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Loss of Earth system resilience during early Eocene
transient global warming events
Shruti Setty1*, Margot J. Cramwinckel2, Egbert H. van Nes1, Ingrid A. van de Leemput1,
Henk A. Dijkstra3,4, Lucas J Lourens2, Marten Scheffer1, Appy Sluijs2

Superimposed on long-term late Paleocene–early Eocene warming (~59 to 52 million years ago), Earth’s climate
experienced a series of abrupt perturbations, characterized by massive carbon input into the ocean-atmosphere
system and global warming. Here, we examine the three most punctuated events of this period, the Paleocene-
Eocene Thermal Maximum and Eocene Thermal Maximum 2 and 3, to probe whether they were initiated by
climate-driven carbon cycle tipping points. Specifically, we analyze the dynamics of climate and carbon cycle
indicators acquired from marine sediments to detect changes in Earth system resilience and to identify positive
feedbacks. Our analyses suggest a loss of Earth system resilience toward all three events. Moreover, dynamic
convergent cross mapping reveals intensifying coupling between the carbon cycle and climate during the long-
term warming trend, supporting increasingly dominant climate forcing of carbon cycle dynamics during the
Early Eocene Climatic Optimum when these recurrent global warming events became more frequent.
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INTRODUCTION
As anthropogenic carbon dioxide emissions continue, ongoing
global warming might strengthen positive feedbacks that can
propel abrupt change in sensitive components of the Earth system
(1). Particularly important is the possibility of rapid discharge from
excitable carbon reservoirs, further exacerbating future global
warming. The exchange of carbon between reservoirs and the func-
tioning of the global carbon cycle are strongly time scale dependent
(Fig. 1). On geologically short time scales of up to tens of thousands
of years, carbon moves through the global exogenic cycle of the
ocean, atmosphere, biosphere, surface sediments, and soils. The
cycling of carbon on time scales of several hundreds of thousands
of years and longer includes exchange between the aforementioned
exogenic reservoirs and the rock reservoir through volcanism and
carbon burial (2). The processes operating on these different time
scales can interlink, as slow-storage reservoirs, termed carbon ca-
pacitors or tipping elements (Fig. 1), may abruptly release carbon
in response to a faster climate forcing, only to be recharged on
much longer time scales (3, 4). Such self-enforcing carbon cycle
feedbacks include permafrost thawing in response to climate
change that may trigger biochemical heat release, thereby propelling
the thaw further (5). Other reservoirs that might release carbon
abruptly include submarine methane hydrates (6) and peatlands
(7). In turn, abrupt changes in one of these reservoirs might
trigger a response in others through so-called tipping cascades (8,
9). Constraining the direction and strength of these feedbacks is
crucial for adequate climate projections and adaptations, not only
for the next century but also for the generations living in centuries
and millennia to come (10).

The geological record contains Earth’s climate history and is our
most important test bed to quantify climate-carbon cycle interac-
tions on time scales longer than the reach of observations. During
the Cenozoic era [66 million years (Ma) ago to present], the highest-
amplitude coupled carbon cycle-climate variations were the tran-
sient global warming and carbon cycle disruptions during the late
Paleocene–early Eocene (~60 to 50 Ma ago), which are informally
termed “hyperthermal events” or “hyperthermals.” The onset of the
hyperthermals marks rapid climate warming and massive carbon
injection into the global exogenic reservoir (Fig. 1) from a still-
debated source, and these events are depicted by severe ocean acid-
ification and by large negative excursions in stable carbon isotope
ratios (δ13C) in sedimentary sequences (11–14). Most, if not all, hy-
perthermal events were paced by changes in (regional) solar insola-
tion through Earth’s orbital cycles, notably the eccentricity
metronome of Earth’s orbit around the sun (14–16). These orbital
cycles drive only minimal changes in the radiative forcing, implying
an important role for amplifying feedbacks, especially processes in
the exogenic carbon cycle. Moreover, the superposition of hyper-
thermal events on long-term multimillion year changes in the
carbon cycle and climate suggests a link between slow storage and
fast release of carbon (4, 17, 18). Indicators for anomalous changes
such as warming (19, 20) and carbon cycle change (21, 22), just
before the carbon isotope excursion of the Paleocene-Eocene
Thermal Maximum (PETM), have built a strong suspicion that pos-
itive carbon cycle feedbacks were involved in amplifying the initial
warming leading to this event. Although carbon release from peat
and soil organic carbon (23), permafrost (24), and/or submarine
methane hydrates (3) have been proposed as possible sources, evi-
dence for carbon input from any of these reservoirs is lacking. Ac-
cumulating evidence suggests that volcanic carbon emissions were
important during the PETM (21, 25–27). The crucial difference
between these carbon sources is that volcanic emissions are
largely decoupled from processes on Earth’s surface, while the cat-
astrophic release of carbon from potential carbon capacitors may be
governed by climate and, thus, orbital cycles and associated feed-
backs (Fig. 1). Therefore, beyond the identification of the specific
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carbon source, the central question is whether these hyperthermal
events were mainly externally forced (e.g., by volcanic emissions) or
internally driven by positive feedbacks within the coupled climate-
carbon cycle system, resulting in an amplified response to small or-
bitally paced climate variation.

Late Paleocene–early Eocene climate and carbon cycle variability
can be assessed from an 18.3-Ma-long dataset of paired deep ocean
benthic foraminiferal oxygen (δ18O) and stable carbon isotope
(δ13C) ratios from the South Atlantic Ocean (Figs. 1 and 2, A and
B) (16, 28). These records are of high resolution (1.5 to 4 ka) and are
stratigraphically complete, with a well-resolved age model. The var-
iability in the δ18O record dominantly reflects deep ocean temper-
ature variability as continental ice sheets were largely absent. In
turn, deep ocean temperature variability relates strongly to the
global average temperature, which was governed by the atmospheric
CO2 concentrations and associated feedbacks (29, 30). The variabil-
ity in the δ13C record reflects the δ13C signature of the dissolved
inorganic carbon (DIC) of the deep ocean (δ13C-DIC), which is
the dominant reservoir in the global exogenic carbon pool
(Fig. 1). On time scales of up to 104 years, it reflects the redistribu-
tion of carbon with different δ13C values, notably resulting from
organic matter production and processing, between oceanic, atmo-
spheric, biogenic, and surficial sediment (soils and sea floors)

reservoirs (31). On time scales of up to 105 years, carbon with dis-
tinctly low δ13C values (13C-depleted) may also be stored in peat and
methane hydrates, leaving the oceanic DIC with high δ13C values
(13C-enriched) (4). The negative carbon isotope excursions ob-
served across hyperthermal events have been related to massive
carbon release from such reservoirs (Fig. 1) (3, 20). On even
longer, multimillion year time scales, whole-ocean δ13C-DIC is
controlled by the burial of 13C-depleted organic carbon relative to
13C-enriched carbonate in the rock reservoir (2) and possibly by
methane hydrate dynamics (17).

In this study, we target the deep ocean benthic foraminifer δ18O
and δ13C records for climate and carbon cycle variability, respec-
tively, to constrain the strength of external drivers versus internal
carbon cycle feedbacks and Earth system resilience using mathe-
matical approaches based on the theory of dynamical systems.
Loss of resilience is an attribute displayed by complex systems
with alternative stable states, such as the Earth system, as changing
conditions cause them to approach a “tipping point”. More specif-
ically, in the vicinity of the classical tipping point, e.g., a saddle-
node bifurcation, the return rate to the equilibrium or the stable
state upon small perturbations becomes very slow, a phenomenon
known as critical slowing down [see, e.g., (32, 33)]. In natural time
series, this can be reflected in an elevated temporal autocorrelation

Fig. 1. Schematic representation of interactions between ocean-atmosphere-biosphere system and rock reservoir with potential carbon capacitors/tipping
elements. Here, benthic foraminifer δ13C and δ18O records are used as tracers of carbon cycling and climate, respectively (see text). Storage of carbon in the carbon
capacitors/tipping elements occurs slowly over tens to hundreds of thousands of years (blue arrows), while release of carbonmay be fast and abrupt withinmillennia (red
arrows) upon perturbation.
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Fig. 2. DIORs before the three global warming events. Sliding window DIORs analysis of the paired benthic δ13C and δ18O isotope ratios between 61.28 and 48.8 Ma.
(A) δ13C record. (B) δ18O record. (A) Sliding window autocorrelation indicator before PETM (1), ETM2 (3), and ETM3 (5) in the δ13C record. (A) Sliding window SD indicator
before PETM (2), ETM2 (4), and ETM3 (6) in the δ13C record. (B) Sliding window autocorrelation indicator before PETM (1), ETM2 (3), and ETM3 (5) in the δ18O record. (B)
Sliding window SD indicator before PETM (2), ETM2 (4), and ETM3 (6) in the δ18O record. For all the three events, the size of the sliding window taken was 50% of the
curated dataset (PETM: 699 data points, 2.6715 Ma; ETM2: 208 data points, 540.5 ka; ETM3: 206 data points, 533 ka), and the bandwidth used for Gaussian detrending
removed variability over ca. 500 ka for PETM and ca. 30 ka for ETM2 and ETM3.
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and standard deviation (SD), hereafter referred to as dynamical in-
dicators of resilience (DIORs). In generic terms, the mechanism
causing the loss of resilience in the vicinity of a tipping point is a
strengthening positive feedback compared to the stabilizing nega-
tive feedbacks (33, 34). We assess changes in resilience over geolog-
ical time by computing DIORs before the three most prominent
hyperthermal events, the PETM and the Eocene Thermal
Maximum 2 and 3 (ETM2 and ETM3) (35–38) using a sliding
window. Furthermore, we use convergent cross mapping (CCM)
to infer the strength of the interactions between the climate and
the carbon cycle as reflected in the δ18O and δ13C records. CCM
is a nonlinear attractor reconstruction–based method that tests
for causal interaction between different variables in a dynamical
system and can distinguish between the directions of causation
(39, 40). The CCM method has been successfully applied to study
Earth system feedbacks during the more recent glacial-interglacial
cycles (41, 42). To assess how the strength of feedbacks may
change over time, we use it in a sliding window and name this ap-
proach Dynamic Convergent Cross Mapping (DCCM). Moreover,
to assess the robustness of the DCCM analysis, we did a similar anal-
ysis using another causality detection method based on machine
learning. This reservoir computing causality (RCC) method uses
an echo state neural network for predictions (43). The sliding
window approach of this analysis is named as dynamic reservoir
computing causality (DRCC) (see Materials and Methods).

RESULTS AND DISCUSSION
Loss of Earth system resilience toward the
hyperthermal events
A significant rise in autocorrelation and SD occurs toward most hy-
perthermal events (Table 1 and Fig. 2). Before both the PETM and
ETM2, there is an increase in both autocorrelation and SD in the
δ13C record, and there is also an increase in the autocorrelation
trend of the δ18O records (all within 90% confidence level). In the
DIORs leading to ETM3, the trends in autocorrelation and SD are
overall positive. These trends are, however, less strong than those

before the PETM and ETM2, except the autocorrelation indicator
in the δ18O record, which is within the 90% confidence level. This
may be related to a lower amplitude of the ETM3 event in combi-
nation with stronger background variability (that is, lower signal-to-
noise ratio). These results are not sensitive to the choice of window
size, bandwidths, and interpolation method as shown in text S1 and
figs. S1 to S4.

Our results showing slowing down before the three hyperther-
mals are consistent with previous studies suggesting the loss of
Earth system resilience preceding PETM (44, 45). The fact that we
find similar behavior of dynamic indicators of resilience preceding
the PETM, ETM2, and ETM3 suggests a common mechanistic
origin for all these global warming events, as part of a characteristic
Earth system response. The critical slowing down could perhaps be
in relation to the weakening of the oceanic overturning circulation
in response to orbital change before hyperthermal events (18, 46,
47). In addition, in the ice-free Eocene, reinforcing carbon cycle
feedbacks in response to small initial cyclic orbital forcing (eccen-
tricity and precession) have also been pinpointed as a likely system-
atic response (29, 46, 47). Such feedback mechanisms might have
led to the interpreted loss of Earth system resilience. This may
imply that the large input of volcanic carbon during the PETM
was temporally coincidental, perhaps contributing to the large mag-
nitude and duration of the PETM relative to the other hyperther-
mals (21, 25).

DCCM and the Eocene hyperthermals
To further investigate the origin of the inferred loss of resilience
leading up to the hyperthermal events, we here introduce DCCM,
an adapted moving-window CCM method to examine the dynamic
causal interaction, i.e., causality, between the global carbon cycle
(δ13C) and the climate (δ18O). We address the causal effect (given
by CCM skill) of the carbon cycle dynamics on the climate, i.e.,
“CCM skill of δ13C on δ18O” as δ13C → δ18O, and climate on the
carbon cycle dynamics, i.e., “CCM skill of δ18O on δ13C” as
δ18O → δ13C. We surmise that, as the global carbon cycle
approaches a tipping point, δ13C → δ18O increases because of the
strengthening of the positive feedback between the connected
carbon cycle system and climate system [see also (48)]. This, in
turn, could have resulted in the amplification of bidirectional feed-
backs simultaneously pushing the climate toward a transition (49).

As depicted in Fig. 3C, the DCCM analysis hints at a generally
high synchronization between the carbon cycle and climate during
the early Eocene (56 to 48 Ma ago), represented by high CCM skills
averaging over 0.7 (within the 95% confidence level). In addition,
periods such as the Paleocene Carbon Isotope Maximum (PCIM)
and hyperthermal events such as the PETM and ETM2 stand out
as anchors of fluctuating causal interactions between the climate
and carbon cycle. The DCCM analysis points toward an amplifica-
tion of internal feedbacks before the PETM and ETM2. During the
PETM and ETM2 itself, both δ13C → δ18O and δ18O → δ13C
showed wed potential causal effects. Although it seems that
δ18O → δ13C was stronger than δ13C → δ18O, suggesting that
Earth system seems toward being more climate-driven, this differ-
ence is unlikely to be significant because of bidirectionality.

Along with the DCCM analysis, we performed two important
tests in the curated datasets, namely, a convergence test and a test
using extended CCM (ECCM) to examine whether the causal inter-
action was not observed because of spurious correlation or a

Table 1. Rolling window dynamic indicators of resilience for the three
global warming events.

System
Autocorrelation SD

Kendall-τ P value Kendall-τ P value

Paleocene-Eocene Thermal Maximum (PETM)

Carbon cycle 0.732 0.099* 0.795 0.051*

Climate 0.829 0.027** −0.232 0.622

Eocene Thermal Maximum 2 (ETM2)

Carbon cycle 0.686 0.077* 0.806 0.024**

Climate 0.799 0.018** 0.373 0.306

Eocene Thermal Maximum 3 (ETM3)

Carbon cycle 0.237 0.379 0.694 0.106

Climate 0.671 0.089* 0.359 0.297

*P < 90% confidence interval. **P < 95% confidence interval for
Kendall-τ.
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common driver of both the systems, respectively (see Materials and
Methods for more details). To simplify these analyses, we tested this
just before PCIM, the three hyperthermals, and after ETM3 (see
Table 2, “Studied time ranges”). In these five intervals, the conver-
gence tests were positive for causality, and displayed that the causal
interactions were bidirectional before PCIM, PETM, ETM2, ETM3,
and after ETM3 (fig. S5). The convergence test depicted that the
CCM skills keep increasing as the climate-carbon cycle system
moved from PCIM toward ETM3, after which the CCM skills
starts decreasing again. Furthermore, the ECCM analysis exhibited
remarkably clearly that the high synchronization observed during
the early Eocene implies a strong intrinsic causal interaction
between the climate and the carbon cycle dynamics, which are
not necessarily the sole effect of the eccentricity metronome (fig.
S6). ECCM analysis indicated that δ13C → δ18O in the curated
dataset for PCIM does not represent a causal relationship, as the
maximum CCM skills are found for future time difference. This
is an indication that, in this period, the causal relation between
δ13C and δ18O is not bidirectional but that the causal relationship
is due to a common driver of both the systems (50).

Early Eocene increase in system sensitivity to perturbation
In the oldest part of the analyzed record, δ13C → δ18O decreases,
culminating in the lowest recorded CCM skill toward the PCIM
(Fig. 3). Here, δ18O → δ13C was also minimal, although it is not
completely insignificant. During the PCIM, δ13C → δ18O is excep-
tionally low and is not indicating a causal relationship, which is in-
teresting as the PCIM has been related to massive storage of 12C-rich
organic carbon out of the exogenic carbon pool (49). During this
time, carbon cycle fluxes relevant to forcing climate apparently
were more dominated by the inorganic carbon cycle and, thus,
were leaving less of an imprint on the benthic δ13C record. Right
after the PCIM, δ13C → δ18O begins to increase and generally con-
tinues to rise across the long-term decrease in δ13C values until ~53
Ma ago. A similar positive trend marks δ18O → δ13C between the
late Paleocene and the early Eocene (up to ~53 Ma ago). Both
δ13C → δ18O and δ18O → δ13C show remarkably high values (0.7
to 0.9; within 95% confidence level) and almost identical trends
throughout most of the early Eocene. Especially, the period
between 54 and 51 Ma ago, which culminates in the Early Eocene
Climatic Optimum (EECO) (16, 51), has a consistently high and

Fig. 3. DCCM analysis between the paired benthic δ13C and δ18O isotope ratios during the late Paleocene and the early Eocene from the Walvis Ridge in the
South Atlantic Ocean. (A) Benthic δ13C isotope ratios representing the carbon cycle reconstruction. (B) Benthic δ18O isotope ratios representing the climate reconstruc-
tion. (C) DCCM analysis. The CCM skill of the effect of the carbon cycle dynamics on climate, addressed as δ13C → δ18O, and the CCM skill of the effect of the climate on
carbon cycle dynamics, addressed as δ18O→ δ13C. The CCM skills were calculated using a moving window of 350 data points (~1 Ma) and a library size of 349 data points;
embedding parameters of time lag-τ = 4, and embedding dimension, E = 6. The light blue– and red-colored regions depict the CCM skill within the 95% confidence
interval of δ13C → δ18O and δ18O → δ13C, respectively, using 100 surrogate null models generated by the power spectrum method.
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synchronous causal interaction in both directions. We surmise that
this could have made the early Paleogene system particularly sensi-
tive to any external forcing, such as the eccentricity metronome.
Previous studies exploring the predictability of the Earth system
suggest that a very hot Earth system such as the early Eocene was
generally less predictable and, thus, more stochastic than colder cli-
mates (52, 53). However, the supporting analyses such as the con-
vergence tests and ECCM undertaken in this study imply that the
highly coupled causal skills in both directions observed during
EECO could be dynamical in nature, although it is still uncertain
whether it is bidirectional or a strongly unidirectional causality
(54, 55).

Robustness of the dynamic causality analysis
Recent literature studies on the reliability of the CCM method have
pointed out the effect of periodicity/seasonality, autocorrelation,
process noise, and trends. These studies show that the absence of
causal interaction is much more robust and conclusive than the
presence of causal interaction indicated by CCM (40, 54, 55). Like-
wise, we performed sensitivity analyses to assess the dependence of
the CCM skills in the DCCM analysis on the choice of window size,
embedding parameters used for attractor reconstruction, and the
type of data transformation such as interpolation, noise reduction,
and detrending (see text S3 and figs. S7 to S11 for more details). The
dependence of DCCM analysis to these parameters are additionally
complicated by the differing effect of these choices on the global
carbon cycle and the climate record under study, with the choices
affecting the δ18O record more than the δ13C record, perhaps
because of the lower signal-to-noise ratio. Although the presence
of trends can lead to false positives, the question of removing
these trends requires additional studies as this can introduce addi-
tional artifacts itself. However, the overall trend of the CCM skills in
the DCCM analysis and the interpretation of these observations
presented in the previous paragraphs are robust and independent
of the choice of parameters required to perform the analyses.

In addition, we tested whether our results are critically depen-
dent on the CCM method. Therefore, we reperformed the

dynamical causality analysis with an independent method,
namely, DRCC (see Materials and Methods and text S4) (43, 56).
As shown in Fig. 3C and fig. S12, the RCC skills trends in the
DRCC analysis show qualitatively the same trends as the CCM
skills in Fig. 3C. The main behavior, such as no causal interactions
during PCIM, a higher causal effect of δ13C → δ18O than
δ18O → δ13C before PETM, and high causal skills during EECO,
are consistent between the two methods. Furthermore, fig. S13
shows that the statistical significance of the CCM and RCC skills
are robust to the choice of the null model. The DRCC analysis is
more robust to noisy data and trends (43). Nevertheless, detailed
comparisons between DCCM, DRCC, or any other causality analy-
ses on deep time paleo-records are outside the scope of this study.
However, with this study, we show how to use causal analyses in
deep time paleo-reconstructions and what type of inferences can
be extracted from them to better understand the Earth system.

Understanding climate-carbon cycle dynamics
This study indicates that temperature dynamics—as recorded in
δ18O—and carbon cycle partitioning—as recorded in δ13C—in
the early Eocene Earth system were very strongly coupled and alter-
nated in dominance during this period, concurrent with a long-
term decrease in δ13C values and rise in temperature, although
our dataset cannot differentiate between various proposed carbon
sources such as methane hydrates (4), organic carbon (49) in
marine sediments, or terrestrial peat deposits (23). However, the
result in Fig. 3C is consistent with the hypothesis that the climate
and the carbon cycle were coupled through an organic carbon ca-
pacitor able to store and release carbon on different time scales,
having the potential to lead to eventual climate warming (Fig. 1)
(3, 4). Our results are consistent with the existence of a capacitor
storing extensive amounts of organic carbon during the late Paleo-
cene and early Eocene. A slow release of carbon in tandem with
long-term gradual warming toward and through the EECO (14)
and the tight bidirectional coupling of organic carbon fluxes and
the climate system made the Earth system sensitive to carbon
release for small initial (orbital) changes, as shown by loss of resil-
ience before the hyperthermal events. The relatively long time scale
required to recharge the carbon capacitors together with the higher
sensitivity of the hot early Eocene to initial perturbations could
explain the overall large magnitude of carbon cycle dynamics.
Moreover, the lack of evidence pointing toward ETM3 being
climate-driven could be explained by a reduction in size of the
carbon capacitor after carbon release for about half a million years.

Our work illustrates the central role of internal amplifying
climate-carbon cycle interactions and loss of carbon cycle resilience
in triggering late Paleocene–early Eocene global warming events.
The timing of most, if not all, hyperthermal events coincides with
maxima in orbital eccentricity (14, 25, 41, 49), which quantitatively
represents only a minor insolation forcing. This requires that dy-
namical processes such as reinforcing positive feedbacks and loss
of stability played a crucial role in these global warming events. Mul-
tiplicative noise processes could also have played a role (53) and
might have increased the susceptibility of the general early Eocene
Earth system to the solar insolation. Our results, hence, not only
suggest that long-term Paleocene-Eocene warming caused the
climate-carbon cycle system to be closer to a threshold (15) but
also indicate that the whole Earth system became increasingly sus-
ceptible to instabilities. In addition, our work provides a new

Table 2. Convergence test of the curated data. Here, the converging
CCM skill at a library size of 350 data points in the time range preceding
different periods (PCIM and after ETM3) and the three abrupt events are
given (for uniformity). The CCM skill fluctuates from minimal values (~0.3)
before PCIM to moderate values (~0.5 to 0.6) before PETM until it was high
(~0.8 to ~0.9) before both ETM2 and ETM3, and last, reducing to moderate
values (~0.4 to 0.5) after ETM3. After ETM3, δ18O→ δ13C keeps rising to ~0.7
for longer library sizes, while δ13C → δ18O settles to ~0.4, pointing toward
an increasing impact of the climate on the carbon cycle.

Studied time range Convergence test (CCM skill)

δ13C → δ18O δ18O → δ13C

Before PCIM 61.28–58.068 Ma ago 0.27* 0.29*

Before PETM 58.062–55.935 Ma ago 0.56* 0.51*

Before ETM2 55.141–54.06 Ma ago 0.85* 0.84*

Before ETM3 53.936–52.87 Ma ago 0.87* 0.85*

After ETM3 52.801–48.812 Ma ago 0.38 0.5*

*Within the 95% confidence level.
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framework to probe the dynamic causal interaction between two
systems. In conclusion, the early Paleogene global warming events
are crucial for understanding geologically rapid Earth system
changes, including the Anthropocene carbon cycle perturbation
and global warming. If the reconstructed early Paleogene dynamics
are a characteristic Earth system response, then present-day carbon
cycle changes might likewise strengthen positive feedbacks from
carbon reservoirs such as permafrost, submarine hydrates, or peat-
lands. It is therefore critical to constrain the impact of these reser-
voirs to assess their influence on the magnitude of future
global warming.

MATERIALS AND METHODS
High-resolution benthic foraminifer stable isotope record
We used high-resolution records from stratigraphically continuous
sections of Late Maastrichtian–early Eocene clayey nannofossil ooze
from Ocean Drilling Program sites 1262 and 1263 on the Walvis
Ridge in the South Atlantic Ocean. The combined dataset (16, 28)
ranging from 67.1 to 48.8 Ma ago comprises 2373 paired deep ocean
benthic foraminiferal (Nuttallides treumpyi) measurements of
stable carbon (δ13C) and oxygen (δ18O) isotope ratios. We used
the record from site 1262 for the PETM and ETM2, and the
record from site 1263 for ETM3.

Analysis of DIORs
To investigate the change of resilience before the three abrupt global
warming events, we used the MATLAB R2019b generic_ews
toolbox developed on the basis of (57). The DIORs in the form of
autoregressive coefficient at lag 1 (AR1) and SD were used to study
the loss of resilience in the carbon cycle dynamics and the climate
system as the two systems approached each of these three hyperther-
mal events. Furthermore, we use these DIORs to test the assumption
that these abrupt events were possibly tipping points arising because
of a zero-eigenvalue bifurcation that can be anticipated by the
DIORs (33, 35, 36, 58, 59).

Data curation
The events that we studied are well-defined in the literature as sharp
drops in both δ13C and δ18O records from the deep ocean benthic
foraminifer, and these drops statistically standout beyond the back-
ground variability (60). We curated a dataset with the same time and
data range for both δ13C and δ18O records for each of the three de-
scribed hyperthermal events (PETM, ETM2, and ETM3), and care
was taken to exclude the actual hypothesized tipping point and
study the DIORs trends in the time series ending just before each
hyperthermal event (Table 3). In our figures, the direction of the
time range moves from left to right, that is, from older to younger

age in million years. For the DIORs analysis, the starting time points
for PETM (older age in million years) were selected with the aid of
recurrence plots (fig. S14, A and B) (61, 62) to select relatively sta-
tionary periods unaffected by other abrupt events (i.e., the Creta-
ceous-Paleogene boundary and Late Danian event) in both the
global carbon cycle and the climate system before the PETM
(Table 3). The starting point of the time series before ETM2 was
harder to choose. The δ13C and δ18O data for ETM2 was curated
after the global carbon cycle recovered from the PETM, and
ending just before the ETM2 transition, with the understanding
that the global carbon cycle takes longer to recover from PETM
as it is a much slower system than the climate (63). For ETM3,
the starting time range was chosen right after ETM2 ended.

DIORs trend and significance test
We detrend the data using a Gaussian filter to remove any trends
longer than half a million years for PETM and over 30 ka for
ETM2 and ETM3 to prevent spurious changes in autocorrelation
because of long-term trends (57). For PETM, we focused on pro-
cesses such as the short and long eccentricity cycles, which occur
within half a million years, while we focused on the influence of pro-
cesses such as precession cycles on the ETM2 and ETM3. DIORs
were calculated in a 50% moving window in the curated datasets
for each of the three transitions. Autocorrelation was calculated
by fitting an AR1 on the moving window, and the trends of each
of the indicators were determined by estimating the nonparametric
Kendall rank correlation statistic (“Kendall-τ”) of the indicators
between consecutive windows as the hypothesized transition was
approached. The significance of this trend was assessed using
1000 surrogate datasets derived from null models generated by
the power spectrum method of Ebisuzaki (64). This method
creates bootstrapped data having the same power spectra and, in
turn, the autocorrelation structure of the original data but with ran-
domized phases to estimate the fraction of these randomized data-
sets that performed better than the observed dataset (i.e., the
P value).

Dynamic causality analysis
Convergent cross mapping
CCM is a state space reconstruction (SSR)–based causality analysis
that enables to study feedback mechanisms between dynamically
related systems by providing directional causal interaction mea-
sures. We apply this method to study the interaction between the
reconstructions of the global carbon cycle and the climate in the
early Paleogene. We assume that the global carbon cycle and the
climate are part of a coupled dynamical Earth system, and we
thus use attractor reconstruction–based methods to study the inter-
action of the two systems. Figure S15 gives a schematic

Table 3. Curated dataset. Selected datasets for the DIORs analysis of the three global warming events from the composite record. The same data rangewas used
for the carbon cycle and the climate.

Event Studied time range Age range Average data resolution Data points Suspected tipping point Reference

PETM 61.28–55.935 Ma ago 5.343 Ma 3.82 ka 1397 55.935 Ma ago (28)

ETM2 55.141–54.06 Ma ago 1.081 Ma 2.60 ka 416 54.06 Ma ago (28)

ETM3 53.936–52.87 Ma ago 1.066 Ma 2.59 ka 411 52.87 Ma ago (16)
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demonstration of CCM; however, here, we only provide a brief over-
view of the method and refer to (39, 41, 50, 65–67) for more detailed
descriptions on CCM and state space reconstruction.

The first step of CCM involves SSR based on each of the two time
series separately: The reconstructed attractorMC is based on δ13C(t)
and MO is based on δ18O(t). SSR requires choosing a suitable em-
bedding dimension E and time lag-τ (referred to as time lag-τ to
avoid confusion with Kendall-τ) (see section S2). These two param-
eters are interdependent on each other, dependent on the type of
data transformation, and the choice of these parameters is also a
matter of much debate. Here, we make the choice of time lag-
τ = 4 and E = 6 as for E greater than 5 and time lag-τ greater
than 3; the SSR and the causality analyses do not depend on the
choice of these parameters (figs. S10 and S11).

After SSR, we use weighted simplex projection method to esti-
mate time series, ÔðtÞ jMC and ĈðtÞ jMO, based on the nearest
neighbors for each point of the time series (leave-one-out cross-val-
idation). Here, ÔðtÞ jMC was the estimated time series of δ18O(t)
based on the reconstructed attractor of δ13C(t), and ĈðtÞ jMO is
the estimated time series of δ13C(t) based on data of δ18O(t). The
Pearson correlation between δ13C(t) and ĈðtÞ jMO and between
δ18O(t) and ÔðtÞ jMC was calculated to give the CCM skill (see
also fig. S9). The estimation efficiency (CCM skill) of climate
based on the carbon cycle dynamics ÔðtÞ jMC could be used as a
measure of the causal effect of the climate on the carbon cycle dy-
namics (δ18O → δ13C), and vice versa, the estimation efficiency of
ĈðtÞ jMO is a measure of the causal effect of the carbon cycle on the
climate dynamics (δ13C → δ18O). The statistical significance of the
CCM skill was calculated using a null model of 100 surrogate time
series using power spectrum (64) and sieve bootstrap methods (68).
The sieve bootstrap method generates an AR(n) autoregressive
model on the original time series, where the number of lags p was
determined on the basis of Akaike information criterion (AIC) cri-
terion. Subsequently, this fitted AR(p) model is used to generate the
bootstrapped datasets, drawing replacement from the residuals.
Here, we assume that the carbon cycle was causally affecting the
climate when the CCM skill of δ13C → δ18O was within the 95%
confidence level, and vice versa.
Convergence test and ECCM analysis
We performed two tests, convergence testing and ECCM analysis,
to distinguish causation from spurious correlation (41, 50) on the-
paired δ13C and δ18O records before the PCIM, PETM, ETM2,
ETM3, and after ETM3 (see Table 2, Studied time range, and figs.
S1 and S2). The convergence test, which is the main part of the
CCM analysis (42), is used to investigate whether the CCM skill im-
proved with the increasing library size L for determining the nearest
neighbors. To test the effect of L, the average CCM skill is deter-
mined from all possible overlapping parts of length L of the
whole dataset (L < N, N is size of whole dataset).

In the case of causation, the CCM skill initially improves with an
increase in L eventually converging to a certain CCM skill. In case
the time series is predominantly dominated by stochastic noise, the
CCM skill does not improve and can sometimes even decrease with
increasing library size.

The ECCM analysis was performed to study whether the “cause”
preceded the “effect” (50). This test was designed to infer whether
two-directional highly synchronous dynamics could be due to a
common strong external forcing (“confounder”) affecting the

interacting systems or not. Here, after the first step of SSR,
instead of using the nearest neighbors to predict ÔðtÞ jMC from
δ13C(t), the CCM skill was calculated for Ôðt þ dÞ jMC, with the
delay d ranging from −80 to 80 to test past and future values of
the time series. If the maximum in the CCM skill occurred for a
time delay in the future, then it cannot be assumed to be a real
causal link but to be caused because of a strong unidirectional cou-
pling or a common external forcing.
Dynamic convergent cross mapping
We applied CCM in a sliding window approach, here referred to as
DCCM, to study the dynamics of changing causal interaction in the
climate-carbon cycle system on the δ13C and δ18O record from the
South Atlantic Ocean, including the hypothesized tipping points
between 61.28 and 48.812 Ma ago. This approach allows us to
focus on processes and interactions within 1 Ma for each window.
The window size was selected to be greater than the library size L at
which the CCM skill converges (fig. S1, A to E). Here, the DCCM
analysis in Fig. 3 was performed using a window size of 350,
maximum library size of 349, time lag-τ of 4, and E as 6, and the
window moves by 1 data point. The statistical significance of the
CCM skill for each sliding window was calculated using a null
model of 1000 surrogate time (68). We used the MATLAB ccm
toolbox developed on the basis of (41) to perform the DCCM anal-
ysis. The detailed sensitivity analysis of DCCM to data interpolation
(fig. S7A), data noise reduction (fig. S7B), detrending to remove var-
iability over half a million year (fig. S7C), after detrending and noise
reduction (fig. S7D), changes in time lag and embedding dimension
(figs. S8 and S9), and choice of window size (figs. S10 and S11) are
given in text S3.
Dynamic reservoir computing causality
To test the robustness of the DCCM analysis, we modified a recently
developed RCC method (43, 69–70) to include a sliding window ap-
proach, indicated as DRCC. RCC uses a neural network model
based on the reservoir computing framework to predict δ13C(t)
from δ18O(t), and vice versa. Using a dynamic reservoir of N
neurons, the algorithm reconstructs the attractor based on the avail-
able time series. Similar to DCCM, this method was applied in a
moving window of size 350 data points to study the climate-
carbon cycle dynamics on the same time scale. The correlation
between the reconstructed and original time series is given by the
RCC skill. The statistical significance of the RCC skill was calculated
using the null models generated by power spectrum and sieve boot-
strap method, as was used for the DCCM analysis.

Supplementary Materials
This PDF file includes:
Supplementary Texts S1 to S4
Figs. S1 to S19
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