calculate feature contribution
scores. For each prediction, n SHAP values corresponding to
n genes or n latent dimensions were calculated to determine

the contribution. The absolute values of SHAP values for each
feature were averaged over a group of samples with the same
label to indicate the overall contribution for each feature, as
shown in Figure 1C. This avoids the issue of positive and negative
SHAP values offsetting each other when they were averaged
across samples. To reveal the contribution of each omics latent
dimension in unsupervised tasks, we calculated the mean and
standard deviation of the latent vector values (μ values) for the
two groups of samples and applied a Welch’s t-test to obtain the
most statistically significant dimension that separates the two
groups. The correlation between the each latent variable and
each gene was obtained by backpropagating the latent vector
through the Deep SHAP explainer object of XOmiVAE.

Bioinformatics analysis

To evaluate the contribution results obtained by XOmiVAE, we
compared genes with high contribution scores with the differen-
tially expressed genes (DEGs) between normal and cancer sam-
ples for each tumour type. We used an R Bioconductor package
TCGAbiolinks [6] to conduct the differential gene expression
analysis. The DEGs were selected according to the cut-off of
0.05 for the false discovery rate (FDR) adjusted P-value and the
threshold of 3 for the absolute log2 fold change. To reveal the
biological implication of the top genes with high contribution
scores, we used the Broad Institute’s Gene Set Enrichment Anal-
ysis (GSEA) software to perform pathway enrichment analysis
[38]. Additionally, we used the curated gene sets from online
databases including the Gene Ontology (GO) [7], Kyoto Encyclo-
pedia of Genes and Genomes [16] and the Reactome pathway
database (Reactome) [9] to test subtypes pathways. g:Profiler [31]
was used to obtain and visualise the top pathways. GeneCard
[37] was used to obtain the specific gene set for each TCGA
tumour type.

Results and discussion
Multi-level explanation of XOmiVAE

Most important genes for cancer classification

We trained XOmiVAE on the TCGA pan-cancer dataset and cal-
culated the contribution score of each gene for the prediction
of each tumour type. The model achieved high accuracy for
differentiating between normal and tumour tissue. For instance,
the classification accuracy of breast invasive carcinoma (BRCA)
and normal breast tissue was 99.6% and 100%, respectively. The
contribution scores followed a power-law distribution, which
suggested the majority of input features (i.e. genes) were unim-
portant for cancer prediction (see Supplementary Figures S1 and
S2). As an example, we illustrated the top 10 genes with the
highest scores that contributed most to the BRCA prediction
in Figure 2. This demonstrated the explainability of XOmiVAE
by revealing the contribution of each input feature (i.e. gene).
To validate whether the top genes found by XOmiVAE made
biological sense, we analysed the biological function of the most
and least important genes. The top genes are known to be related
to BRCA. For example, the top 1 gene for BRCA, SCGB2A2, which
codes for the protein Mammaglobin A, is highly specific of breast
tissue and increasingly being used as a marker for breast cancer
[18]. The 2nd most important gene, AZGP1, is associated with an
aggressive breast cancer phenotype [29]. On the contrary, the 20
least important genes are either non-coding RNAs or pseudo-
genes with minor biological function, which are reasonable to
be irrelevant when distinguishing breast tumour from normal
breast tissue. A list of top genes with their contribution scores
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Figure 2. The top 10 genes for the prediction of breast invasive carcinoma

(BRCA). Random samples were used as the reference.

Table 2. The top dimensions for kidney tumour subtypes: KICH,
KIRC and KIRP

Dimension rank
Kidney cancer subtypes

KICH KIRC KIRP

1st 45 20 42
2nd 50 83 67
3rd 35 35 35
4th 111 53 125
5th 42 103 45

The bold values in the table here are essential to indicate that all of the
three subtypes shared the same 3rd important dimension.

for the other 32 tumour types was also obtained by XOmiVAE
and shown in Supplementary Figures S3 to S6.

Most important dimensions for cancer classification

By passing an interim layer to the Deep SHAP explainer object of
XOmiVAE, it is possible to obtain the most important neuron for
a prediction in a specific layer. In the case of OmiVAE, the most
intriguing interim layer to explain is the bottleneck layer, where
the high-dimensional gene expression data are reduced into a
latent representation with lower dimensionality, 128 dimensions
in our scenario. Therefore, the input of the 1st layer in the classi-
fication network was intercepted and explained using XOmiVAE.
As an example, we show the top dimensions for different sub-
types of kidney tumours: kidney chromophobe (KICH), kidney
renal clear cell carcinoma (KIRC) and kidney renal papillary
cell carcinoma (KIRP). The top two dimensions are different
among kidney tumour subtypes and the 3rd one was shared
(Table 2), which is therefore possible the dimension responsible
for separating the kidney located tumours. Additionally, it is
practicable to find the most associated genes and, therefore, the
most related biological pathways to a specific dimension. We
investigate the top 15 genes for the shared kidney dimension 35
as an example (see Supplementary Figure S12). These results can
be obtained for every dimension and every tumour type.

Validation by biomedical knowledge

Biomedical meaning of the top genes

To validate the top genes revealed by XOmiVAE, we first com-
pared the genes, as ranked by contribution, for each tumour
type, with genes associated with the corresponding tumour type

Figure 3. AUC-ROC curves of genes as ranked by the XOmiVAE importance

scores, for breast invasive carcinoma (BRCA) and cervical squamous cell carci-

noma and endocervical adenocarcinoma (CESC) tumour prediction, against the

GeneSet gene list for the respective tumour type. State-of-the-art methods (i.e.

Saliency, Input X Gradient and GradientSHAP) and a random selection of genes

are used for comparison.

from GeneCard [37]. GeneCard was chosen due to its compre-
hensive disease gene sets, which are integrated from around
150 different web sources and therefore covered the majority of
tumour types in our analysis. We selected the genes to compare
at 100 different thresholds, spaced evenly from 1 (the most
important gene) to 58 043 (the total number of genes). XOmiVAE
were compared to different thresholds of a random sample
of genes (averaged over 10 random seeds) and state-of-the-art
methods, including Saliency [36], Input X Gradient (an extension
of Saliency) and GradientSHAP [22]. The results were plotted as
a ROC curve for the true positive rates (TPRs) and false positive
rates (FPRs). The TPRs were calculated by

# of top genes which are GeneCard disease genes
# of GeneCard disease Genes

. (7)

And the FPR were calculated by

# of top genes which are not GeneCard disease genes
# of genes not associated with the GeneCards disease

. (8)
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Table 3. The average AUC score across all 33 tumour types for the
ranked gene importance scores compared to the GeneCard genes

Methods Average AUC Standard deviation

Saliency 0.5331 0.0839
GradientSHAP 0.7682 0.0578
Input X Gradient 0.7762 0.0767
XOmiVAE 0.7950 0.0673

Figure 4. A Venn diagram representing the overlap between the DEGs and

top contribution genes, highlighting a total of 42 DEGs found in the top 100

contribution genes.

A total of 21 tumour types had gene sets found in GeneCard
and were therefore chosen for analysis. The ROC curves and
AUC metrics are shown in Supplementary Figures S7 to S9. Two
example ROC curves are illustrated in Figure 3. All 33 tumour
types had an AUC metric considerably higher than the random
samples which suggests that the most important genes returned
by XOmiVAE are biologically relevant. The average AUC metric
among all 33 tumour types of XOmiVAE and three state-of-the-
art methods was listed in Table 3. XOmiVAE outperformed all of
the three state-of-the-art methods.

To further explore and understand the top genes revealed by
XOmiVAE, they were evaluated using GSEA. We used g:Profiler
[31], a web server for functional enrichment analysis, to identify
the most significant GO terms enriched in the top genes for
each tumour type. Supplementary Table S1 lists the GO terms
that are significantly overrepresented in top BRCA genes. The
most significant GO terms are closely related to the extracellular
matrix organization, which is an area of intense interest in breast
cancer research. [42] A break down of the pathways found from
the other sources used in g:Profiler was shown in Supplementary
Figure S10.

The top 100 most important genes for BRCA over normal
breast tissue were compared with the DEGs between the target
tumour and normal tissue. This helps ascertain the similarity
between top genes found by XOmiVAE and DEGs obtained by the
traditional statistical method. We find that there is an overlap
of 48 out of the 100 top contribution genes when comparing
BRCA versus normal breast tissue as an example (Figure 4). The
top DEGs were chosen according to the threshold of FDR < 0.05
and |LogFC| >= 3 (see Supplementary Table S2 for details). The
top genes obtained by XOmiVAE do not solely include DEGs,
likely because the model has to ensure that the genes chosen for
classification are different between cancers. Therefore, the DEGs
that are common between cancers are not chosen as important
features.

Biomedical meaning of important dimensions

To further understand the most important dimensions involved
in tumour prediction, we analysed the biological meaning of the
key genes used by the dimensions. As an example, we analyse
the highest shared dimension (i.e. dimension 35) in the kidney
cancers KIRC, KIRP and KICH (Supplementary Figure S12). APQ2
is the most important gene for that dimension for all three
cancer subtypes, which is located in the apical cell membranes
of the collecting duct principal cells in kidneys. Additionally, all
of the other high ranking genes such as UMOD, SCNN1G and
SCNN1B are all well-known genes associated with kidney func-
tions [5, 14]. As another example, we also explain dimensions
42 and 73, the 1st and 2nd most important dimension for lung
adenocarcinoma (LUAD) prediction, respectively, as shown in
Table 4. The top genes were calculated using random training
samples as the reference value, to show the most important
genes for LUAD versus all the other sample types. We demon-
strated that dimension 42 relies heavily on the immune response
pathways, while dimension 73 relates to the developmental pro-
cess, albeit with one highly significant immune response path-
way. The top gene for dimension 73 is pulmonary-associated
surfactant protein C (SPC), a surfactant protein essential for
lung function, and the top gene for dimension 42 is progesta-
gen associated endometrial protein (PAEP), an immune system
modulator, both of which have been implicated in LUAD [34, 44].

We found that the most important input features for the
latent dimensions varied according to the tumour type used for
the analysis (Table 4). This demonstrates a possible limitation
of previous methods explaining gene expression classification
networks using solely a connection weight approach, for exam-
ple by Way and Greene [43] and Bica et al. [4], which show no
specificity for different input samples and different prediction
targets. Table 4 shows that for BRCA, dimension 42 uses the
genes related to blood vessels, and dimension 73 relies on the
embryonic genes. However, this contrasts with the most impor-
tant pathways that these dimensions used for LUAD classifica-
tion. XOmiVAE is able to capture this as it detects the activation
of neurons using Deep SHAP, as opposed to solely the weights
involved.

To further understand the latent space of the classification
network, we tested whether there was a dimension that sep-
arated between female and male tissue samples. We observed
a large statistical difference (P value = 3.6 × 10−249) between
genders on dimension 78 in the classification model (Figure 5).
To understand how dimension 78 captured gender, Deep SHAP
was used to explain the genes involved. We found that XIST,
a gene on chromosome X, was within the top 5 genes of the
dimension 78 (Table 5). XIST is one of the key genes involved in
the transcriptional silencing of one of the X chromosomes [47].

Validation by the performance of downstream tasks

Influence of important genes for model performance

To further evaluate the results, we compared the classification
performance of models using the top 20 XOmiVAE genes or
20 random genes for each target tumour type of interest. Four
metrics including the F1-score (F1), positive predictive value
(PPV), true positive rate (TPR) and area under the curve (AUC)
were applied, and the performance of models using 20 random
genes was averaged over 10 random seeds. A highly significant
performance difference can be observed in Table 6, which indi-
cates the contribution of the top genes obtained by XOmiVAE to
the cancer classification tasks. Additionally, we calculated the
average metrics for all the other tumour types except the target
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Table 4. The biological pathways enriched for dimensions 42 and 73 when classifying BRCA and LUAD

Dimension ID Tumour type GO biological process FDR adjusted P-value

42

LUAD

Humoral immune response 1.8 × 10−8

Response to bacterium 2.0 × 10−8

Response to stimulus 2.0 × 10−7

Immune system process 2.5 × 10−6

Response to other organism 3.7 × 10−6

BRCA

Circulatory system process 4.7 × 10−7

Blood circulation 1.3 × 10−6

Developmental process 4.6 × 10−5

Regulation of blood pressure 2.0 × 10−5

Humoral immune response 2.5 × 10−5

73

LUAD

Response to external stimulus 2.4 × 10−5

Response to bacterium 4.5 × 10−5

Anatomical structure morphogenesis 5.4 × 10−5

Tube development 7.4 × 10−5

Response to biotic stimulus 1.8 × 10−4

BRCA

Anterior/posterior pattern specification 1.2 × 10−7

Embryonic morphogenesis 1.5 × 10−6

Embryo development 2.0 × 10−6

Embryonic skeletal system morphogenesis 2.3 × 10−6

Anatomical structure development 2.3 × 10−6

Figure 5. Violin plot of the latent dimension 78 for female and male samples.

Table 5. The top five genes for dimension 78 when separating
female and male samples in the classification model of OmiVAE

Gene Contribution score Chromosome

CLDN3 0.00031 chr7
SLPI 0.00031 chr20
WFDC2 0.00031 chr20
XIST 0.00030 chrX
MMP1 0.00029 chr11

one and found that while there was also an increase in metrics
from the randomly selected genes, it was not as significant as
the increase for the target tumour type. This suggests that the
top genes revealed by XOmiVAE are specific for certain target
tumour type.

To approximate the most important genes for the overall
model, we summed the ranking of genes for each tumour type,
with the most important gene having a ranking of 1st and the
least important gene ranking 58, 043rd, and selected 20 genes
with the lowest sum rankings to retrain the model and calculate

the overall accuracy (Table 7). We then compared it with the
performance of a model trained by 20 random genes and a
model trained by the overall 20 least important genes with the
highest ranking sums. Using the 20 most important genes, we
observed a significant improvement in accuracy over using a
random selection of 20 genes. Additionally, we found that the
20 least important genes caused a large decrease in accuracy
compared to a random selection of genes. These results suggest
a possible role of using the XOmiVAE contribution scores for
feature selection in model training with high-dimensional omics
data.

Influence of important dimensions for model performance

To understand whether XOmiVAE accurately detected the most
and least important dimensions in the latent space, we evalu-
ated the effect of knocking out the most important dimensions
(Table 8). We set the output of the target dimension to −1 when
the output value was positive, and set the output of the target
dimension to 1 when the output value was negative, based off
a similar ablation approach by Morcos et al. [26]. This ensures
that the output is perturbed from the original value. Individually,
the most important dimensions did not have a large effect
when ablated, which is likely due to model saturation, a feature
of neural networks that Deep SHAP addresses whereas other
interpretability techniques fail to capture [35]. When the top
dimensions combined were ablated, the classification accuracy
fell to 0. This is in contrast to the least important dimensions,
which did not have any effect on the network when knocked out,
individually or combined. This provides evidence to support the
most and least important dimensions obtained by XOmiVAE.

Different results depending on reference chosen

Deep SHAP, similar to other activation level-based approaches,
used reference samples as background to appraise the feature
importance of each gene or latent dimension. The selection of
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Table 6. The evaluation metrics of cancer classification using only the top 20 genes obtained by XOmiVAE (columns 1 and 3) or 20 random
genes chosen from the overall gene set of 58 043 features (columns 2 and 4). The metrics for each individual tumour type of interest are shown
in columns 1 and 2, and the metrics for all of the other tumour types (except the target one) are shown in columns 3 and 4. The results were
averaged among all 33 target tumour types and 10 random seeds

Average metric across all 33 tumour types

Target tumour trained by
top 20 XOmiVAE genes

Target tumour trained by
20 random genes

All other tumours trained
by top 20 XOmiVAE genes of

the target tumour

All other tumours trained
by 20 random genes of the

target tumour

F1 0.90 ± 0.11 0.46 ± 0.21 0.66 ± 0.11 0.48 ± 0.01
PPV 0.91 ± 0.11 0.48 ± 0.20 0.69 ± 0.08 0.50 ± 0.01
TPR 0.91 ± 0.10 0.66 ± 0.11 0.48 ± 0.01 0.48 ± 0.01
AUC 0.94 ± 0.07 0.67 ± 0.11 0.83 ± 0.06 0.68 ± 0.00

Table 7. The accuracy of XOmiVAE using the full gene set, the top 20
contribution genes for all tumours, 20 random genes and the bottom
20 contribution genes for all tumours

Gene set N Overall accuracy

Full gene set 58,043 96.85% ± 0.46%
Top 20 genes for all tumours 20 87.07% ± 0.38%
20 random genes 20 56.10% ± 0.24%
Bottom 20 genes for all tumours 20 1.68% ± 0.37%

Table 8. The accuracy difference for each tumour type when the
most important and least important dimensions were individually
or together removed from the network. Values represent the mean
and standard deviation of the accuracy difference among 33 tumour
types

Ablated dimension Accuracy change

1st −11.9% ± 19.9%
2nd −11.9% ± 20.2%
3rd −2.9% ± 6.5%
Top three combined −95.9% ± 2.0%

126th 0.0% ± 0.3%
127th 0.0% ± 0.0%
128th 0.0% ± 0.3%
Bottom three combined 0.0% ± 0.3%

reference samples is crucial for the explanation, since impor-
tance scores are calculated by comparing the activation level
of neurons when a reference sample is fed to the network or
when a target sample is fed to the network. One of the recom-
mended choices for this reference sample is a random sample
from the training set. However, we can also choose samples
with certain phenotype as the reference to compare with for
certain prediction rather than using a random selection of the
training data, which can be more informative in some cases.
For example, when explaining the important genes to differen-
tiate gender, we use samples from the opposite gender as the
reference.

To further understand the effect of the reference, we com-
pared the important genes involved in BRCA classification using
both a random selection from the training set and the normal
breast tissue samples (Figure 6). Twenty-five of the top 50 XOmi-
VAE genes were shared between the two reference selection
methods. To gain a clearer understanding of the different bio-
logical pathways enriched from the top genes when using the
two different reference samples sets, we compared the g:Profiler

Figure 6. The top 15 genes obtained by XOmiVAE for the classification of BRCA

using normal breast tissue samples as the reference.

Figure 7. Top two dimensions for splitting Basal and LumB subtypes in the latent

space.

pathway enrichment results (Supplementary Figures S10 and
S11). There is a decreased enrichment of extracellular pathways
when using a set of random training data to explain the BRCA
predictions. As alluded earlier, extracellular pathways have been
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Table 9. The top pathways for differentiating LumB and Basal (BRCA subtypes), using the Broad Institute’s curated pathway database

Pathway Genes in overlap P-value

Genes up-regulated in breast cancer samples positive for ESR1 compared to the ESR1
negative tumours

27 1.15e-47

Genes down-regulated in basal subtype of breast cancer samples 39 4.25e-43
Genes up-regulated in bone relapse of breast cancer 24 2.6e-42
Genes that best discriminated between two groups of breast cancer according to the
status of ESR1 and AR basal (ESR1- AR-) and luminal (ESR1+ AR+)

29 1.85e-37

Genes up-regulated in luminal-like breast cancer cell lines compared to the basal-like
ones

26 1.82e-30

Table 10. The top pathways for differentiating between LumB and the other three subtypes (Basal, LumA and Her2), using the Broad Institute’s
curated pathway database

Pathway Genes in overlap P-value

Genes down-regulated in basal subtype of breast cancer samples 27 1.15e-47
Genes up-regulated in bone relapse of breast cancer 39 4.25e-43
Genes down-regulated in ductal carcinoma versus normal ductal breast cells 24 2.6e-42
Genes down-regulated in nasopharyngeal carcinoma (NPC) positive for LMP1, a latent
gene of Epstein–Barr virus (EBV)

29 1.85e-37

Genes up-regulated in breast cancer samples positive for ESR1 compared to the ESR1
negative tumours

26 1.82e-30

shown to be involved in BRCA progression from normal tissue
[42]. It is possible that when using normal breast tissue as
reference samples, the specific genes that lead to breast cancer
are more pronounced, as opposed to also relying on breast tissue
genes as would be the case when differentiating BRCA from all
the other predictions. Therefore, it is shown that XOmiVAE is
able to gain a more focused understanding of the most important
genes for a tumour type by selecting the appropriate reference
samples.

Explaining unsupervised clustering results

As an example of explaining the unsupervised clustering results,
we used Basal-like (Basal) and Luminal B (LumB) breast tumour
subtypes. Explaining the latent dimensions of VAEs would be
crucial when it is important to understand the genes involved
in subtype clustering of cancers that are yet to be defined, and
labels that could be used for supervised learning are scarce.
Figure 7 shows the two most decisive dimensions splitting the
subtypes. As the most statistically significant dimension for
separating the two subtypes was dimension 100, we evaluated
the enriched pathways when this dimension is used to separate
Basal and LumB. Here, the μ value for a subtype (LumB) was
treated as the output and backpropagated through the network
using Deep SHAP and compared to the other subtype (Basal) as
the reference. As we were interested in validating whether the
model can explain the subtype specific pathways, we evaluated
the top 100 genes using the Broad Institute’s curated path-
way database [38], which includes pathways from experiments
comparing the subtypes.

In Table 9, we can see the pathways are highly specific for the
subtypes. A key differentiating feature between the subtypes is
that LumB is estrogen-receptor (ESR1) positive, and Basal is ESR1
negative and in Table 9 we can see the top pathways also include
the genes that differentiate between the ESR1 negative and ESR1
positive tumours. Table 10 shows the results when the three
other BRCA subtypes (LumA, Her2 and Basal) are used as the
reference samples when explaining subtype LumB. The results

show that a larger range of subtype pathways are present in the
most important features. These results prove that it is a useful
method of being able to obtain the unique genes for one subtype
versus multiple other subtypes.

This is, to the best of our knowledge, the 1st attempt at using
an activation level-based explanation approach for clustering
generated by autoencoders. Typically, differential gene expres-
sion methods, such as DESeq2 [21], are used to explain differ-
ences in clusters, which treats each gene as independent. More
recent methods improve on this, such as global counterfactual
explanation (GCE) [30] and gene relevance score (GRS) [1]. How-
ever, GCE requires a linear embedding, and the embedding of
GRS is constrained to ensure the gradients are easy to calculate.
XOmiVAE allows for a non-linear embedding and becomes one
of the first activated-based deep learning interpretation method
to explain novel clusters generated by VAEs.

Conclusion
Here we presented an explainable VAE-based deep learning
method for high-dimensional omics data analysis, named
XOmiVAE. We illustrated that it is possible to explain the
supervised task of the network and obtain the most important
genes and dimensions for a prediction. We also showed that
it is practicable to explain the most important genes in an
unsupervised network and therefore provide a method for
explaining deep learning-based clustering. We evaluated the
explanations of XOmiVAE and demonstrated that they make
biological sense. Additionally, we offered important steps to
consider when interpreting deep learning models for tumour
classification. For example, we highlighted the importance
of choosing reference samples that makes biological sense
when explaining the model, and we disclosed the limitations of
connection weight-based methods to explain latent dimensions.
We believe XOmiVAE is a promising methodology that could help
open the ‘black box’ and discover novel biomedical knowledge
from deep learning models.
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Key Points

• XOmiVAE is a novel interpretable deep learning model
for cancer classification using high-dimensional
omics data.

• XOmiVAE provides contribution score of each input
molecular feature and omics latent dimension for
each prediction.

• XOmiVAE is able to explain unsupervised clusters
produced by VAEs without the need for labelling.

• XOmiVAE explanations of the downstream prediction
were evaluated by biological annotation and literature,
which aligned with current domain knowledge.

• XOmiVAE shows great potential for novel biomedical
knowledge discovery from deep learning models.

Availability
The source code have been made publicly available on GitHub
https://github.com/zhangxiaoyu11/XOmiVAE/. The TCGA pan-
cancer dataset can be downloaded from the UCSC Xena data
portal https://xenabrowser.net/datapages/.

Supplementary Data
Supplementary data are available online at GitHub https://githu
b.com/zhangxiaoyu11/XOmiVAE/blob/main/documents/supple
mentary.pdf.
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