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Abstract: Food plants provide a regulated source of delivery of functional compounds, plant sec-
ondary metabolites production being also tissue specific. In grape berries, the phenolic compounds,
flavonoids and non-flavonoids, are distributed in the different parts of the fruit. The aim of this
study was to investigate the applicability of FTIR and Raman screening spectroscopic techniques
combined with multivariate statistical tools to find patterns in red grape berry parts (skin, seeds
and pulp) according to grape variety and vineyard type (organic and conventional). Spectral data
were acquired and processed using the same pattern for each different berry part (skin, seeds and
pulp). Multivariate analysis has allowed a separation between extracts obtained from organic and
conventional vineyards for each grape variety for all grape berry parts. The innovative approach
presented in this work is low-cost and feasible, being expected to have applications in studies re-
ferring to the authenticity and traceability of foods. The findings of this study are useful as well
in solving a great challenge that producers are confronting, namely the consumers’ distrust of the
organic origin of food products. Further analyses of the chemical composition of red grapes may
enhance the capability of the method of using both vibrational spectroscopy and chemometrics for
discriminating the hydroalcoholic extracts according to grape varieties.

Keywords: vibrational spectroscopy; red grape extracts; organic/conventional vineyards; chemometrics

1. Introduction

The beneficial health effects of fruits have been attributed to the presence of fibers,
minerals, vitamins (i.e., provitamin A, carotenoids, vitamins C and E) and phytochemicals,
including phenolic acids, flavonoids, and anthocyanins. Food plants provide a regulated
source of delivery of functional compounds. In addition, most of the bioactive substances
have specific functions within the plant. Plant secondary metabolites production is gen-
erally under strict regulatory control and is tissue specific; any attempt to regulate their
biosynthesis might result in adverse effects elsewhere in the plant and toxicity [1]. The syn-
thesis of specific metabolites, which can be very plant specific, is controlled through highly
branched pathways and carefully regulated. Given the wide diversity in the structure and
function of these metabolites in the plant, differences in temporal and spatial distribution
of the metabolite can occur, depending on the stage of the development of the plant and
between different plant organs and cell types [1–3].
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The constant interest in the biological activity of organically grown grapes and grape
by-products contributes to their capitalization as a source of bioactive phytochemicals
with potential applications in the cosmetics, pharmaceutical and food industries [4–9].
The full understanding of the phytochemical composition and antimicrobial activity of
the different anatomical parts of fruits may contribute to developing new applications.
The potential correlation of these properties with the culture management system, or
with the grape variety, may add valuable practical data. Traditionally, morphological
and agronomical characteristics have been the main criteria for differentiating grapevine
cultivars, but it is well known that many of those properties are strongly influenced by
environmental conditions [10]. Grapevine varieties are not generally homogenous and
intravarietal diversity varies across cultivars [11,12]. Even vines multiplied by vegetative
propagation display a broad range of characteristics, such as the grape phenolic profile
that depends greatly on the grape variety [10]; Liang et al. A study by [13] showed that
polyphenolic profiles revealed significant differences among 344 European grape varieties,
which included both table and wine grapes.

In the grape berries, the phenolic compounds, flavonoids and non-flavonoids accord-
ing to their chemical structure, are distributed in the different parts of the fruit. Flavonoids
are found mainly in grape seeds and skins; proanthocyanidins are present mainly in the
berry skin and seeds [14,15]. With regards to grape skins, each variety has its unique set of
anthocyanins with their biosynthesis being influenced by several factors, such as climatic
conditions, temperature, light and cultural practices [14,16].

In general, grapes produced under organic farming systems are increasing around
the world. Since their agronomic system does not allow the use of chemical pesticides and
fertilizers, these fruits are perceived by the public as safer and healthier when comparing to
those produced by conventional agriculture. However, these grapes are more susceptible
to the action of phytopathogens inducing the synthesis of higher amounts of phenolic
compounds as protection and defense [14,17]. As a series of studies [18–20] have observed,
the choice of agricultural practice (organic vs. conventional) resulted in different amounts
of resveratrol, anthocyanins, and tannins in grape juices. This difference is due to the fact
that no pesticides are used in organic vineyards and that they have a longer ripening period
than conventional ones. As flavonoids are formed during this last-mentioned period, it is
believed that organic vineyards yield grapes with higher phenolic content [14,21,22].

Hydroalcoholic extracts obtained from the skin/seed/pulp of red grapes are good
sources of polyphenols and flavonoids [6], compounds known for their antioxidant action
and for their protection against diseases, such as cancer, diabetes, cardiovascular disease,
and neurodegenerative diseases. The anthocyanin content of the extracts obtained from
the skin of the four varieties of red grapes can be defined as moderate, as it is known that
factors, such as maturity and climate, can change the presence of these compounds in
grapes. Previous studies [6–8,23] revealed that the hydroalcoholic extracts obtained from
the skin of the organic system varieties (e.g., Feteasca Neagra, Merlot, and Pinot Noir),
contain a high content of polyphenols, flavonoids and tannins.

The analytical information contained in complex FTIR and Raman spectra can be
extracted using multivariate analysis techniques that relate analytical variables to chemical
properties of the matrix constituents [24–27]. The application of chemometrics together
with infrared (IR) spectroscopy has been reported in literature for the analysis of natu-
ral products [25–28], medicinal and aromatic plants and their essential oils, and pheno-
lic compounds [29–32]. Principal components analysis (PCA) and partial least squares
(PLS) regression are some of the most commonly used multivariate data analysis techniques
applied to grape and wine analysis [33–35]. Compared to traditional methods, multivariate
analysis combined with modern instrumental techniques often give new and better insight
into complex problems [33].

The aim of this study was to investigate the applicability of FTIR and Raman screening
spectroscopic techniques combined with multivariate statistical tools to find patterns in
red grape berry parts (skin, seeds and pulp) according to grape variety and vineyard type
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(organic and conventional). Exploratory data analysis has revealed hidden patterns in
complex spectral data by reducing the information to a more comprehensible form and
indicating whether there are patterns or trends in the data. Exploratory algorithms ap-
plied, such as PCA and hierarchical cluster analysis (HCA), were involved to reduce large
complex data sets into a series of optimized and interpretable views. The results showed
that differences exist between the spectral profiles of hydroalcoholic extracts from different
culture (organic and conventional) for Merlot, Feteasca Neagra, Pinot Noir and Muscat
Hamburg varieties, confirming that the FTIR and Raman spectra contain important infor-
mation for discriminating among samples. The novelty of the study was the investigation
of hydroalcoholic extracts from grape skin/seeds/pulp (Vitis vinifera L.) from two culture
systems (i.e., conventional and organic) by combining vibrational spectroscopy analysis
(FTIR and Raman) with multivariate analysis. Beyond the use of the vibrational spec-
troscopy analysis in studies referring to the chemical composition of the grape extracts, our
study emphasizes their convenience, in combination with multivariate analysis, in differen-
tiation of the raw food products coming from conventional and organic agriculture. This
provided a useful tool for managing a large amount of data in case of suspicions regarding
the origin of raw food materials. The analysis of obtained extracts from the anatomic parts
of grapes considers the practical applications as in functional foods (nutraceuticals) and
natural/bio cosmetic formulations.

2. Materials and Methods
2.1. Samples Preparation

Red grapes of 4 varieties (Merlot, Feteasca Neagra, Pinot Noir and Muscat Ham-
burg) were collected from 2 different vineyards: organic (ecological) culture and conven-
tional culture (with various pesticide treatments applied). Sampling locations and their
pedoclimatic characteristics were previously reported [6]. The representativeness of sam-
ples was provided as follows: for each grape variety, approximately 10 kg were collected
from ten different locations in each studied vineyard, approximately 1 kg from each lo-
cation; after the manual separation of the grape parts (skin, seeds, pulp), raw materials
from the ten harvesting points were mixed and treated as a unique representative sample
of the respective kind. Triplicates of each these mixed, representative grape materials were
then sampled, taken into analysis, and treated as will be described herein. The skins and
seeds were first dried at 40 ºC for 48 h and then stored at room temperature for further
experiments, protected from moisture and light. The grape pulps were stored frozen at
−18 ◦C and defrosted on the day of use. The extraction method applied was maceration at
room temperature (22–23 ◦C) for 24 h, and the employed solvent was a 50% volumetric
mixture of deionized water and ethanol (p.a.). For all the extracts, a solid-liquid ratio (berry
part—hydroalcoholic solvent) of 4% (w/v) was used. Out of the total extraction time of 24 h,
the first 3 h were under magnetic stirring, while for the remaining 21 h, static conditions in
the dark at room temperature were maintained. The mixture was then separated by filtra-
tion (Whatman no.4) and the filtrate (skin/seeds/pulp extract) was stored at 4.0 ± 1 ◦C for
a short time period (i.e., overnight) up to the moment of spectral analysis.

Table 1 shows the hydroalcoholic extracts, whose spectral profile was investigated,
obtained from the different anatomical parts (skin, seeds, and pulp) of the 4 indigenous
varieties mentioned above, from 2 vineyards with different cultivation systems (i.e., organic
and conventional, respectively).

2.2. Vibrational Spectroscopy

The red grapes’ (Vitis vinifera L.) skin/seeds/pulp extracts were characterized in
terms of qualitative composition by vibrational spectroscopy, such as attenuated total
reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy.
The molecular investigation of the functional groups of organic compounds of grape
extracts was performed by ATR-FTIR [36–39] using a Vertex 80v spectrometer (Bruker,
Germany), equipped with a diamond ATR crystal accessory, for a high refractive index
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bulk sample. The diamond ATR had a sampling area of approximately 0.5 mm2, and
the infrared spectra were collected at a 4 cm−1 resolution over 32 scans. The important
absorption frequencies were noted in the range of 4000–400 cm−1, as well as the fingerprint
region of the spectra. By the use of the instrument software (OPUS Spectroscopy Software,
version 7, Bruker Optik, Ettlingen, Germany), spectra overlay, identification of chemical
groups, and ATR background correction were performed. The late mentioned correction
function had most of the input parameters fixed by the platinum ATR with diamond crystal
accessory used: refractive index (2.4 = diamond), angle of incidence (45 degrees), number
of reflections (nominally 1). All spectral FTIR data acquisition in this study was performed
using baseline correction (scattering correction method—10 iterations, 64 baseline points).

Table 1. The red grapes (Vitis vinifera L.) investigated extracts.

Grape Variety Vineyard Type Sample Code

Merlot
Organic M-O

Conventional M-C

Feteasca Neagra Organic FN-O
Conventional FN-C

Pinot Noir
Organic PN-O

Conventional PN-C

Muscat Hamburg Organic MH-O
Conventional MH-C

The Raman spectral data were recorded with a portable Raman spectrophotometer
Xantus-2 (Rigaku, Tokyo, Japan), using a laser wavelength of 1064 nm, at an integration time
of 5000 ms, for the spectral range of 2000–200 cm−1. Relevant wavenumbers were extracted
from the obtained Raman spectra and subjected to the chemometric assessment described
in the following sections. The acquisition of all Raman spectra was performed using
the instrument built-in baseline correction function, and thus a reduction of fluorescence
interferences was provided.

2.3. Multivariate Analysis

The large data sets, generated from both FTIR and Raman spectroscopy, in which
essential information may not be readily evident, can be more accurately investigated
by multivariate analysis. Some multivariate models provide a means of quantifying
constituents that are involved in complex matrices interactions without eliminating matrix
interferences [40,41]. Vibrational spectroscopic techniques produce profiles containing
a large amount of information which can be exploited through the use of multivariate
analysis, several methodologies being proposed for classifying and discrimination [42].
However, matrix interference effects are still detrimental, especially when the sample size
is not large enough to properly average out its contribution (by creating systematic errors).

Spectral data processing was conducted using the XLSTAT software, 2021.1.1 version
(Copyright XLSTAT-statistical and data analysis solution, Addinsoft 2021, New York, NY,
USA, Excel 16.0.13901, Windows 10). The PCA, AHC and DA techniques were used for mul-
tivariate analysis of the ATR-FTIR and Raman spectra in a spectral range of 4000−400 cm−1

and 2000−200 cm−1, respectively. Additional information regarding data processing can
be found in the supplementary material [35,38,39,41–62].

3. Results
3.1. Spectral Properties of Vitis vinifera L. Red Grapes Hydroalcoholic Extracts

The ATR-FTIR spectra of hydroalcoholic extracts corresponding to different berry
parts are presented in Figures S1, S3 and S5, for skin, seeds and pulp, respectively;
the corresponding Raman spectra for the extracts mentioned before are presented
in Figures S2, S4 and S6 for the same berry parts. Previous studies reported that quality
control and discrimination of natural extracts could be accomplished by using mid-infrared
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spectroscopy [63–65]. Generally, both FTIR and Raman spectroscopy techniques allow
obtaining spectra which present some characteristic bands of individual components. These
bands provide information about the chemical composition, including both primary and
secondary metabolites, of the investigated samples [66]. In the current research, eight
different Vitis vinifera L. extracts, corresponding to four varieties and two culture systems
(organic and conventional), were included in each dataset. For each individual berry part,
all of them showed similar FTIR spectral characteristics, with prominent spectral bands
being observed at 3293, 3272, 2979, 1641, 1085, 1044 and 877 cm−1; in the Raman spectra for
the same berry parts prominent spectral bands/peaks were observed at 1449, 1274, 1083,
1044, 877, 490, 461 and 432 cm−1.

Spectral bands in the range 3500–3100 cm−1 can be attributed to the cumulative
stretching vibrations of the -OH groups, characteristic aspect of the polyphenolic ex-
tracts [63,67–69] and to the extraction solvent. Usually in this spectral range polyphenolic
extracts have vibration bands similar to acids; however, the amount of vibrational contri-
butions of the -OH groups are actually displayed. The spectral band located at 2979 cm−1

could be attributed to C-H stretching vibrations and to the solvent (ethanol), being due
to the stretching vibrations of the O-H groups [63,70]. The spectral band of medium
intensity located at 1641 cm−1 can be associated with the aromatic C=C stretching vi-
brations present in the condensed tannins [63], as well as C=O stretching vibrations and
the presence of unsaturated bonds in flavonoid structures [69,71,72]; the presence of this
peak suggests the presence of both flavones and flavanones [72]. The low intensity bands
from 1453 and 1385 cm−1 can be related with C-H bending vibrations of the CH2 and CH3
groups [71], C=C-C stretching vibrations due to the aromatic ring [73], bending vibrations
associated with aromatic cycles (flavonoids) [74], and O-H in plane deformation vibrations
from polyphenolic compounds [73]. In the spectral range 1160–900 cm−1 (bands from
1085 and 1044 cm−1) spectral peaks can be associated with C-O stretching vibrations of
glycosidic moieties and to a lesser extent with aromatic C-O stretching vibrations [75]. In
the spectral range 1400–1150 cm−1 spectral bands of variable intensity can be assigned to
C-O stretching vibrations and C-O-H bending vibrations associated with phenols, esters,
carboxylic acids, and alcohols [75,76]; the spectral peak from 1085 cm−1 can be related to
the aromatic C-H deformation vibrations in the plane [67,77,78], and C-O deformation vi-
brations (secondary alcohols, aliphatic esters) [71,73]. O-H and C-OH stretching vibrations
(polysaccharides of cell walls) can be associated with the spectral band at 1044 cm−1 [73].
The spectral peak from 877 cm−1 can be related with out-of-plane aromatic C-H bending
vibrations [63] and C-O and C-C (monosaccharide) stretching vibrations [71,74].

The FTIR spectrum of the seed extracts provides spectral information mostly in the
spectral ranges 3350–2900 cm−1 and 1650–850 cm−1. The broad, intense spectral band
centered at ~3300 cm−1 can be due to the extraction solvent and to the hydroxyl groups in
the structure of the phenolic compounds (stretching vibrations of the hydroxyl groups) [70].
The bands present at 2978 and 2903 cm−1 can be associated with asymmetric C-H stretching
vibrations due to the methyl and methine groups, respectively [76,79,80]. The spectral band
at 1643 cm−1 is related with the aromatic character, the C-H stretching vibrations [64,81],
and C=O conjugate stretching vibrations [79]. The fingerprint region 1500–800 cm−1

displays spectral bands of variable intensity associated with different vibration modes;
although it is a spectral range rich in information, it is difficult to analyze due to its com-
plexity. In this spectral domain the spectral bands can be related with alcohols, sugars,
organic acids, and phenolic compounds [81]. In the region 1390–1310 cm−1, the spectral
bands can be associated with the C-O-H angular deformation vibrations in phenols [79],
out-of-plane methylene bending vibrations (polysaccharides, pectins) [82], methylene
and C-O shear vibrations, as well as the stretching vibrations of the pyranic ring (car-
bohydrates) [81,82]. Spectral bands from 1043 and 877 cm−1 can be related with C-H
deformation vibrations associated with the aromatic ring [79] and aromatic C-H bending
vibrations, respectively [63,76].
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3.2. Multivariate Analysis Applied on Skin Extracts Spectral Data

Table 2 presents the results of the decomposition of the spectral FTIR and Raman
data through PCA, respectively, the percentage of variability/variance explained by each
principal component (PC), and the accumulated variability (the sum of percentage of
variability explained by that PC and the preceding one). With the first three PCs, 91.47%
(i.e., FTIR data) and 94.77% (i.e., Raman data) of the total variability of the studied data
were included.

Table 2. Variability explained by the principal components (PCs) obtained by decomposition of the
spectral data (red grape skin extracts) using principal component analysis (PCA).

PC Number
Variability [%]

FTIR Data Raman Data

PC1 76.69 76.29
PC2 9.63 15.34
PC3 5.16 3.14
PC4 2.67 2.22
PC5 2.19 1.31
PC6 1.93 0.92
PC7 1.73 0.78

Figure 1 shows the score plots of the FTIR data on the first three principal components
explaining 91.47% of the total variability. Several validation techniques have been devel-
oped for the PCA. One objective of validation is to estimate the proximity between the
observations on a PC plan and to know which observations are significantly different from
each other. For that purpose, the partial bootstrap method was employed [83].
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For each original observation we generated the 95% confidence ellipses based and cen-
tered on the bootstrap points. Two categories of samples can be well distinguished if the over-
lapping area is smaller on a given PC plan; if the samples of the same category were more
concentrated, the curve will be sharper with a small value of standard deviation [84–86].

For the FTIR data it was observed (Figure 1) that the investigated red grape varieties
overlapped (bootstrap ellipses) at different extents in all plots, and thus incomplete sep-
arations between varieties were noticed. However, it can be distinguished a separation
between vineyard types (organic vs. conventional) for the same grape variety, organic skin
extracts being well separated in PCs plots: PC1 vs. PC2 (Merlot and Feteasca Neagra), PC1
vs. PC3 (Pinot Noir and Muscat Hamburg) and PC2 vs. PC3 (Merlot, Feteasca Neagra and
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Muscat Hamburg). The loading values for the first three PCs obtained using the FTIR data
are represented in Figure S7.

The skin extracts’ FTIR datasets processing using PCA reveal that the Merlot vine-
yards can be differentiated based on PCs loading plots (Figure S7) due to positive PC2
(M-O) and negative PC1 (M-C) loading plots. The Feteasca Neagra and Pinot Noir, organic
and conventional vineyards, can be differentiated due to PC2 (FN-O positive loadings
and FN-C negative loadings) and PC1 (PN-O negative loadings and PN-C positive load-
ings) loading plots, respectively. For the Merlot organic vineyards (M-O), the main spectral
differences relative to the conventional ones (M-C) were assigned to the following spectral
regions/peaks: 4000–3750, 2640–2460, 2390–2950, 1950–1900, 1465 and 890 cm−1. The
Feteasca Neagra organic vineyard (FN-O) can be differentiated from conventional culture
(FN-C) by 4000–3730, 2550–2450 and 1980–1920 cm−1 spectral regions. The Pinot Noir
organic vineyard (PN-O) can be discriminated from the conventional one (PN-C) due to
2990–2500, 2370–2350, 1460–1250, 1190–990 and 890 cm−1 spectral regions/peaks. The
Muscat Hamburg organic vineyard (MH-O) can be differentiated especially due to PC3
(Figure 1b,c) positive scores; the PC3 loading plot (Figure S7) revealed the main spectral
specific features in 3950–3680, 2470, 2360–2330, 2170, 2035, 1830–1770 and 1496 cm−1

spectral regions.
Figure 2 shows the score plots of the Raman data, relative to the red grape skin extracts,

on the first three principal components explaining 94.77% of the total variability. From
the Raman data score plots it was observed that red grape varieties (skin extracts) overlap
partially in all plots; for the FTIR data, an incomplete separation between varieties is
noticed. Except for the Pinot Noir, a separation (organic vs. conventional) can be observed
for the same grape variety in almost all PCs plots; PN-O vs. PN-C can be more clearly
differentiated in the PC2 vs. PC3 plot. Based on the first two PCs scores and signs and
accounting also for the contribution and squared cosines of the observations, it can be
identified three (FTIR data) and four clusters/groups (Raman data), respectively. PCs
score plots resulted from Raman data also show a better separation between organic and
conventional vineyards, three of the organic skin extracts (M-O, PN-O and MH-O) being
assigned in the same cluster. Figure S8 shows the loadings plots for the first three principal
components (PCs) using Raman data (red grape skin extracts).
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Based on the first three PCs loading plots (Figure S8), obtained by using PCA on the
skin extracts’ Raman datasets, a differentiation between organic and conventional culture
for each variety investigated was also revealed. The organic Merlot vineyard (M-O) can
be distinguished (positive loading for PC1) by 2000–1200, 1140–970, 900–700, 600 and
250–230 cm−1 spectral regions. The Feteasca Neagra organic vineyard can be differentiated
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(PC3 positive loadings over 0.2) by 1350, 1220–1156, 977, 944, 675 and 323–293 cm−1 spectral
regions/peaks. The Pinot Noir organic vineyard (PN-O) can be differentiated due to PC2
negative loadings by 1986, 1654, 1596, 1465, 1225–1090 and 720–620 cm−1 spectral regions.
In the case of the Muscat Hamburg variety, organic culture (MH-O) can be differentiated
by 1650–1600, 1230, 1100–1020 and 790–700 cm−1 spectral regions.

Further analysis was performed using Agglomerative Hierarchical Clustering (AHC)
that allows a clear view of the similarities and differences between red grape skin extracts.
The AHC derived from the FTIR data has grouped both organic and conventional ex-
tracts into two main classes/clusters. Figure 3a presents the dendrogram showing the
division into clusters and the inclusion of extracts in each cluster/subcluster (automatic
truncation-entropy, variance decomposition for the optimal classification: within-class
97.2%, between-classes 2.8%). From classifications made using AHC based on Raman spec-
tral data, organic and conventional extracts are similarly included into two main clusters,
as can be seen in Figure 3b (automatic truncation-entropy, variance decomposition for the
optimal classification: within-class 77.7%, between-classes 22.3%).
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As can be observed for the FTIR data processing using AHC (Figure 3a), classification
reveals two main clusters: the first included FN-O and M-O extracts and the second
included the rest of the extracts, a good classification based on vineyard type, relative
to all four varieties, cannot be observed. However, at a lower dissimilarity level (2 ÷ 5),
subclusters division allows a classification based on vineyard type, excepting PN-O; also,
a differentiation can be made for each grape variety between organic and conventional
extracts. From all grape varieties, Merlot and Feteasca Neagra show the most notable
difference between organic and conventional vineyards (M-O vs. M-C and respectively
FN-O vs. FN-C), the corresponding extracts for each variety, organic and conventional,
being assigned in the two main clusters. The AHC classification based on the Raman data
(Figure 3b) shows two main clusters, the first of which includes MH-O, PN-O, PN-C, FN-C
and M-O extracts, and the second of which includes M-C, FN-O and MH-C extracts; a
good classification based on vineyard type, relative to all four varieties, cannot be observed.
Compared with the FTIR data, at a lower dissimilarity level (2 ÷ 5), subclusters division
does not allow a clear classification based on vineyard type; a differentiation between
organic and conventional extracts can be made, for each grape variety, only at a lower level
of dissimilarity (1 ÷ 1.3).

In many cases, the interpretation of the complex biochemical information obtained
through vibrational spectroscopy requires further data analysis using supervised proce-
dures [33,39]. After PCA was applied, the first three PCs scores were retained for further
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analysis using the so-called PC-DA model by combining both PCA and discriminant
analysis (DA) [42,87,88].

The classification and cross-validation by PC-DA was applied onto all extracts. The
quadratic discriminant analysis was chosen based on the two Box tests (Chi-squared
asymptotic approximation and Fisher’s F asymptotic approximation) and Kullback’s test
(the significance level was set at 5%). The PC-DA results corresponding to skin extracts are
presented in Table 3, Table 4 and Table S1–S6 for both FTIR and Raman spectral data.

Table 3. Prior and posterior classification of the red grape skin extracts using PC-DA (FTIR
spectral data).

Membership Probabilities

Extract Prior Posterior Pr (Conventional) Pr (Organic)

M-O Organic Organic 0.000 1.000
FN-O Organic Organic 0.000 1.000
PN-O Organic Conventional 0.514 0.486
MH-O Organic Organic 0.000 1.000
M-C Conventional Conventional 0.999 0.001
FN-C Conventional Conventional 0.907 0.093
PN-C Conventional Conventional 1.000 0.000
MH-C Conventional Conventional 0.999 0.001

Table 4. Prior and posterior classification of the red grape skin extracts using PC-DA (Raman
spectral data).

Membership Probabilities

Extract Prior Posterior Pr (Conventional) Pr (Organic)

M-O Organic Organic 0.003 0.997
FN-O Organic Organic 0.000 1.000
PN-O Organic Organic 0.038 0.962
MH-O Organic Organic 0.031 0.969
M-C Conventional Conventional 1.000 0.000
FN-C Conventional Conventional 1.000 0.000
PN-C Conventional Conventional 1.000 0.000
MH-C Conventional Conventional 1.000 0.000

3.3. Multivariate Analysis Applied on Seed Extracts Spectral Data

Table 5 presents the results of the decomposition of the spectral FTIR and Raman data
(red grape seed extracts) through PCA, respectively the percentage of variability/variance
explained by each principal component and the accumulated variability. With the first
three PCs, 94.11% (i.e., FTIR data) and 96.64% (i.e., Raman data) of the total variability of
the studied data were included.

Table 5. Variability explained by the principal components (PCs) obtained by decomposition of the
spectral data (red grape seeds extracts) using principal component analysis (PCA).

PC Number
Variability [%]

FTIR Data Raman Data

PC1 65.64 88.10
PC2 24.68 7.20
PC3 3.79 1.34
PC4 1.86 1.23
PC5 1.49 0.79
PC6 1.41 0.75
PC7 1.11 0.57
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Figure 4 shows the score plots of the FTIR data on the first three principal components
explaining 94.11% of the total variability. The bootstrap ellipses corresponding to the
investigated red grape varieties overlapped at different extents in all plots, and thus,
incomplete separations between varieties were noticed. However, a separation can be
made between vineyard types for the same grape varieties, organic vs. conventional
extracts being well distinguished especially in the PC1 vs. PC3 plot, but also in the PC1 vs.
PC2 (Merlot and Pinot Noir) and PC2 vs. PC3 (Feteasca Neagra) plots. The loading plots
for the first three PCs obtained using FTIR data are represented in Figure S9.
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PCA applied on the FTIR spectra of seeds extracts has allowed a differentiation
between organic and conventional culture systems, the main spectral features being ob-
served in the PC1 loading plot (Figure S9): M-O, FN-O and MH-O due to negative values
and PN-O due to positive values of PC1 loading plot, respectively. The organic Merlot
seeds’ extract (M-O) can be differentiated from conventional ones (M-C) due to 3810, 3760,
2980–2400, 1385, 1100–1020 and 880 cm−1 spectral regions/peaks. The organic Feteasca
Neagra seeds’ extract (FN-O) can be differentiated from conventional ones (FN-C) due
to 3830, 3750, 2980–2850, 2360, 2160, 2040, 1750–1480, 1385, 1100–1020 and 880 cm−1

spectral regions/peaks. Pinot Noir organic seeds extract (PN-O) can be discriminated
from conventional one (PN-C) due to 4000–2980, 2400–1460, 1250–1120 and 900–870 cm−1

spectral regions. Muscat Hamburg organic seeds extract (MH-O) can be discriminated
from conventional one (MH-C) due to 2980, 2930–2850, 1385, 1100–1020 and 880 cm−1

spectral peaks/regions.
From the Raman data score plots (Figure 5), the first three principal components

explaining 96.64% of the total variability, it was observed that red grape varieties (seeds
extracts) overlap at different extents in all plots; and from the FTIR data an incomplete
separation between varieties is noticed. A distinction between vineyard type (organic vs.
conventional) for same grape varieties can be made mainly for the Muscat Hamburg (in
both PC1 vs. PC2 and PC2 vs. PC3 plots), for other varieties the bootstrap ellipses being
overlapped at different extents in all three plots; a better view can be noticed in PC2 vs. PC3
(Merlot and Pinot Noir) and PC1 vs. PC3 (Feteasca Neagra) plots. A better differentiation
also can be observed between vineyard types for the FTIR data, organic seed extracts being
assigned to different clusters, excepting the ones which include M-O, MH-O and PN-C.
Figure S10 shows the loadings plot for the first three principal components (PCs) using
Raman data (red grape seed extracts).
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Based on the first three PCs loading plots (Figure S10), obtained by applying PCA
on seeds extracts Raman data, a differentiation between the organic and conventional
culture for each variety investigated is also revealed. As a result, M-O and MH-O (PC2
negative loadings), FN-O (PC3 negative loadings), and PN-O (PC2 positive loadings),
can be discriminated from corresponding extracts obtained from conventional culture.
The main spectral differences identified for the investigated organic varieties are as fol-
lows: M-O is differentiated from M-C by 1980, 1470–1430, 1260, 1100–1040, 900–830 and
570–380 cm−1 spectral regions; FN-O is differentiated from FN-C by 1980, 1800, 1695,
1565, 1195, 970 and 945 cm−1 spectral peaks. PN-O can be differentiated from PN-C by
1566, 1220, 1188, 1170, 990, 935 and 665 cm−1 spectral peaks. MH-O can be differentiated
from MH-C by 1980, 1470–1430, 1260, 1110–1040, 900–830 and 570–380 cm−1 spectral
regions/peaks.

AHC derived from FTIR data has grouped both organic and conventional extracts
into two main classes/clusters. Figure 6a presents the dendrogram showing the divi-
sion into clusters and the inclusion of extracts in each cluster/subcluster (automatic
truncation-entropy, variance decomposition for the optimal classification: within-class
55.88%, between-classes 44.12%). From classifications made using AHC based on Raman
spectral data, organic and conventional extracts are similarly included into two main
clusters, as can be seen in Figure 6b (automatic truncation-entropy, variance decomposition
for the optimal classification: within-class 49.13%, between-classes 50.87%).
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As can be observed for the FTIR data (Figure 6a), AHC classification reveals two main
clusters: the first includes M-O, FN-O, PN-C and MH-O and the second includes M-
C, FN-C, PN-O and MH-C extracts; excepting the PN variety, a classification based on
vineyard type can be noticed. Also, a differentiation can be made for each grape variety,
between organic and conventional extracts (M-O vs. M-C, FN-O vs. FN-C, PN-O vs.
PN-C, MH-O vs. MH-C), corresponding extracts being assigned in the two main different
clusters. Classification based on Raman data (Figure 6b) also shows two main clusters, the
first of which includes M-O, M-C, MH-O and MH-C extracts, and the second of which
includes FN-O, FN-C, PN-O and PN-C extracts; a good classification based on vineyard
type, relative to all four varieties, cannot be observed. Compared with the FTIR data, at a
lower dissimilarity level (2 ÷ 4.5), subcluster division allows a clear classification based on
vineyard type (M-O vs. M-C, FN-O vs. FN-C, PN-O vs. PN-C, and MH-O vs. MH-C).

The first three principal component scores were retained for further analysis; classi-
fication and cross-validation by PC-DA was applied onto all extracts. The two Box tests
(Chi-squared asymptotic approximation and Fisher’s F asymptotic approximation) and
Kullback’s test, confirmed that the within-class covariance matrix is different (significance
level 5%) for both the FTIR and Raman datasets. Table 6 and Table S7–S9 list the PC-DA
results obtained based on the FTIR datasets, for Raman datasets corresponding results are
displayed in Table 7 and Table S10–S12, respectively.

Table 6. Prior and posterior classification of the red grape seeds extracts using PC-DA (FTIR
spectral data).

Membership Probabilities

Extract Prior Posterior Pr (Conventional) Pr (Organic)

M-O Organic Organic 0.000 1.000
FN-O Organic Organic 0.000 1.000
PN-O Organic Organic 0.000 1.000
MH-O Organic Organic 0.000 1.000
M-C Conventional Conventional 1.000 0.000
FN-C Conventional Conventional 1.000 0.000
PN-C Conventional Conventional 0.949 0.051
MH-C Conventional Conventional 1.000 0.000

Table 7. Prior and posterior classification of the red grape seeds extracts using PC-DA (Raman
spectral data).

Membership Probabilities

Extract Prior Posterior Pr (Conventional) Pr (Organic)

M-O Organic Organic 0.000 1.000
FN-O Organic Organic 0.000 1.000
PN-O Organic Organic 0.000 1.000
MH-O Organic Organic 0.000 1.000
M-C Conventional Conventional 0.989 0.011
FN-C Conventional Conventional 0.994 0.006
PN-C Conventional Conventional 0.899 0.101
MH-C Conventional Conventional 1.000 0.000

3.4. Multivariate Analysis Applied on Pulp Extracts Spectral Data

The results of the decomposition of the spectral FTIR and Raman data (red grape pulp
extracts) through PCA, respectively, the percentage of variability/variance explained by
each principal component (PC) and the accumulated variability are presented in Table 8.
With the first three PCs, 91.05% (i.e., FTIR data) and 91.13% (i.e., Raman data) of the total
variability of the studied data was included.
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Table 8. Variability explained by the principal components (PCs) obtained by decomposition of the
spectral data (red grape pulp extracts) using principal component analysis (PCA).

PC Number
Variability [%]

FTIR Data Raman Data

PC1 66.55 67.15
PC2 17.61 17.40
PC3 6.89 6.58
PC4 2.98 4.14
PC5 2.44 2.66
PC6 2.09 1.12
PC7 1.42 0.93

PCA score plots of the pulp extracts’ FTIR data on the first three principal components
(91.05% of the total variability) are presented in Figure 7. The bootstrap ellipses correspond-
ing to the investigated red grape varieties overlapped at different extents in all plots, and
thus incomplete separations between varieties were noticed; only the Muscat Hamburg
variety seems to be better differentiated from the rest, as can be seen in all PCs plots. For the
other three varieties, a separation between vineyard type can be clearly noticed for the Mer-
lot (Figure 7a,c), the Feteasca Neagra (Figure 7b,c), and the Pinot Noir (Figure 7a,b). The
loading plots for the first three PCs obtained using FTIR data are presented in Figure S11.
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PCA loading plots obtained by processing the pulp extracts’ spectral datasets (Figure S11)
can differentiate organic from conventional culture based on negative loading values for
PC1 (PN-O), PC2 (M-O, MH-O) and PC3 (FN-O). For the Merlot organic (M-O) the main
spectral differences, relative to the conventional one (M-C), were assigned to the following
spectral regions/peaks: 3859, 3811, 3747, 3396, 2343, 2171, 2025, 1764–1750 and 1502 cm−1.
The Feteasca Neagra organic extract (FN-O) can be differentiated from the conventional
one (FN-C) by 3965, 3923, 3800, 2987, 2460, 2360, 2341, 1558, 1506, 1041, 948 and 881 cm−1

spectral peaks. The Pinot Noir organic extract (PN-O) can be differentiated from PN-C
by the peaks in the 3950–3730, 2980–2535, 1430–1285 and 1130–947 cm−1. The Muscat
Hamburg organic extract (MH-O) can be differentiated due to 3859, 3811, 3747, 3396, 2343,
2025, 1764–1753 and 1502 cm−1 spectral peaks/regions.

From PCA Raman data score plots (Figure 8), it was observed that red grape varieties
(pulp extracts) overlap at different extents in all plots; for the FTIR data, an incomplete
separation between varieties is noticed. Vineyard type differentiation for the same grape
variety can be observed clearly for the Muscat Hamburg in all three plots. The Merlot and
Feteasca Neagra (organic vs. conventional) can be also differentiated in PC1 vs. PC2, PC1
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vs. PC2 and PC2 vs. PC3 plots. It can be noticed that the PCA score plots for both the
FTIR and Raman data of pulp extracts display almost the same clustering when compared
with corresponding plots of skin and seed extracts. There can be assigned four clusters,
two of which have been identical for both FTIR and Raman data: (i) M-O and PN-C
(FTIR and Raman); (ii) PN-O and MH-O (FTIR and Raman); (iii) FN-O and MH-C/M-C
(FTIR/Raman) and (iv) FN-C and M-C/MH-C (FTIR/Raman).
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Figure S12 shows the loading plots for the first three principal components us-
ing Raman data (red grape pulp extracts). Based on the first three PCs loading plots
(Figure S12) obtained by applying PCA on the pulp extracts’ Raman data a differentiation
between organic and conventional culture for each variety investigated can also be revealed.
The organic Merlot (M-O) can be differentiated (positive PC2 loading values) by 1874–1733,
1350–1327, 1124, 1100, 1010, 893 and 680–310 cm−1 spectral regions/peaks. The Feteasca
Neagra organic extract (FN-O) can be differentiated (negative PC3 loading values) from FN-
C by 1661, 1574, 1559, 1312, 1227–1172, 969, 702 and 629 cm−1 spectral features. The Pinot
Noir organic extract (PN-O) can be differentiated (negative PC1 loading values) by 537–393,
353, 303 and 242 cm−1 spectral regions/peaks. The Muscat Hamburg organic extract
(MH-O) can be differentiated by 1456, 1281, 1084–1073, 885, 537–393, 353 and 242 cm−1

spectral peaks due to PC1 negative loading values.
The AHC derived from the FTIR data has grouped both organic and conventional

pulp extracts into two main classes/clusters. Figure 9a presents the dendrogram showing
the division into clusters and the inclusion of extracts in each cluster/subcluster (automatic
truncation-entropy, variance decomposition for the optimal classification: within-class
63.31%, between-classes 36.69%). From classifications made using AHC based on Raman
spectral data, organic and conventional pulp extracts are similarly included into two main
clusters, as can be seen in Figure 9b (automatic truncation-entropy, variance decomposition
for the optimal classification: within-class 53.96%, between-classes 46.04%).

AHC performed on the pulp extracts’ FTIR data (Figure 9a) reveals a classification
into two main clusters, the first includes M-O, M-C, FN-C and PN-C extracts and the
second includes FN-O, PN-O, MH-O and MH-C extracts; a clear classification cannot be
noticed based on vineyard type. A differentiation can be made for each grape variety,
between organic and conventional extracts, especially for the Feteasca Neagra and the
Pinot Noir, FN-O, PN-O and FN-C, PN-C being assigned in the two main clusters. The
Merlot and Muscat Hamburg varieties can be differentiated at a lower level of dissimilarity
(2.5 for M-O vs. M-C and respectively 6.6 for MH-O vs. MH-C). Classification based on
Raman data (Figure 9b) also shows two main clusters, the first of which includes M-O,
FN-O, PN-O, MH-O and M-C extracts, and the second of which includes FN-C, PN-C
and MH-C extracts; it can be observed a classification based on vineyard type, relative to
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all four varieties, excepting Merlot. A differentiation can be made for each grape variety,
between organic and conventional extracts for the Feteasca Neagra, Pinot Noir and Muscat
Hamburg varieties, the corresponding extracts being assigned in the two main clusters.
The Merlot vineyards, M-O vs. M-C, can be differentiated at a lower level of dissimilarity
(i.e., 7.9).
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Similarly, as for skin and seed extracts, the first three principal component scores
were retained for further analysis; classification and cross-validation by PC-DA was ap-
plied onto all extracts. The two Box tests (Chi-squared asymptotic approximation and
Fisher’s F asymptotic approximation) and Kullback’s test, confirmed that the within-class
covariance matrix is different (significance level 5%) for both the FTIR and Raman datasets.
Table 8 and Table S13–S15 list the PC-DA results obtained based on the FTIR spectral data.
The corresponding results based on Raman spectral data are presented in Table 9 and
Table S16–S18.

Table 9. Prior and posterior classification of the red grape pulp extracts using PC-DA (FTIR
spectral data).

Membership Probabilities

Extract Prior Posterior Pr (Conventional) Pr (Organic)

M-O Organic Organic 0.000 1.000
FN-O Organic Organic 0.000 1.000
PN-O Organic Organic 0.000 1.000
MH-O Organic Organic 0.000 1.000
M-C Conventional Conventional 1.000 0.000
FN-C Conventional Conventional 0.991 0.009
PN-C Conventional Conventional 0.980 0.020
MH-C Conventional Conventional 0.998 0.002

4. Discussion

The red grape varieties included in the present study (Merlot, Feteasca Neagra, Pinot
Noir, and Muscat Hamburg) are used mainly in the fresh state and also for obtaining, on a
smaller segment, aromatic wines, according to OIV standard 2018 [89]. The selection of
the varieties has been made for the following reasons: (1) they are grown in both vineyard
systems (i.e., in organic, and conventional culture) thus, being able to make a comparative
evaluation of the phytochemical profile of red grape extracts; (2) the continental climate,
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with thermal amplitudes and long and sunny summers favors a good ripeness of the
grapes; (3) the chosen vineyards are in a hilly area, of different altitudes, on a slope, with
open valleys and ventilated due to the winds; (4) the approximately similar surface soil
type (black-brown clay-limestone) with calcareous subsoil [90].

For the conventional vineyard, an effective phytosanitary protection is applied (syn-
thetic systemic fungicides, but also the copper fungicide Bordeaux mixture), fertilizers, and
synthetic pesticides, which ensure a good sanitary condition of the vine and soil. If the
autumn is rainy and there is a high risk of mold attack, the technique of partial defoliation
is applied to rich foliar stems.

The process of organic cultivation of the studied Vitis vinifera L. varieties has the
advantage of using phytosanitary treatments and natural fertilization (Bordeaux juice) ap-
plied in well-established periods. The irrigation is dripping, and does not use synthetic
chemicals, which, even if they are systemically applied within the limits allowed by the
relevant legislation, alter the properties of grapes. Thus, natural grapes are obtained with-
out chemical residues. The organic vineyard highlights the fact that the use of synthetic
products for phytosanitary treatments is prohibited, and the health of the vine is ensured in
a preventive manner, being allowed only products based on simple mineral salts (copper,
sulfur, and sodium silicate), or plant extracts within the limits of the rules established by
the relevant legislation (i.e., EC Regulations no. 834/2007 and no. 889/2008).

Excepting Pinot Noir, the rest of the red grape varieties show notable differences be-
tween organic and conventional vineyards (M-O vs. M-C, FN-O vs. FN-C and respectively
MH-O vs. MH-C), the corresponding extracts for each variety, organic and conventional,
being assigned in the two main clusters.

Table 3 (FTIR data) and Table 4 (Raman data) list for each observation/extract the
probability to belong to each group; the probabilities are posterior probabilities that con-
sider the prior probabilities through Bayes formula. As it can be noticed, all the extracts,
according to the vineyard type, have not been reclassified, excepting PN-O (FTIR data);
thus, Raman spectral data can allow a better classification based on vineyard type. The
confusion matrices (Tables S1 and S4), also called classification tables, summarize the reclas-
sification of the extracts and allow viewing of the percent of well classified observations,
which is the ratio of the number of observations that have been well classified over the
total number of observations (87.5% and 100%, for FTIR and Raman data respectively).
Cross-validation allows viewing of what the prediction for a given observation would be if
it is left out of the estimation sample; as can be seen (Tables S2 and S5), all extracts have
been correctly classified according to both FTIR and Raman data; as well, the confusion
matrices for the cross-validation results for FTIR (Table S3) and Raman (Table S6) datasets
allow discernment that a correct classification has been made for the two vineyard types,
organic and conventional.

The PC-DA results obtained based on the seed extracts’ spectral data are displayed
in Table 6 (FTIR data) and Table 7 (Raman data), and lists for each observation/extract
the probability to belong to each group; the probabilities are posterior probabilities that
consider the prior probabilities through Bayes formula. As it can be noticed, all the
extracts according to the vineyard type have not been reclassified. The confusion matrices
(Tables S7 and S10), summarize the reclassification of the extracts and allow viewing of the
percent of well classified observations, which is the ratio of the number of observations that
have been well classified over the total number of observations (100.00% for both FTIR and
Raman). Cross-validation allows viewing of what the prediction for a given observation
would be if it is left out of the estimation sample; as can be seen (Tables S8 and S11), all
extracts have been correctly classified according to both FTIR and Raman data; as well,
the confusion matrices for the cross-validation results for FTIR (Table S9) and Raman
(Table S12) datasets allows discernment that a correct classification has been made for the
two vineyard types, organic and conventional.

Both PC-DA results, according with FTIR (Table 9) and Raman (Table 10) data for pulp
extracts, have shown that all the extracts, according to the vineyard type, have not been



Foods 2021, 10, 1856 17 of 23

reclassified. The confusion matrices (Tables S13 and S16) summarize the reclassification
of the extracts and allow viewing of the percent of well classified observations (100%
for both FTIR and Raman). Cross-validation allows viewing of what the prediction for
a given observation would be if it is left out of the estimation sample; as can be seen
(Tables S14 and S17), all extracts have been correctly classified according to both FTIR
and Raman data; as well, the confusion matrices for the cross-validation results for FTIR
(Table S15) and Raman (Table S18) datasets allow discernment that a correct classification
has been made for the two vineyard types, organic and conventional.

Table 10. Prior and posterior classification of the red grape pulp extracts using PC-DA (Raman
spectral data).

Membership Probabilities

Extract Prior Posterior Pr (Conventional) Pr (Organic)

M-O Organic Organic 0.000 1.000
FN-O Organic Organic 0.003 0.997
PN-O Organic Organic 0.049 0.951
MH-O Organic Organic 0.040 0.960
M-C Conventional Conventional 0.722 0.278
FN-C Conventional Conventional 1.000 0.000
PN-C Conventional Conventional 1.000 0.000
MH-C Conventional Conventional 1.000 0.000

The results obtained from this research shows that differences exist between the
hydroalcoholic extracts from different red grape culture systems (organic and conven-
tional) for Merlot, Feteasca Neagra, Pinot Noir, and Muscat Hamburg varieties, confirming
that the FTIR and Raman spectra contain important information for discriminating among
samples. Although prediction models based on chromatographic data present better per-
formances for varietal and culture discrimination [91,92], the results achieved by using
vibrational spectroscopy should be also considered due to the fact that both FTIR and
Raman techniques are rapid and simple (no sample or with minimal sample preparation),
and thus more accessible for routine investigations. Even though the screening methods
based on spectroscopic techniques represent a more accessible option for the grapes and
wine assessment, some challenges still remain. As other studies [70,93] have pointed out,
these challenges include the difficulty to compare the statistical results obtained with
different chemometric algorithms/software and guidelines that regulate the development
and validation of screening methodologies.

5. Conclusions

The process for obtaining hydroalcoholic extracts used in this study is characterized
by the following advantages: it is easy to perform and define (maceration at room tempera-
ture); it does not involve the generation of potentially toxic by-products/intermediates; and
costs are minimal, in terms of minimum energy consumption according to the principles of
“environmentally friendly” technologies. An important advantage of the extracts obtained
by this process is that they are used as a source of bioactive ingredients, plant material
from organic culture; thus eliminating potentially toxic sources that can accumulate Vitis
vinifera L., both by air (conventional spraying with pesticides or other chemical phytosani-
tary agents) and by rooting from soils with potential historical toxicity or fertilized with
various products containing synthetic chemicals.

Vitis vinifera L. hydroalcoholic extracts obtained from red grape varieties (Merlot,
Feteasca Neagra, Pinot Noir, and Muscat Hamburg) cultivated in organic and conventional
systems were analyzed by FTIR and Raman spectroscopy combined with multivariate
analysis. Spectral data were acquired and processed using the same pattern for each
different berry part (skin, seeds and pulp). Vibrational spectroscopic techniques, ATR-FTIR
and Raman, were proven useful in the differentiation of the extracts as they provided
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information on the vibrational bands which are related to the chemical composition and
structure. Multivariate analysis has allowed a separation between extracts obtained from
organic and conventional vineyards for each grape variety for all grape berry parts.

Through PCA, the results of the decomposition of the spectral FTIR and Raman data
have shown that with the first three PCs, over 91% of the total variability of the studied
data were included. Principal components analysis was able to differentiate organic and
conventional culture systems for red grape extracts (skin, seeds and pulp) for each studied
variety; overall differences derived from both score and loading plots emphasize the need
to elucidate which key compounds/classes of compounds possess discriminant ability.

For skin and seed extracts, FTIR data processing using AHC has revealed a better
classification compared with Raman data, at a lower dissimilarity level subclusters division,
allowing a classification based on vineyard type (organic vs. conventional).

Classification and cross-validation by PC-DA have shown that a chemometric ap-
proach was able to discriminate the two culture systems for skin (87.5%—FTIR data,
100%—Raman data), seeds (100%—FTIR data, 100%—Raman data) and pulp (100%—FTIR
data, 100%—Raman data) hydroalcoholic extracts.

The innovative approach presented in this work is low-cost and feasible, being ex-
pected to have applications in studies referring to authenticity and traceability of foods.
The findings of this study are useful also to solve a great challenge that producers are
confronting, namely the consumers’ distrust of the organic origin of food products.

Further analyses of the chemical composition of red grapes may enhance the capa-
bility of the method of using both the vibrational spectroscopy and chemometrics for
discriminating the hydroalcoholic extracts according to grape varieties.

Despite that the concept of the circular economy is more and more discussed in the
European Union and sustained efforts (including financial ones) are being made in order
to put in practice the concerns related to valorisation of different by-products from the
food industry, many things are still to be done to fulfil this desideratum. Grape pomace
represents a valuable source of compounds that can be integrated by the food industry
and pharmaceutics in different formulations. A first step in this demarche is a deep
knowledge of the chemical composition of grape pomace that should be also, as much as
possible, constant and/or easy to be brought to constant parameters. More than that, the
producers do not have the time nor the often-needed infrastructure for the characterization
of the grape pomace. For them, a certificate of conformity or a similar document could
solve the problem of confidence in the quality of the raw material. In this sense, the
present study aims to provide to the industry a tool for the utilization of grape extracts.
The scientific substantiation of the chemical composition of extracts obtained from skin
and seeds respectively were obtained by applying the vibrational spectroscopy analysis
combined with multivariate analysis. The seed extracts of the four red grape varieties
proved to be sources rich in phenolics and flavonoids, with a high antioxidant activity,
while the skin extracts of the organic varieties of grape could be also considered for their
bioactive compounds.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10081856/s1, Figure S1: Overlaps of Fourier transform infrared (FTIR) spectra for
red grape skin extracts: (i) M-O, (ii) M-C, (iii) FN-O, (iv) FN-C, (v) PN-O, (vi) PN-C, (vii) MH-O,
(viii) MH-C, Figure S2: Overlaps of Raman spectra for red grape skin extracts: (i) M-O, (ii) M-C,
(iii) FN-O, (iv) FN-C, (v) PN-O, (vi) PN-C, (vii) MH-O, (viii) MH-C, Figure S3: Overlaps of Fourier
transform infrared (FTIR) spectra for red grape seed extracts: (i) M-O, (ii) M-C, (iii) FN-O, (iv) FN-C,
(v) PN-O, (vi) PN-C, (vii) MH-O, (viii) MH-C, Figure S4: Overlaps of Raman spectra for red grape
seed extracts: (i) M-O, (ii) M-C, (iii) FN-O, (iv) FN-C, (v) PN-O, (vi) PN-C, (vii) MH-O, (viii) MH-C,
Figure S5: Overlaps of Fourier transform infrared (FTIR) spectra for red grape pulp extracts: (i) M-O,
(ii) M-C, (iii) FN-O, (iv) FN-C, (v) PN-O, (vi) PN-C, (vii) MH-O, (viii) MH-C, Figure S6: Overlaps of
Raman spectra for red grape pulp extracts: (i) M-O, (ii) M-C, (iii) FN-O, (iv) FN-C, (v) PN-O, (vi) PN-
C, (vii) MH-O, (viii) MH-C, Figure S7: Principal components (PCs) loadings for the first three PCs
derived from FTIR spectral data of the red grape skin extracts, Figure S8: Principal components
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(PCs) loadings for the first three PCs derived from Raman spectral data of the red grape skin extracts,
Figure S9: Principal components (PCs) loadings for the first three PCs derived from FTIR spectral
data of the red grape seed extracts, Figure S10.: Principal components (PCs) loadings for the first
three PCs derived from Raman spectral data of the red grape seed extracts, Figure S11: Principal
components (PCs) loadings for the first three PCs derived from FTIR spectral data of the red grape
pulp extracts, Figure S12: Principal components (PCs) loadings for the first three PCs derived from
Raman spectral data of the red grape pulp extracts, Table S1: Confusion matrix for the training
sample (FTIR data—red grape skin extracts), Table S2: Cross-validation (FTIR data—red grape skin
extracts): prior and posterior classification and membership probabilities, Table S3: Confusion matrix
for the cross-validation results (FTIR data—red grape skin extracts), Table S4: Confusion matrix for
the training sample (Raman data—red grape skin extracts), Table S5: Cross-validation (Raman data—
red grape skin extracts): prior and posterior classification and membership probabilities, Table S6:
Confusion matrix for the cross-validation results (Raman data—red grape skin extracts), Table S7:
Confusion matrix for the training sample (FTIR data—red grape seed extracts), Table S8: Cross-
validation (FTIR data—red grape seed extracts): prior and posterior classification and membership
probabilities, Table S9: Confusion matrix for the cross-validation results (FTIR data—red grape seed
extracts), Table S10: Confusion matrix for the training sample (Raman data—red grape seed extracts),
Table S11: Cross-validation (Raman data—red grape seed extracts): prior and posterior classification
and membership probabilities, Table S12: Confusion matrix for the cross-validation results (Raman
data—red grape seed extracts), Table S13: Confusion matrix for the training sample (FTIR data—red
grape pulp extracts), Table S14: Cross-validation (FTIR data—red grape pulp extracts): prior and
posterior classification and membership probabilities, Table S15: Confusion matrix for the cross-
validation results (FTIR data—red grape pulp extracts), Table S16: Confusion matrix for the training
sample (Raman data—red grape pulp extracts), Table S17: Cross-validation (Raman data—red grape
pulp extracts): prior and posterior classification and membership probabilities, Table S18: Confusion
matrix for the cross-validation results (Raman data—red grape pulp extracts).
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