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Abstract
Background and Purpose: Subarachnoid hemorrhage (SAH)-induced cerebral vasos-
pasm and early brain injury is a fatal clinical syndrome. Cerebral vasospasm and early 
brain injury are associated with inflammatory response and oxidative stress. Whether 
curcumin, which plays important roles to regulate inflammatory cytokines and inhibit 
oxidative stress, inhibits SAH-induced inflammation and oxidative stress are largely 
unknown.
Methods: Adult male rats underwent autologous blood injection into prechiasmatic 
cistern to induce SAH. Curcumin (150 mg/kg) was administered at 0.5, 24 and 48 hr 
post-SAH. Mortality calculation and neurological outcomes as well as morphological 
vasospasm of anterior cerebral artery were studied. Superoxide dismutase, lipid per-
oxidation, and inflammatory cytokines (MCP-1 and TNF-α) expression in prefrontal 
region were quantified. Furthermore, p65 and phosphor-p65 were quantitatively 
analyzed.
Results: Curcumin remarkedly reduced mortality and ameliorated neurological deficits 
after SAH induction (p < .05); morphological results showed that cerebral vasospasm 
in curcumin-treated group was mitigated (p < .05). SAH-induced MCP-1 and TNF-α 
overexpression were inhibited in curcumin-treated group (p < .05). Importantly, phos-
phor-p65 was significantly inhibited after curcumin treatment (p < .05).
Conclusions: Curcumin can inhibit SAH-induced inflammatory response via restricting 
NF-κB activation to alleviate cerebral vasospasm and early brain injury.

K E Y W O R D S

cerebral vasospasm, curcumin, early brain injury, inflammation, NF-κB, subarachnoid 
hemorrhage

1  | INTRODUCTION

Subarachnoid hemorrhage (SAH), which is mostly resulted from 
rupture of cerebral aneurysm, is a high mortality and morbidity 

devastating condition, accounting for 5% of all strokes and affecting 
2 in 100,000 Chinese people annually (over 30,000 in total) (Bederson 
et al., 2009; Ingall, Asplund, Mahonen, & Bonita, 2000). Early brain 
injury (EBI) and cerebral vasospasm (CV) are considered the leading 
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causes of death and disability in patients suffering SAH (Macdonald, 
Pluta, & Zhang, 2007; Sehba, Pluta, & Zhang, 2011; Suarez, Tarr, & 
Selman, 2006; Wang et al., 2012). EBI is the product of pathological 
mechanism triggered by oxidative stress, inflammation, cell death and 
so on, the mechanism of which needs to be elucidated (Hasegawa, 
Suzuki, Sozen, Altay, & Zhang, 2011; Sehba et al., 2011). Increasing 
evidence presented that inflammatory response and oxidative stress 
were involved in the mechanism of CV following SAH (Laban et al., 
2015; Zhao, Wen, Dong, & Lu, 2016). These two devastating injured 
mechanisms were assessed in this study.

Curcumin (diferuloylmethane) is an active component of turmeric 
derived from the root of the Curcuma longa Linn. Due to its multi-
ple properties of anti-inflammatory, antioxidant, anti-apoptosis, and 
anticancer, curcumin was used in several preclinical and clinical trials, 
such as in cancer, atherosclerosis, aging, neurodegenerative disease, 
hepatic disorders, obesity, diabetes, AIDS, psoriasis, and autoimmune 
diseases (Shishodia, 2013). In addition, it displayed diverse and signifi-
cant neuroprotective effects in experimental researches, such as isch-
emic stroke, traumatic brain injury, and intracranial hemorrhage (Jiang 
et al., 2007; Sun et al., 2011; Wang, Gu, Qin, Zhong, & Meng, 2013; 
Wu, Ying, & Gomez-Pinilla, 2006). The therapeutic effects of curcumin 
have been confirmed after SAH. Curcumin was reported to be capable 
of decreasing mortality and attenuating oxidative stress and cerebral 
vasospasm (basilar artery) following SAH induction (Kuo et al., 2011; 
Wakade, King, Laird, Alleyne, & Dhandapani, 2009; Yuan et al., 2017; 
Zhang, Kong, Wang, Xu, & Zhu, 2016). However, more information 
detailing neuroprotective abilities of curcumin following SAH need to 
be delineated. We designed present study to observe the protective 
effects of curcumin in SAH rats. We also evaluated the changes of in-
flammatory factors, oxidative stress, and transcriptional factors during 
the course of SAH induction; and assessed the connections of these 
neurotoxic factors and curcumin administration.

2  | METHODS

2.1 | Animal groups and study design

Animal procedures were carried out according to a protocol ap-
proved by the Institutional Animal Care and Use Committee (IACUC) 
at Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 
China. One hundred and eighty-four Sprague–Dawley rats (Medical 
Laboratory Animal Center of Guangdong, Guangzhou, China) weigh-
ing 300–350 g (12–14 weeks) were used in this study. The rats, which 
were housed in the animal room at 22–24°C with 12-hour light/dark 
circle and free access to food and water, were randomized into sham 
group (n = 36), SAH group (SAH, n = 55), vehicle group (VEH, n = 51), 
and curcumin group (CUR, n = 42).

Rats from SAH, VEH, and CUR groups were underwent SAH in-
duction; while animals from sham group were subjected to sham op-
eration. Mortality rates were calculated for all groups 48 hr after SAH 
induction.

The sham operation consisted of calvarium incising, skull 
burr hole drilling, and autologous blood collecting; instead of 

injecting autologous blood into prechiasmatic cistern. Following 
blood injection, rats of curcumin group or vehicle group were in-
traperitoneally injected with 150 mg/kg curcumin (dissolved 
into 10% dimethyl sulfoxide solution) or equal volume 10% di-
methyl sulfoxide solution. Mortality calculation and neurological 
deficit assessment were performed 48 hr after SAH induction. 
Following neurobehavioral evaluation, all rats were killed for his-
tological measurement, oxidative stress evaluation, and molecular  
analysis.

The basic sample sizes of rats were 36 each group for neuro-
behavioral assessment, histological measurement, oxidative stress 
evaluation, TUNEL assay, quantitative real-time PCR analyses, and 
western-blot analyses. The rats from all groups were randomly dis-
tributed for neurological deficits assessment (n = 8), histological 
measurement (n = 6), determination of superoxide dismutase (SOD) 
activity, malondialdehyde (MDA) content (n = 6), quantitative real-
time PCR (n = 6), TUNEL staining (n = 5) and western-blotting (n = 6). 
To make up for the loss following SAH induction, we augmented the 
sample sizes of some groups. In addition, all animals were included 
for statistical analyses in this study. The study design is displayed in 
Figure 1a.

2.2 | Induction of SAH

The rats from all groups were anesthetized via chloral hydrate 
(35 mg/kg) ip. After anesthesia, a heating pad (RWD Life Science 
Co.; Shenzhen, China) was used to maintain animal temperature at 
37.0 ± 0.5°C. Nonheparin blood was extracted from left femoral 
artery. Rats were fixed in a stereotactic frame (RWD Life Science 
Co.; Shenzhen, China) and placed in a prone position. The modi-
fied protocol of induction of SAH has been previously reported (Cai 
et al., 2012, 2013); and a brief description is as follows: A burr hole 
at 0.5 mm right away from midline and 7.5 mm anterior to bregma 
was drilled. Autologous blood was collected into a 1 ml syringe with 
a 27-gauge needle, which was controlled by a micro-injecting pump 
(World Precision Instruments Inc., Sarasota, FL, USA). The 27-gauge 
needle was inserted into the hole and tilted 30° in the sagittal plane; 
if the needle was into prechiasmatic cistern, transparent cerebrospi-
nal fluid (CSF) was back-flowed into the syringe. Then, 200 μl non-
heparin, autologous blood was injected into prechiasmatic cistern 
mechanically. A multipurpose physiological apparatus (PowerLab, 
AD-instrument Co., Australia) was used to continuously monitor in-
tracranial pressure (ICP) changes during SAH induction, as reported 
previously (Barth, Onesti, Krauss, & Solomon, 1992; Cai et al., 2012, 
2013).

2.3 | Mortality calculation and neurological 
deficit assessment

Mortality calculation of all groups was performed 48 hr after SAH 
induction. After mortality calculation, the rats of all groups were 
subjected to neurobehavioral evaluation by a blind observer via an 
18-point system (Garcia, Wagner, Liu, & Hu, 1995).
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2.4 | Histological measurement

The caliber and wall thickness of anterior cerebral artery (ACA) were 
measured in hematoxylin and eosin (HE) staining slices; HE staining 
was performed through a commercial kit (Beyotime Biotechnology; 
Jiangsu, China). Following euthanasia, the brains were fixed in 4% par-
aformaldehyde for 24 hr. Brain samples vertical to ACA (Data S1) were 
collected via an operating microscope (Carl Zeiss AG; Heidenheim, 
Germany) as reported previously (Cai et al., 2012, 2013). The 4-μm 
thick slices, which were stained with HE, were viewed under a light 
microscope (Leica Co., Wetzlar, Germany). Caliber and wall thickness 
of ACA were measured at the bifurcation of ACA and Olfactory ar-
tery by an observer blindly using the Image J software (NIH Program; 

Bethesda, MD, USA). The caliber and wall thickness of ACA in all 
groups were averaged from several brain samples (n = 6).

2.5 | Determination of SOD activity and 
MDA content

The SOD activity in the area of frontal lobe, which was adjacent to 
blood injection site, was measured according to xanthine oxidase 
method via a standard assay kit (Nanjing Jiancheng Bioengineering 
Institute, #A001-3, PubMed: 24505260; Nanjing, China). The 
xanthine-xanthine oxidase system was used to produce superoxide 
ions, which reacted with 2-(4-iodophenyl)-3-(4-nitrophenol-5-phenly
ltetrazolium chloride). The rate of the reduction with O2 was linearly 
related to the xanthine oxidase (XO) activity, and is inhibited by SOD; 
therefore, the value of SOD activity in frontal lobe could be defined 
via spectrophotometric measurement.

Lipid peroxidation was evaluated by measuring MDA concen-
trations according to the thiobarbituric acid (TBA) method through 
a standard assay kit (Nanjing Jiancheng Bioengineering Institute, 
#A003-1, PubMed: 24058471). The principle of this assay was based 
on the reaction of TBA and MDA, which could be determined via spec-
trophotometric measurement.

These abovementioned procedures were performed according to 
the manufacturer’s instructions. The values of SOD and MDA in all 
groups were averaged from several brain samples (n = 6).

2.6 | Quantitative real-time PCR

We evaluated inflammatory response in SAH rats via measuring the 
mRNA of Monocyte Chemoattractant Protein-1 (MCP-1) and tumor 
necrosis factor-α (TNF-α). The levels of MCP-1 and TNF-α mRNA 
were determined by TaqMan real-time PCR (n = 6). Total RNA was iso-
lated from frontal lobe with Trizol reagents (Invitrogen, #15596018, 
PubMed:12411577; Carlsbad, CA, USA) according to the manufactur-
er’s instructions. A PrimeScript RT reagent kit (TaKaRa Bio; Shiga, Japan) 
was used for synthesizing cDNA templates from the total RNA. The 
primers were synthesized by Yingjun Biotechnology (Shanghai, China) 
and are shown in Table 1. Quantitative real-time PCR was proceeded 
through a model 7700 sequence detector (PE Applied Biosystems; 
Chiba, Japan) via a TaqMan PCR reagent kit (Invitrogen, #4392938, 
PubMed:22885101). The experiments were repeated twice.

2.7 | Terminal deoxynucleotidyl transferase-
mediated dUTP nick end labeling staining and 
apoptotic cells calculation

TUNEL technique was used to detect cell apoptosis in frontal lobe via 
an in situ cell death detection kit (Roche Diagnostics GmbH, Roche 
Applied Science, #12156792910 PubMed: 24831012; Penzberg, 
Germany) according to the protocol of the kit. An immunofluores-
cence analysis of neurons with antibody against the neuronal marker 
protein-NeuN (Millipore, #MAB377, PubMed: 26373451; Billerica, 
MA), TUNEL staining, and DAPI (Molecular Probes, #D1306, PubMed: 

F IGURE  1 Study design of present study (a) and the changes 
of intracranial pressure during subarachnoid hemorrhage (SAH) 
induction (b). (a) Intracranial pressure (ICP) of animals were monitored 
during SAH induction. Rats from all groups were subjected to NBA 
(neurobehavioral assessment), histological measurement (HE), 
superoxide dismutase, malondialdehyde measurement, TUNEL 
staining, PCR, and western blot (WB) analyses 2 days after SAH 
induction. (b) Line graphs display ICP changes of four animal groups 
during nonheparin autologous blood injecting into prechiasmatic 
cistern. ICP of sham group maintain at a stable level; ICP of SAH, 
vehicle, and curcumin groups remarkedly increased immediately 
after blood injection, and, slowly decreased with time. Data are 
means ± SEM; n = 5. SAH, subarachnoid hemorrhage
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11500852; Eugene, OR) staining were performed in specific area of 
frontal lobes (Figure 4b) to calculate TUNEL-positive cells. In each 
section of rat brain, three nonoverlapping visual fields were chosen 
randomly within the regions of interest. A minimum of 300 cells were 
counted, and those cells with NeuN, TUNEL-positive, and intense 
chromatin clumping (DAPI staining) were counted as neuronal apop-
totic cells. The positive cells were distinguished, counted, and ana-
lyzed under a light microscope by an observer blinded to the study. 
The results of apoptotic cells calculation were averaged from several 
rats in each group (n = 5).

2.8 | Western blotting

The frozen brain samples were homogenized with RIPA buffer 
(Cell Signaling Technologies, #9806, pubmed: 20581862; Beverly, 
MA, USA) containing protease and phosphatase inhibitor cocktail 
(Roche Diagnostics GmbH, Roche Applied Science, #05892791001 
& #04906837001, PubMed: 22268099 & 22453918; Penzberg, 
Germany); and, lysed with a buffer containing 20 mmol/L Tris (pH 
7.6), 0.2% SDS, 1% TritonX-100, 1% deoxycholate, 1 mmol/L phenyl-
methylsulfonyl fluoride, and 0.11 IU/ml aprotinin. All the ingredients 
were purchased from Sigma-Aldrich. The total protein was extracted 
from the brain samples and subjected to an 8% SDS-PAGE (n = 6). The 
following antibodies were used: polyclonal antibodies against MCP-1 
(1:1,000 dilution; Abcam, #ab25124,PubMed: 21750230; Cambridge, 
MA, USA), TNF-α (1:1,000 dilution; Abcam, #ab6671,PubMed: 
26408546), P65 (1:1,000 dilution; Cell Signaling Technology, #6956S, 
Clone No. L8F6, PubMed: 27716383; Beverly, MA, USA), and phos-
phorylated P65 (1:1,000 dilution; Cell Signaling Technology, #3033S, 
Clone No. 93H1, PubMed: 28165507). We chose β-actin (1:6,000 dilu-
tion; Sigma-Aldrich, #A5441, Clone No. AC-15, PubMed: 28276506; St 
Louis, MO, USA) as the secondary antibody. The densitometry analyses 
of the western blots were performed with Glyko Bandscan software 
(Glyko; Novato, CA, USA). The experiments were conducted at least 
three times.

2.9 | Statistical analyses

The data are shown as the means ± the standard error of the means 
(SEMs). A one-way analyses of variance (ANOVA) followed by a 
Student, Newman–Keuls or Dunnett’s post hoc test were utilized for 
the comparisons between more than two groups. Besides, mortality 
rate was compared by chi-square test. SPSS 18.0 (SPSS, Chicago, IL, 
USA) was used for the statistical analyses, and the statistical signifi-
cance was set at p < .05.

3  | RESULTS

3.1 | ICP monitor confirmed the uniformity of SAH 
models in all groups

The ICP changes of all animals were recorded during SAH induction 
(The ICP values of 5 min before SAH induction and 5, 10, 15, 20, 25, 
30, 35, 40, 45, 50, 55, 60 min after SAH induction were recorded). We 
displayed the ICP changes (n = 5) during blood injection in Figure 1b. 
According to the ICP changes, the uniformity of SAH models from all 
SAH induction groups was verified.

3.2 | Curcumin decreased mortality and  
ameliorated neurological deficits following 
SAH induction

We calculated the mortality of all groups 48 hr after blood injection; 
the mortality of sham, SAH, VEH, and CUR groups were 0 (0/36), 25% 
(14/55), 22% (11/51), and 13% (5/42), respectively, which is displayed 
in Figure 2a. Mortality in CUR group was lower than other SAH in-
duction groups (SAH and VEH groups). However, there was no sig-
nificant difference between SAH and CUR groups with chi-square test 
(p > .05).

Neurological deficits assessment was performed following mor-
tality calculation. According to an 18-point neurobehavioral score 
system, The values of neurobehavioral scores in sham, SAH, VEH, and 
CUR groups were 18, 8.4 ± 0.5, 7.9 ± 0.7 and 14.7 ± 0.7, respectively. 
The rats of sham group did not suffer any neurological deficits. Rats 
from SAH, VEH, and CUR groups presented neurological dysfunction 
compared to sham group (p < .05). However, the value of neurobe-
havioral evaluation (Figure 2a) disclosed CUR group suffered minor 
neurological deficits compared to SAH and VEH groups (p < .05).

3.3 | Curcumin ameliorated cerebral vasospasm after 
SAH induction

Inner diameter and vessel wall thickness of ACA were measured on 
HE stained slices to evaluate cerebral vasospasm. The average inner 
diameters of sham, SAH, VEH and CUR groups were 232.3 ± 6.44, 
96.9 ± 4.11, 110.5 ± 6.24, and 172.6 ± 7.23 μm, respectively. The 
average vessel wall thickness of these four groups was 7.4 ± 0.49, 
21.2 ± 2.05, 19.9 ± 2.32, and 16.9 ± 1.62 μm, respectively. Inner 
diameter of ACA in CUR group was remarkedly larger than that in 
SAH group (p < .05). Vessel wall thickness in CUR group was smaller 
than that in SAH group (p > .05). Cross section of normal ACA was 

TABLE  1 The primers of MCP-1 and TNF-α used in this study

Target genes Sense primer (5′–3′) Antisense primer (5′–3′)
Annealing 
temperature (°C)

Number of 
cycles Size (bp)

MCP-1 GCTTCTGGGCCTGTTGTTCAC CACAGATCTCTCTCTTGAGCTTG 60 40 1228

TNF-α GTGATCGGTCCCAACAAGGAG GTCTTTGAGATCCATGCCATTGG 62 40 1142

β-Actin CACCCGCGAGTACAACCTTC GACCCATACCCACCATCACAC 61 40 209
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displayed in Figure 3Ba; cross section of typical vasospastic ACA  
was showed in Figure 3Bb; ACA cross section of curcumin-treated 
was exhibited in Figure 3Bd.

3.4 | Curcumin alleviated SAH-induced 
oxidative stress

The activity of SOD was significantly activated into frontal lobes after 
SAH induction, as quantified by xanthine oxidase method via a stand-
ard assay kit. According to Figure 2b, SOD activity of SAH group was 
pronouncedly increased compared to the control (p < .05); SOD ac-
tivity of curcumin-treated rats was remarkedly limited compared to 
SAH-induced rats (p < .05).

MDA is a highly reactive compound that results from lipid perox-
idation of polyunsaturated fatty acids within normal in living bodies. 
MDA level was restrained by SAH induction. According to Figure 2b, 
MDA level of SAH group was prominently decreased compared to 
sham group (p < .05); whereas, to some extent, curcumin treatment 
could restored MDA level compared to SAH-induced rats (p < .05).

3.5 | Curcumin limited tissue inflammation induced 
by SAH

MCP-1 and TNF-α were used to reflect inflammatory response in 
the area of frontal lobe in this study. The mRNA levels of MCP-1 and 
TNF-α were remarkedly increased by SAH induction according to 

F IGURE  2 The differences in mortality, 
neurological deficits assessment, oxidative 
stress evaluation, and proinflammatory 
cytokines of all groups. (a) Mortality and 
neurobehavioral scores of all groups 
are displayed as bar graphs. Data are 
means ± SEM; n = 8; *p < .05; ns, not 
significant. (b) Superoxide dismutase 
activities and malondialdehyde levels 
of all groups are shown in bar graphs. 
Data are means ± SEM; n = 6; *p < .05; 
ns, not significant. (c) mRNA activities 
of proinflammatory cytokines of MCP-1 
and TNF-α in all groups are shown in bar 
graphs. Data are means ± SEM; n = 6; 
*p < .05; ns, not significant



6 of 10  |     CAI et al.

Figure 2c, compared to sham group (p < .05). However, the increasing 
mRNA expressions of MCP-1 and TNF-α could be limited by curcumin 
treatment (p < .05).

The protein quantities of MCP-1 and TNF-α were also analyzed via 
western blot technique. According to Figure 5a, b, the protein expres-
sions of MCP-1 and TNF-α were significantly increased by SAH induction 
compared to sham group (p < .05). MCP-1 and TNF-α were quantitatively 
decreased in curcumin-treated group compared to SAH group (p < .05).

3.6 | Curcumin reduced cell apoptosis after 
SAH induction

After autologous blood injecting into prechiasmatic cistern, apoptotic 
cells remarkedly increased in frontal lobe according to Figure 4a,c 
(p < .05). In normal status, the apoptotic rate was about 5% (sham 
group); however, the apoptotic rate pronouncedly increased to 74% 
following SAH induction (SAH group). Otherwise, curcumin treatment 

F IGURE  3 Anterior cerebral artery (ACA) photomicrographs. (A) A sketch shows coronal section of rat brain, and, points out the portions in 
which ACA samples are collected using dotted square. (B & C) ACA photomicrographs with HE staining display ACA cross sections (including 
vessel caliber and vessel wall thickness) of sham (a), subarachnoid hemorrhage (b), vehicle (c), and curcumin (d) groups. Data are means ± SEM; 
n = 8; *p < .05; ns, not significant. Scale bar = 20 μm

(a)

(c)

(b)

a b

c d

F IGURE  4 Terminal deoxynucleotidyl 
transferase-mediated dUTP nick end 
labeling (TUNEL) staining in frontal lobe. 
(a) Fluorescent photomicrographs exhibit 
typical TUNEL staining of frontal lobe in 
all groups. (b) A sketch is used to delineate 
the portions (shade), which were adopted 
to observe and calculate apoptotic 
neurons. (c) Bar graphs show subarachnoid 
hemorrhage-induced cell apoptosis is 
restrained by curcumin treatment. Data 
are means ± SEM; n = 5; *p < .05; ns, not 
significant
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could restored the apoptotic rate to 29%, which was significantly less 
than SAH group (p < .05).

3.7 | Curcumin restrained SAH-activated NF-κB

NF-κB as a transcription factor that participates in various biological 
processes, including inflammation. P65 was chosen to be assessed in 
this study. The protein quantity of P65 was analyzed via western blot 
technique. Total P65 in frontal lobe of rats from all groups were similar 
(p > .05). Compared to the control, phosphorylated P65 was remark-
edly increased after SAH induction (Figure 5); however, increased P65 
expression could be inhibited in curcumin-treated group (Figure 5; 
p < .05).

4  | DISCUSSION

Including prechiasmatic cistern injection model, common mortality of 
experimental SAH rats were various from 9% to 100% (Gules, Satoh, 
Clower, Nanda, & Zhang, 2002; Lee, Huang, Keep, & Sagher, 2008; Lee, 
Sagher, Keep, Hua, & Xi, 2009; Park et al., 2008; Prunell, Mathiesen, 
& Svendgaard, 2002). In present study, the mortality of SAH and VEH 
group were 25% and 22%, respectively, which were similar to other 
studies using this injection model (Boettinger et al., 2017; Dou et al., 
2017). However, about 87% of the rats treated with curcumin sur-
vived from SAH induction (The mortality of curcumin-treated rats 
were 13%). In addition, neurological deficits assessment disclosed 
that the rats treated with curcumin suffered less neurological deficits, 
compared to the SAH rats. We conclude that following SAH induction, 
mortality and neurological assessment were two parallel parameters, 
less mortality less neurological loss. And, we identified that curcumin 

treatment after SAH induction could effectively ameliorate neurologi-
cal loss as well as decrease mortality.

TNF-α and MCP-1 are both proinflammatory cytokines that are 
associated with oxidative stress, cell death, and recruitment of inflam-
matory mediators (Niwa et al., 2016; Przybycien-Szymanska & Ashley, 
2015). A number of inflammatory mediators were confirmed to be up-
regulated after SAH include TNF-α and MCP-1 (Dumont et al., 2003; 
Rahmanian et al., 2015; Wu et al., 2016). The mRNA and protein ex-
pressions of TNF-α and MCP-1 were detected to be remarkedly in-
creased 2 days after SAH induction in this study (Figures 2 and 5). A 
prospective clinical study reported that the elevated TNF-α expression 
in serum on 2–3 days after aneurismal SAH was correlated with poor 
clinical outcomes (Chou et al., 2012). We found that curcumin treat-
ment inhibited mRNA and protein expressions of TNF-α and MCP-1.

It was reported that the pathophysiologic consequences of an an-
eurysmal SAH led not only to vasospasm but also to a global isch-
emic injury to the brain; this kind of brain injury is called EBI (Cahill & 
Zhang, 2009). The pathophysiologic changes of EBI are comprised of 
cell death (necrosis, apoptosis and autophagy), oxidative stress, and 
inflammatory response (Sehba, Hou, Pluta, & Zhang, 2012). In this 
study, SAH-induced neuron apoptosis (Figure 4) and oxidative stress 
(Figure 2b) could be attenuated by curcumin treatment. So essentially, 
curcumin is capable of ameliorating SAH-induced EBI.

P65 is one of the NF-κB family of transcription factors, which 
participates in various biological processes, including immune re-
sponse, inflammation, development, cell growth, and survival 
(Hayden & Ghosh, 2008; Vallabhapurapu & Karin, 2009). As one of 
the most abundant and well-characterized NF-κB dimer, P65 (RelA) 
translocate to nuclear and drive transcriptional response (Hayden & 
Ghosh, 2008; Karin & Ben-Neriah, 2000; Vallabhapurapu & Karin, 
2009). Phosphorylated form of P65/RelA is specifically required to 

F IGURE  5 Expressions of proinflammatory cytokines and P65 in frontal lobe. (a) Representative autoradiogram of MCP-1, TNF-α, total P65, 
and phosphorylated P65 expressions measured by western blot are displayed. (b) The proinflammatory cytokines and phosphorylated P65 are 
displayed in bar graphs. Data in subarachnoid hemorrhage, vehicle, and curcumin groups are normalized to sham group. Data are means ± SEM; 
n = 6; *p < .05; ns, not significant
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activate transcriptional responses, including inflammatory response 
(Jamaluddin, Wang, Boldogh, Tian, & Brasier, 2007; Nicodeme et al., 
2010; Nowak et al., 2008; Vermeulen, De Wilde, Van Damme, Vanden 
Berghe, & Haegeman, 2003; Zhong, SuYang, Erdjument-Bromage, 
Tempst, & Ghosh, 1997). In this study, phosphorylated P65 was de-
tected to be significantly up-regulated following SAH induction. The 
inhibitory modification of the inflammatory mediators (TNF-α and 
MCP-1) was consistent with restraint of P65 activation after curcumin 
treatment following SAH induction. In addition, SAH-induced patho-
physiologic changes of EBI were ameliorated by curcumin treatment. 
We postulated that curcumin might inhibit NF-κB canonical pathway 
to attenuate SAH-induced CV and EBI (Figure 6).

To alleviate SAH-induced CV, a number of medications have been 
tested in clinic and laboratory. Nimodipine, a dihydropyridine calcium 
channel blocker, is the most widely used and the only effective phar-
macologic intervention to prevent and cure CV in practice (Francoeur 
& Mayer, 2016). Nonetheless, there was no definite connection with 
angiographic alleviation and functional improvement (Laskowitz & 
Kolls, 2010). Moreover, radiographic vasospasm improvement lacks 
evidence to declare its neural functional amelioration in CV (Polin 
et al., 2000). It should be pointed out that EBI may be the primary 
cause of mortality in SAH patients (Cahill & Zhang, 2009). Curcumin 
may be a promising endeavor in near future.

In summary, curcumin might be capable of inhibiting SAH-induced 
inflammatory response via restricting NF-κB activation to alleviate 
cerebral vasospasm and early brain injury.
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