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Simple Summary: Nitric oxide is an important molecule that performs a variety of functions in
our bodies, especially in the cardiovascular system. In certain pathological conditions, such as
cardiovascular diseases, including hypertension, there is reduced production or bioavailability of
nitric oxide. Therefore, compounds that deliver nitric oxide, called nitric oxide donors, are clinically
useful. In this review, we discuss the physiological role of nitric oxide, and some of the nitric oxide
donors and their clinical uses, focusing on the cardiovascular system. Despite the high number
of nitric oxide donors and their known efficacy, it is important to understand the similarities and
differences among them and how each of them works, as well as to investigate the development of
new molecules that may be better than the NO donors in current use.

Abstract: Cardiovascular diseases include all types of disorders related to the heart or blood vessels.
High blood pressure is an important risk factor for cardiac complications and pathological disorders.
An increase in circulating angiotensin-II is a potent stimulus for the expression of reactive oxygen
species and pro-inflammatory cytokines that activate oxidative stress, perpetuating a deleterious
effect in hypertension. Studies demonstrate the capacity of NO to prevent platelet or leukocyte
activation and adhesion and inhibition of proliferation, as well as to modulate inflammatory or
anti-inflammatory reactions and migration of vascular smooth muscle cells. However, in conditions
of low availability of NO, such as during hypertension, these processes are impaired. Currently, there
is great interest in the development of compounds capable of releasing NO in a modulated and stable
way. Accordingly, compounds containing metal ions coupled to NO are being investigated and are
widely recognized as having great relevance in the treatment of different diseases. Therefore, the
exogenous administration of NO is an attractive and pharmacological alternative in the study and
treatment of hypertension. The present review summarizes the role of nitric oxide in hypertension,
focusing on the role of new NO donors, particularly the metal-based drugs and their protagonist
activity in vascular function.
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1. Introduction

Cardiovascular diseases (CVD) are the leading cause of death worldwide [1,2]. Hyper-
tension remains the central risk factor for cardiovascular diseases [3], and a decrease in blood
pressure (BP) induces a drop in cardiovascular risk [4]. However, the treatment for high BP is
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complex due to the multiple mechanisms involved in the pathogenesis of hypertension [5]. It
has been shown that endocrine factors, and neural and vascular reflexes, contribute to the
development of hypertension and induce an increase in vascular tone [6].

Regulation of vascular tone in the vascular smooth muscle cell (VSMC) is determined
by the balance between vasoconstrictor and vasorelaxant factors [7]. Among the relaxing
factors derived from the endothelium, nitric oxide (NO) stands out, as it has an important
role in several pathophysiological processes, such as neurotransmission, BP control, and
inhibition of platelet aggregation [8]. In addition, vascular endothelium has an important
protective function against cardiovascular diseases, presenting a central function in this
protection [9]. In the current review, we discuss the role of NO in hypertension, highlighting
the importance of NO in the regulation of the vascular response and the use of the metal-
based drugs that release NO.

2. Hypertension and Endothelial Dysfunction

CVD includes all types of disorders related to the heart or blood vessels. Among
them, hypertension is one of the most important risk factors for heart complications and
is responsible for high rates of morbidity, mortality, and hospitalization, at high cost [10].
Thus, hypertension is considered a serious public-health problem worldwide [11,12].

Hypertension is often associated with metabolic disorders, as well as functional
and/or structural changes in target organs, and is exacerbated by the presence of other
risk factors, such as dyslipidemia, obesity, glucose intolerance, and diabetes mellitus [13].
However, many factors are associated with these disorders and contribute directly or
indirectly to the development of hypertension, including age, heredity, sex, ethnicity, social
habits, stress, and others [14].

The prevalence of hypertension is increasing worldwide [2]. In 2015, 24.1% of men and
20.1% of women were hypertensive and the number of cases increased from 594 million to
1.13 billion between 1975 and 2015 [15]. It is estimated that 29% of the adult population
worldwide—around 1.56 billion individuals—will have hypertension by 2025 [16]. The
prevalence is 33.1% in Nigeria [17], 19.9% in Nepal [18], 30.6% in France [19], and between
13.5 and 32.5% in Brazil [20–22]. In the United States, the prevalence of hypertension in
adults reached 46% in 2017 [23].

An important factor of BP control is vascular tone, which is directly influenced by
the vascular endothelium. Through its multiple functions, the endothelium maintains the
homeostasis of the micro-environment since it is responsible for the production of potent
vasoactive mediators [24]. The endothelium is a single layer of flat polygonal cells lining
the inside of all blood vessels, including arteries, capillaries, veins, and chambers of the
heart. It acts as a protective layer between intra- and extravascular compartments, enabling
interaction with cells and blood components [25,26].

Functions mediated by endothelial cells include maintenance of blood flow, regulation
of inflammation and the immune response, neovascularization, and regulation of the
vascular tone of the VSMC [27]. The VSMC may be regulated by endothelial cells which
produce vasoconstrictor factors that promote their effects by increasing the concentration of
intracellular calcium ([Ca2+]i), enhancing the sensitivity of Ca2+ contractile elements, and
allowing Ca2+ influx from the extracellular fluid. Among the contractile factors released by
the endothelium, we can highlight the thromboxane (TXA2), reactive oxygen species (ROS)
such as superoxide anion (O2

•−), endothelin-1 (ET-1), and angiotensin II (Ang-II) [28].
Vasodilator factors, meanwhile, have the opposite effect on [Ca2+]i in the VSMCs [7].
The three main relaxing factors derived from the endothelium are prostacyclin (PGI2),
endothelium-derived hyperpolarizing factor (EDHF), and NO. Endogenous production of
NO is believed to be the main factor released by the endothelium for the control of vascular
tone [8,28,29]. Furthermore, the vascular endothelium performs a key role in providing
protection against cardiovascular diseases [9]. Damage to the endothelium generates an
inflammatory response involving many types of cells (lymphocytes, monocytes, platelets,
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and smooth muscle), leading to dysfunction of the endothelial cells, impairment of the
vascular wall, and development of an atherosclerosis plaque [30].

Endothelial dysfunction (ED) is characterized mainly by a reduction in the ability
of endothelial cells to release NO, as determined by oxidative stress, the adhesion of
leukocytes, the inflammatory response, platelet activation, and thrombosis [31]. Various
other factors also induce ED, including: (1) uncoupling of the nitric oxide synthase (NOS);
(2) formation of reactive nitrogen and oxygen species, reducing the bioavailability of
NO and leading to nitration, nitrosylation, and oxidation of proteins; (3) oxidation or
degradation of the α and β subunits of soluble guanylyl cyclase (sGC), which is the
primary mediator of the bioactivity of NO; (4) greater bioavailability of vasoconstrictor
agents, such as ET-1 and Ang-II; (5) oxidation of low-density lipoprotein (LDL), inducing
the formation of foam cells; (6) greater expression of adhesion molecules, and; (7) increased
platelet activity [32].

Therefore, ED is a marker for cardiovascular diseases and is shown in several patholog-
ical conditions, including diabetes, arterial and pulmonary hypertension, hyperglycemia,
arthritis, obesity, heart failure, and erectile dysfunction [33]. These alterations may lead
to changes in vascular hemodynamics, resulting in loss of endothelial integrity, barrier
dysfunction, and atypical vasodilator and vasoconstrictor regulation, thereby modifying
the vascular environment, triggering cardiovascular events, and, subsequently, increasing
mortality [34].

3. Biosynthesis and Action of Nitric Oxide

NO is a simple small gaseous molecule which has been found to be a ubiquitous biolog-
ical mediator involved in several physiological processes and plays a key role in the nervous
and cardiovascular systems [35]. The molecule, previously known as endothelium-derived
relaxing factor (EDRF), was first identified as NO in 1980 [36]. It has been recognized to be
a signaling molecule, derived from the vascular endothelium, responsible for dilation of
the blood vessels [37,38].

Since NO was pointed out as a signaling molecule in vascular relaxation, investigations
have been conducted concerning the role of this gas in various biological systems in humans.
NO spreads throughout the membrane and can exist in a variety of forms, such as nitroxyl
anion (NO–), nitrosonium (NO+), or free radical (NO·), depending on the source of the
NO [39,40].

NO is highly reactive and its relatively short half-life means that it is responsible
for mediating many processes, such as endothelium-dependent vasorelaxation, platelet
adhesion and aggregation, relaxation of the corpus cavernosum of the human penis, and
regulation of baseline BP [41–43]. It also modulates inflammatory or anti-inflammatory
reactions that help to regulate the numerous processes of immunological and cardiovascular
systems [44,45].

Biosynthesis of the NO molecule occurs by the oxidation of L-arginine catalyzed
by NOS. There are three known isoforms of NOS: neuronal NOS (nNOS or NOS-I) is
expressed in the cytoplasm of neurons and other cell types; endothelial NOS (eNOS or
NOS-III) is present mainly in endothelial cells; nNOS and eNOS are constitutive isoforms.
The third isoform is the inducible NOS (iNOS or NOS-II), which is mainly associated with
macrophages, but has been isolated from various other tissues, such as smooth muscle, hep-
atocytes, chondrocytes, microglial cells, and endothelial cells, among others [46–53]. The
iNOS-produced NO is responsible for augmented leucocyte cytotoxicity against tumoral
cells, bacteria, and parasites during inflammation [54].

All NOS isoforms use L-arginine as substrate and produce citrulline as a co-product.
Molecular oxygen is required for the reaction and the co-factors include reduced nicoti-
namide adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD),
flavin mononucleotide (FMN), and 6R-5,6,7,8-tetrahydrobiopterin (BH4) [55]. The ho-
modimeric form of NOS is promoted/stabilized by the heme group, L-arginine, and
BH4 [44,56,57]. However, when BH4 is deficient due to oxidative inactivation, the dimer of
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NOS breaks down, generating ROS (especially O2
•−) instead of NO [58–61]. This state is

referred to as eNOS uncoupling and also occurs downstream of NADPH activation, which
induces oxidative stress and consequent BH4 deficiency and eNOS uncoupling [59,61].
Furthermore, the enhancement in ROS production can interact with NO and produce
peroxynitrite (ONOO−), decreasing the NO bioavailability and cell damage [30,62].

Despite the similarities, there are key differences between the constitutive and in-
ducible NOS. Firstly, the constitutive NOS activity depends on the cell calcium transient,
while the basal calcium concentration is enough to maintain the activity of iNOS. Binding
of the calcium–calmodulin complex is required for constitutive NOS (although its func-
tion may also be regulated by post-transcriptional events) [50,63,64], while iNOS presents
the calcium–calmodulin permanently bound and its expression is mainly transcriptional
controlled [65,66]. This leads to a transitory activation and low NO production by the
constitutive isoforms, in contrast to long-lasting activation and high NO production by
iNOS [67–70]. In addition, iNOS does not have the self-inhibition segment of the ligation
site of calmodulin [71].

The expression of the inducible isoform is regulated by the induction of the synthesis of
various cytokines, including interleukin 1 (IL-1), interferon-γ (IFN-γ), and tumor necrosis
factor α (TNF-α) [72]. Lipopolysaccharide (LPS), an abundant molecule present in the
cell wall from Gram-negative bacteria, induces cytokine production and, thus, iNOS
expression [73,74]. In regular conditions, its expression is common in macrophages, where
there is active inflammation, such as in alveolar macrophages in the inflamed regions of
the lung [75].

The vascular relaxation stimulus coming from the endothelium begins after vasodila-
tor agents bind to membrane receptors in the endothelial cell or from shear stress (via
PI3K/AKT-dependent eNOS phosphorylation) on the vascular endothelium. Once the
membrane G-protein coupled receptors (GPCR) are activated by the binding of agonists,
the phospholipase C (PLC) enzyme is activated, inducing a rise in diacylglycerol (DAG)
inositol 1,4,5-trisphosphate (IP3) production. IP3 acts on receptors expressed in the cyto-
plasmic reticulum, stimulating the release of Ca2+ to the cytoplasm. The increase in the
concentration of Ca2+ in the cytoplasm activates calmodulin, which, in turn, activates eNOS,
which is the predominant isoform in endothelial cells. Once activated, eNOS synthesizes
the NO [76,77] (Figure 1).

NO possesses the peculiar characteristic of having high affinity for heme and other
iron–sulfur groups, being able to react directly with oxygen, the superoxide radical, or
transition metals, such as iron, cobalt, manganese, and copper. This property is of great
importance for the activation of sGC [78,79].

As shown in Figure 1, NO spreads throughout the endothelial cell, moving easily
through the neighboring cells and regulating various cardiovascular effects. It crosses the
endothelial space into the vascular smooth muscle, directly activating the sGC, which is
the primary mediator of the bioactivity of NO, representing the largest target in muscle
cells [80]. The sGC enzyme is a heterodimer, consisting of two homologous subunits, α (α1
and α2) and β (β1 and β2). The term NO-sensitive sGC has come to be used, since, apart
from activating sGC, NO can also activate one of the dimers of GC (α2β1), which is found
in the synaptic membrane [80].

The α1β1 dimer is the predominant isoform in most tissues, including VSMC [80,81].
In the β subunit of the dimer, the iron of the heme group binds to histidine. Once NO binds
to the iron of GC, the bond with the histidine is broken. This is considered the factor that
triggers the increase in enzymatic activity of sGC [80,82]. Furthermore, the activation of
sGC leads to the formation of intracellular 3,5-cyclic guanosine monophosphate (cGMP),
which in turn activates the cGMP-protein kinase G (PKG) pathway [83–85]. PKG can
phosphorylate voltage-dependent Ca2+ channels present in the cell membrane, which
causes a reduction in the entry of Ca2+ into the cell, thereby altering the [Ca2+]i dynamics
and constrictor function [86,87].



Biology 2021, 10, 1041 5 of 26

PKG uses several mechanisms to reduce mobilization of Ca2+ through phosphorylation
and inhibition of IP3 formation and inhibition of the sarcoplasmic reticulum (SR)-IP3 receptor.
NO also causes an increase in Ca2+ transport through the (SR) Ca2+-ATPase, in a cGMP-
independent mechanism [88]. Furthermore, PKG acts in phosphorylate potassium channels
in the cell membrane, triggering an increase in transport of K+ and consequent membrane
hyperpolarization, thereby contributing to muscle relaxation [88]. Other ways in which PKG
leads to smooth-muscle relaxation are through desensitization of the contractile filaments, inhi-
bition of myosin light chain kinase (MLCK), and activation of myosin light chain phosphatase
(MLCP) [89]. All of these effects lead to a reduced concentration of free Ca2+ in the cytoplasm
and thus contribute to muscle relaxation (Figure 1). Moreover, PKG induces phosphorylation of
vasoconstrictor targets such as TXA2 receptors, leading to a reduction in receptor activation and
facilitating the vasorelaxant response [90].

Bolotina et al. (1994) found that NO also produces vasodilation through sGC-independent
pathways. These mechanisms include activation of the large-conductance Ca2+-sensitive K+

channel (BKCa); activation of Na+/K+ ATPase; negative modulation of Ca2+ channels, and;
reduced sensitivity to vasoconstrictors [91]. An interesting study showed that NO produces
an increase in BKCa activation by triggering rapid anterograde trafficking of BKCaβ1 subunit-
containing endosomes in a PKG/PKA-dependent pathway [92,93]. Alternatively, cGMP may
also directly activate potassium channels [94].
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Figure 1. Nitric oxide (NO) induces relaxation in vascular smooth muscle cells (VSMC). The activation
of G-protein coupled receptor (GPCR) stimulates phospholipase C (PLC), which is responsible for
cleavage of membrane phospholipids to diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3).
The latter binds to the IP3 receptor in sarcoplasmic reticulum (SR) to promote Ca2+ extrusion, which,
together with DAG, evokes Ca2+ influx through voltage-operated Ca2+ channels (Cav) at the cellular
membrane. The linkage of Ca2+ to calmodulin promotes endothelial nitric oxide synthase (eNOS)
activation, which, in turn, triggers the formation of NO and citrulline from arginine and O2. This
enzyme requires cofactors such as nicotinamide adenine dinucleotide phosphate (NADPH), flavin
adenine dinucleotide (FAD), flavin mononucleotide (FMN), and tetrahydrobiopterin (BH4). In case of
an increase in reactive oxygen species (ROS), they react with NO and induce peroxynitrite (ONOO−)
production. NO spreads to VSMC where it binds to soluble guanylyl cyclase (sGC) and causes
the formation of 3,5-cyclic guanosine monophosphate (cGMP), which stimulates the cGMP-protein
kinase G (PKG). This kinase negatively regulates the Cav and myosin light chain kinase (MLCK) and
activates potassium channels and the myosin light chain phosphatase (MLCP). Altogether, these
effects promote the relaxation of VSMC. In addition, NO can be produced from a GPCR-independent
mechanism. The shear stress promotes activation of the PI3K/AKT pathway, which stimulates eNOS
activation and subsequent NO production.
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4. Mechanisms Involved in NO-Related Hypertension

The balance between the levels of NO and Ang-II seems to be a central aspect in
CVD, especially in the pathogenesis of hypertension [95]. Ang-II is the most potent
vasoconstrictor of the renin-angiotensin system (RAS) [96]. The effects of Ang-II are
mediated by its binding to angiotensin type 1 (AT1R) and type 2 (AT2R) receptors, which
are G protein-coupled receptors that induce contrary effects [97]. AT1R is responsible for the
classic pro-hypertensive activity of Ang-II, while AT2R is described to present antagonistic
activities compared to AT1R [98]. It has been shown that Ang-II (mainly by binding to
AT1R) directly induces endothelial dysfunction and increases endothelial oxidative stress
through the formation of ROS derived from NADPH oxidase [99]. Furthermore, stimulation
of AT1R was noted as causing inhibition of eNOS, principally by phosphorylation of an
inhibitory residue Tyr657 [100,101]. However, exogenous administration of an NO donor
stimulates β-arrestin, which leads to desensitization of AT1R through its internalization,
antagonizing the Ang-II effects [102]. Likewise, another study has demonstrated that NO
directly interacts with AT1R, promoting its inhibition [95,103]. Furthermore, the addition of
the exogenous NO precursor upregulated the eNOS/NO/cGMP pathway and decreased
the Ang-II concentration in rats with left ventricular hypertrophy [104].

On the other hand, studies have revealed that Ang-(1–7) treatment reduced ROS forma-
tion due to a decrease in NADPH expression in the aorta of mice [105]. Moreover, evidence
has shown that Ang-(1–7) induces Mas receptor (MasR) activation, a G protein-coupled
receptor which stimulates the PI3K/Akt pathway, leading to phosphorylation of eNOS
and subsequent NO production and release [106]. Similarly, Ang-(1–7) is able to promote
AT2R endothelial activation, which stimulates the bradykinin (BK)–NO cascade [107–109].
BK is a component of the kallikrein–kinin system which acts as a counter regulator of the
vasopressor RAS. BK acts through the B2 receptor and induces a decrease in ROS and NO
production, enabling a reduction in BP [110].

Beyond the effect as an endothelial-dependent vasorelaxing factor, NO is also present
in the brain and this gas acts as an intracellular signaling molecule and is involved in the
modulation of sympathetic outflow and changes in BP [111]. Studies demonstrated that
overexpression of eNOS in the nucleus of the solitary tract (NTS) or rostral ventrolateral
medulla (RVLM) caused hypotension and bradycardia associated with sympathoinhibition
in vivo [112,113]. In addition, recent findings have shown that NO derived from nNOS
in the hypothalamic paraventricular nucleus (PVN) plays a central role in suppressing
both ongoing renal sympathetic activity and BP in awake rats [114,115]. However, NOS
inhibition induced neurogenic hypertension [116]. Conversely, iNOS overexpression causes
hypertension with sympathetic activation due to, probably, an inflammatory condition and
an increase in ROS [117]. In addition, an elegant study observed that NO originated from
eNOS can alter noradrenaline (NE) release from the sympathetic nerve, inhibiting the NE
release in neural/vascular tissues, and decreasing the sympathetic tone [95,118].

The first evidence of an association between Ang-(1–7) and NO in the brain was from
the discovery of a co-localization of the peptide with NOS in neurons of the PVN [119]. The
overexpression of angiotensin converting enzyme type 2 (ACE2), the enzyme responsible
for converting Ang-II into Ang-(1–7), in the PVN, stabilized the reduction in nNOS protein
expression in the PVN in animals with chronic heart failure and was accompanied by
improved sympathetic nerve activity, suggesting the participation of NO in the inhibitory
effects of ACE2 in the sympathoexcitation [120,121].

As shown in Figure 2, all this evidence together suggests that an increase in NO,
especially from eNOS and nNOS sources, in the periphery, including vascular, renal,
and cardiac tissues, as well as in different regions of the central nervous system (CNS)
such as the PVN, NTS, and RVLM, leads to activation of the sCG/PKG pathway and
a decrease in oxidative stress, inducing downregulation of the sympathetic drive and
consequent inhibition of a BP increase. Furthermore, the routes that involve these effects
are related to non-classic RAS (ACE2/Ang-1–7/MasR/AT2R) cascade overexpression and
Ang-II/AT1R/ROS pathway decline.
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Figure 2. Mechanisms involved in NO-related hypertension. The effects of angiotensin II (Ang-II)
are mediated by its binding to angiotensin type 1 (AT1R) and type 2 (AT2R) receptors. AT1R is
responsible for the classic pro-hypertensive activity of Ang-II, including NADPH oxidase activation
and reactive oxygen species (ROS) production. Ang-II undergoes the action of angiotensin converting
enzyme type 2 (ACE2) into angiotensin 1–7 (Ang-(1–7)), which classically interacts with Mas receptor
(MasR) and induces the PI3K/Akt pathway activation and consequent phosphorylation of eNOS.
The activation of MasR also downregulates NADPH activity, reducing ROS levels. Furthermore,
Ang-(1–7) can also bind to AT2R, which stimulates the bradykinin (BK)–NO cascade. It is important
to highlight that, when activated, the BK targets such as the B2 receptors induce NO production. NO,
in turn, is responsible for stimulating the β-arrestin pathway that promotes AT1R desensitization and
internalization of the receptor. In summary, the increase in NO (from endothelial and neuronal nitric
oxide synthase—eNOS and nNOS, respectively) promotes a decrease in oxidative stress, inducing
downregulation of sympathoexcitation and consequent inhibition of BP increase in both periphery
and different areas of the central nervous system (CNS). Conversely, NO derived from inducible
NOS (iNOS) is involved in the rise in sympathetic tonus and ROS production, mechanisms related to
triggering hypertension.

5. Nitric Oxide Donors

The reduced synthesis and/or bioavailability of NO are associated with many CVDs,
including arterial hypertension, atherosclerosis, coronary diseases, and angina [122]. Re-
garding the properties of NO, a large number of NO donor compounds have emerged as
potential agents for the treatment of the aforementioned diseases, able to exploit the wide
variety of biological functions. Thus, pharmacological aspects of NO are constantly under
study [45,123–127]. Furthermore, administration of drugs that mimic the effect of NO on
the organism is an attractive proposal, since this is a pharmacological alternative that could
reverse and/or prevent cardiovascular disorders [125].

The pathways for the formation and consequent release of NO differ significantly
depending on the class of compounds and their reactivity [123]. The amount of NO released
by a donor is one important factor, since cardiovascular action only occurs at very low
concentrations and higher concentrations are toxic [128]. Some NO donor compounds
require a catalytic enzyme to release NO, while others release NO spontaneously, without
an enzyme. On the other hand, other NO donors need an interaction with thiol groups,
some being reduced, and others oxidized, but all depend on the exposure time [123,129].

Prospection of nitrosylated compounds has emerged as a possible source for the
formation of NO-releasing agents in biological targets, which could induce the relaxation
of the vascular smooth muscles. Due to the endothelial dysfunction that occurs in some
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pathologies, NO donors have been developed to overcome the deficiency in this molecule,
although some tolerance to organic nitrates has been reported [130].

5.1. Sodium Nitroprusside (SNP)

One of the best-known NO donors is sodium nitroprusside (SNP), which presents
a short half-life and high reactivity with oxygen [38]. SNP is an inorganic complex used,
since 1928, as a vasodilator in hypertensive crisis and cardiovascular emergencies, such as
angina pectoris and heart failure [131–133]. SNP also provides a controlled hypotensive
effect during surgery [134]. Furthermore, SNP is frequently employed as a nitrovasodilator
prototype in pharmacological studies. However, provision of NO from SNP requires only
light irradiation or the reduction of one electron [123,134].

The main clinical limitation of SNP is the release of NO accompanied by the release of
cyanide (CN−), which forms part of its structure, making it highly toxic to the organism
and causing long-term treatment to lead to endothelial dysfunction [135]. Furthermore,
intravenous administration of SNP brings on a rapid, sharp drop in arterial pressure and
consequent reflex tachycardia [136]. Therefore, tolerance, the formation of CN−, reflex
tachycardia, and endothelial dysfunction are all factors that limit the use of these NO
donors, in view of their undesirable side-effects.

5.2. Organic Nitrates

Organic nitrate NO donors are the oldest class of donors used in cardiovascular
medicine [137,138]. This group of NO donors includes organic nitrate esters with a nitroxyl
(-O-NO2) and can be used as a monotherapy or in combination with other drugs. Glyceryl
trinitrate (GTN), isosorbide mononitrate (ISMN), and isosorbide dinitrate (ISDN) are the
most frequently prescribed, while pentaerythrityl tetranitrate (PETN) is little recommended
because it does not have proven effectiveness [139–142]. The mechanisms involved in the
anti-angina effect induced by organic nitrates include reduction in the preload, which is
induced by peripheral vasodilation and, in minor extension, by dilation of the epicardial
coronary artery and reduction in systemic BP [143]. The effects of organic nitrates on
preload and afterload lead to reduced oxygen consumption in the heart, in addition
to promoting increased oxygen supply due to dilation of both non- and atherosclerotic
coronary arteries [144,145].

GTN and PETN have little oral bioavailability, with approximately 90% being metabo-
lized by the liver. However, they can be administered intradermally or sublingually. On
the other hand, nitrates such as ISMN, ISDN, and nicorandil are bioavailable orally, but
with a quick duration of effect [145,146].

GTN is the class prototype and the organic nitrate that has been most widely studied
to date [147]. GTN is a prodrug metabolized by mitochondrial aldehyde-dehydrogenase
(ALDH-2) that converts GTN into nitrated metabolite (1,2-gylceryl dinitrate) and nitrite
(NO2). NO is a result of NO2 reduction or interaction between the two metabolites [148].

5.3. Clinical Use and Limitations of Nitric Oxide Donors

The in vivo effects of organic nitrates are well established and possess some advan-
tages compared to other classes of nitrates [123,148–150]. The therapeutic benefits of
nitrates are related to their effects on peripheral and coronary circulation. Clinically, the in-
halation of NO has been approved for primary pulmonary hypertension in newborns [151].
In addition, GTN-induced exhaled NO has been shown to be a valuable tool to monitor
metabolic function of the pulmonary vasculature, in contrast to endogenous NO in ex-
haled breath, which could be a marker of the production and consumption of NO in the
airways [152]. Recent studies demonstrated that there are remarkable changes in GTN-
induced exhaled NO after cardiopulmonary bypass (CPB). In fact, there was a significant
reduction in the increase in exhaled NO induced by GTN at 1 and 3 h after CPB [153].
Thus, this finding indicates that, although NO production/consumption in the airway
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compartment may remain intact after cardiac surgery, consumption reaction may dominate
in the microvascular compartment [154].

Another use of NO donors is in chemo- and radiotherapy. NO donors have a role in
enhancing the tumor perfusion to improve tumor therapy [155]. In an interesting clinical
trial, transdermal administration with GTN improved the indicators in patients with
advanced cell lung cancer [156,157].

When administered by the oral route, organic nitrates present variable oral bioavail-
ability, due to a variable rate of hepatic first-pass metabolism [146,158–160]. It is rapidly
absorbed (reaching plasma in a few minutes) and distributed and is also quickly cleared
from the plasma [158,159,161]. Metabolism may be through non-enzymatic and enzymatic
systems [161]. On the other hand, inorganic nitrites/nitrates do not undergo first-pass
metabolism, presenting, thus, high bioavailability [162–164].

Organic nitrates are metabolized by different pathways, which are either of an acti-
vating or degrading nature. Degrading routes for GTN yield inorganic nitrite and nitrate,
and glyceryl-1,3-dinitrate. Degradation is accomplished by glutathione reductase (GR) and
glutathione-S-transferase (GST) [165,166]. Bioactivation routes lead to NO, S-nitrosothiols,
inorganic nitrite, and glyceryl-1,2-dinitrate [167]. For the organic nitrates in general, various
pathways are described for organic nitrate bioactivation, such as cytochrome P450 super-
family (liver, but not vascular), deoxyhemoglobin, deoxymyoglobin, and xanthine oxidase,
GSH-S-transferase [166,168,169]. Activation of mitochondrial aldehyde dehydrogenase
(mitALDH) is predominant and this mechanism has a key role in nitrate tolerance [147].
The relative role of each enzymatic GTN biotransformation pathway in a given tissue
or specialized cell type may be influenced by factors such as its prevailing abundance,
isozyme pattern, and substrate specificity [124]. The major nitros(yl)ation sites for GTN are
the heart and liver [124].

The inorganic nitrites/nitrates follow the nitrate–nitrite–NO activation pathway, and
may be through heme proteins, deoxymyoglobin, xanthine oxidase, endothelial Nitric
Oxide synthase, and aldehyde oxidase, among others [170–175]. Moreover, mammalian
commensal bacteria may reduce nitrate to nitrite [176,177].

As elegantly reviewed by Omar and colleagues, 2012 there are some differences in the
therapeutic uses of organic and inorganic nitrites/nitrates. While organic nitrates have a
negative impact on endothelial function through the production of ROS [177], inorganic
nitrites/nitrates present a positive impact. Both induce a fall in SBP, but the fall induced
by organic nitrites/nitrates present rapid onset, while inorganic is slower. The use of
organic nitrates is highly limited by the induction of tolerance, while there is no evidence
of tolerance for inorganic nitrates. Both organic and inorganic nitrates lead to a reduction
in pulmonary arterial pressure when inhaled [145].

A number of adverse effects of the organic nitrates are known. The acute effects,
such as hypotension, dizziness, nausea, and headache, are associated with the vasodilator
effect [145]. The notable effects associated with chronic use are nitrate tolerance, increased
oxidative stress, and endothelial dysfunction [145,165]. Inorganic nitrites/nitrates may also
induce the acute effects of reflex tachycardia [136], but, differently, there is no evidence of
tolerance for inorganic nitrites/nitrates [178]. In addition, a carcinogenic effect in rodents
has been observed with the use of certain nitrosamines [179].

It is already known that these compounds can be used to treat cardiovascular diseases,
such as acute myocardial infarction, and hypertensive emergencies, due to their vasorelaxant
properties [167,180]. However, long-term administration of organic nitrates has been shown
to diminish their hemodynamic effects [181]. Long-term treatment with GTN causes tolerance
and consequent loss of the hemodynamic effect [182] and also induces endothelial dysfunc-
tion [167]. In addition, clinical trials have demonstrated contradictory effects regarding their
use in atherothrombotic diseases, especially with long-term nitrate use [183].

A mechanism which leads to nitrate tolerance involves increasing levels of endothelin
within the vasculature, activation of PLC and protein kinase C (PKC), and a subsequent in-
crease in actomyosin activity and myocyte contractility. Moreover, activation of the RhoA/Rho
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kinase pathway contributes to vasoconstriction by inhibition of MLCP [180,184,185]. In addi-
tion, continuous treatment with GTN induces NOS dysfunction, probably by reduction in
BH4 bioavailability [186].

Tolerance induced by nitrates can also comprise the desensitization of sGC, resulting in
decreased responsiveness to NO [184,187]. Furthermore, a remarkable study revealed that
GTN metabolism induces ROS production following oxidation of thiol groups in the active
site of ALDH-2, which may cause inhibition of ALDH-2 enzyme activity and reduce GTN
efficacy [141,188]. In addition, another type of tolerance, called pseudo-tolerance, which is
characterized by dysfunction in neurohormonal systems such as elevated catecholamine
release rates and circulating catecholamine levels, sodium retention, and intravascular
volume expansion, however this phenomenon is induced in response to every vasodilator
therapy [141,189].

Differently from other organic nitrates, PETN does not induce tolerance in animals or
humans [190,191], probably because it does not induce an increase in vascular production
of ROS, as seen with GTN [192,193], and did not change ALDH-2 activity [194].

It has been shown that PETN therapy improves pulmonary hypertension beyond its
known cardiac preload reducing ability [195] and may be beneficial in the treatment of
ischemic heart diseases involving oxidative stress and impairment in nitric oxide bioac-
tivity [196]. Furthermore, PETN induced a reduction in BP in SHR female but not male
offspring of mothers fed with a high-fat diet. It also diminished ACE expression, profibrotic
cytokines, and kidney fibrosis, suggesting epigenetic changes [197,198].

In a model of superimposed preeclampsia and high-fat diet, maternal PETN treatment
showed both beneficial (improved glucose tolerance) and unfavorable effects (increase in
blood pressure and decrease in EDHF-mediated vasodilation in the offspring) [199].

Molsidomine belongs to the group of sydnonimines. It is metabolized in the liver to
SIN-1, which does not require enzymatic bioactivation, so NO is released spontaneously in
the arterial wall [200,201]. In rats, it has been seen that the administration of molsidomine
did not improve pathological changes in the cardiovascular system in SHR [202], but in rats
with renal mass reduction, it normalized systemic blood pressure and partially ameliorated
renal disease progression, with these effects being potentiated by lisinopril [203]. In combi-
nation with other drugs, molsidomine decreased cardiac fibrosis and stabilized systolic
function in a model of chronic renocardiac syndrome [204]. Moreover, it attenuated the
hypoxia-related effects that lead to pulmonary hypertension [205]. Perinatal administration
of molsidomine increased renal vascular resistance and ameliorated hypertension and
glomerular injury in adult fawn-hooded hypertensive rats, a model of mild hypertension,
impaired preglomerular resistance, and progressive renal injury [206].

In humans, it has been observed that treatment with linsidomine and molsidomine
was associated with modest improvement in the long-term angiographic result after angio-
plasty, although it had no effect on clinical outcome [207]. It also improved flow-mediated
vasodilation in patients with artery disease [208], and induced antianginal effects and a de-
crease in the levels of ICAM-1, which is correlated with the severity of atherosclerosis [209],
suggesting an important role in this pathology.

Substantial evidence has shown that NO is involved in many inflammatory conditions.
Studies have demonstrated that NO can be pro-inflammatory or anti-inflammatory. Due to the
dual effects promoted by NO, this phenomenon is often referred to as the NO paradox [210].

The production of ONOO– is a potent oxidant agent that can deeply impair the regular
functions of biological systems such as endothelial integrity. In spite of the short half-life of
this oxidant at physiological pH, the interaction of ONOO– with the cellular membrane
and molecules with biological activity provokes damaging outcomes in pathophysiological
oxidative-stress conditions [211], which include inhibition, inactivation, or activation of
enzymes, modification in protein structure, and disorders in signaling pathways and cel-
lular energetic disbalance [212]. Studies have verified that ONOO– induces activation of
COX-1 and COX-2 enzymes with subsequent production of prostaglandins [213]. Neverthe-



Biology 2021, 10, 1041 11 of 26

less, ONOO– could also inhibit COX activity mediated by nitration of tyrosin385 residue,
producing a divergent response in regard to prostanoid formation [214,215].

There are differences in the ways in which NO is released, the amount of NO gen-
erated, and the time during which it is released from the NO donors mentioned above.
S-nitrosoGlutathione (GSNO) is found in vivo and is an important intermediary in organic
nitrate metabolism. The remaining nitrosothiols are synthetic. These compounds act as
intermediates in the nitrosylation of proteins and possess the ability to transfer the different
NO species through chains of thiols, without releasing the NO molecule itself. This action
mitigates the probability of NO reacting with O2

•−, generating ONOO–, or reacting with
other molecules to nitrosylate them [216]. Sydnonimines release NO spontaneously, without
enzymatic participation. O2

•− is generated concomitantly and together with NO leads to
ONOO− formation. This reaction causes production of hydroxyl radical, increasing its proox-
idant potential [217]. SNP does not release NO spontaneously in vitro, but requires partial
reduction (one-electron transfer) by a variety of reducing agents shown in membrane cells.
In addition to NO, SNP can release, in aqueous solution, a range of oxidant and free radical
species, such as iron, cyanide, superoxide, H2O2, and hydroxyl radical [218–221].

NO also acts as an anti-inflammatory through the impairment of monocyte adhesion,
as well as the expression of proinflammatory target genes of NF-κB, such as TNF-α, IL-6,
iNOS, ICAM, V-CAM, and COX-2 in vessels as well as in glial cells [222–226]. However,
the trigger for these signaling pathways is based on cell type, concentration of NO donor
(in vitro studies), administration route, and cell-redox state [221]. For this reason, the
conclusion is that NO cannot be rigidly classified as either an anti-inflammatory or a
pro-inflammatory gas [210].

Despite the potential of NO in medicine, only two types of NO donor drugs, SNP
and organic nitrates, are currently used in the clinic [127]. Other classes of NO donors
are available for clinical studies, such as the derivatives of a minor heterocycle system,
the furoxan ring. 4-Methyl-3-phenylsulfonylfuroxan is one of the most active products
of the furoxans. Its ability to inhibit platelet aggregation induced by arachidonic acid in
human plasma is reversed by the presence of HbO2

++, a well-known scavenger of NO.
Furthermore, it increases cGMP levels in human platelets in a dose-dependent manner and
inhibits the increase in Ca2+ concentration induced by arachidonic acid [227].

New chemical classes of NO donors have now been synthesized and may have potential
for the treatment of CVDs. Our research group and others have studied some new NO
donors which induced hypotension in normotensive rats such as (Z)-ethyl 12- nitrooxy-
octadec-9-enoate (NCOE) [126] and cis-[Ru(bpy)2(py)(NO2)](PF6) (RuBPY) [125] as well as
in hypertensive animals, for instance 2-nitrate-1,3-dibuthoxypropan (NDBP) [228–230], the
nitrosyl–ruthenium complex [Ru(terpy)(bdq)NO+]3+ (TERPY) [231–234], the cyclohexane
nitrate (HEX) [235], and the organic nitrate 1,3-bis (hexyloxy) propan-2-yl nitrate (NDHP) [236]
(Table 1).

Table 1. Classic NO donors.

No Donor Class Clinical Uses Clinical Limitations References

Sodium
Nitroprusside

(SNP)

Inorganic
donor

-Vasodilation in hypertensive
crisis and cardiovascular
emergencies, such as angina
pectoris and heart failure
-Hypotensive control during
surgery

-Formation of CN−

-Reflex tachycardia
-Endothelial dysfunction
-Tolerance

[38,123,131–136]

Molsidomine Sydnonimines
-Vasodilation in patients with
artery disease
-Antianginal effects

-Despite an improvement in
the long-term angiographic
result after angioplasty, it
induced no effect on clinical
outcome

[200,202,207,209]
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Table 1. Cont.

No Donor Class Clinical Uses Clinical Limitations References

Glyceryl
trinitrate (GTN)

Organic
nitrate

-Antianginal effect (reduction in
the preload by peripheral
vasodilation and dilation of the
epicardial coronary artery) and
reduction in systemic BP
-Increase in oxygen supply due to
dilation of both non- and
atherosclerotic coronary arteries

-Small oral bioavailability
-Endothelial dysfunction
-Tolerance
-Increases oxidative stress
-Increases autocrine endothelin
expression
-Induces supersensitivity to
vasoconstrictors

[143–146,167,181–183]

Isosorbide
mononitrate

(ISMN)

Organic
nitrate

-Vasodilation for the treatment of
angina pectoris
-Vasodilation of coronary arteries

-Short effect, despite the oral
bioavailability
-Endothelial dysfunction
-Therapy of post-infarct leads
to an increased rate of
coronary events
-Increases oxidative stress
-Increases autocrine endothelin
expression;
-Supersensitivity to
vasoconstrictors

[143–146]

Isosorbide
dinitrate (ISDN)

Organic
nitrate

-Vasodilation for the treatment of
angina pectoris
-Vasodilation of coronary arteries

-Short effect, despite the oral
bioavailability [143,145,146]

Pentaerythrityl
tetranitrate

(PETN)

Organic
nitrate

-Improvement in pulmonary
hypertension beyond reduction in
the preload
-Treatment of ischemic heart
diseases
-Does not induce tolerance

-Little oral bioavailability [143–146,195]

Nicorandil -Vasodilation for chronic stable
angina

-Short effect, despite the oral
bioavailability [142–146]

5.4. Metal-Based Drugs as NO Donors

Stretching back 5000 years, compounds containing metal ions have been widely used to
treat various diseases [237]. As many of these compounds contain a metal in their structure
and possess pharmacological properties, they are known as metal-based drugs [238].

Recently, metal-based drugs such as ruthenium compounds have been studied as NO
donors and are attracting increasing interest, particularly due to their stable active forms
under physiological conditions and low toxicity, thereby making them suitable for clinical
use [233]. This class could provide a new source of NO-releasing agents in biological
targets, especially for relaxation of VSMC.

The use of metals for the development or modification of pharmaceutical products has
numerous advantages, including a variable number of geometries and forms of coordination,
accessibility to different redox states, and specific thermodynamic and kinetic characteristics,
in addition to the intrinsic properties of metal cations and their ligands, which sometimes
undergo significant alterations when a metal complex is formed [239–241].

The biological properties of ruthenium complexes were first reported in the 1950s [242],
and prospection of nitrosyl compounds with transition metals has raised the prospect of
the formation of NO-releasing agents and, in particular, redox release of NO in biological
targets. Drugs capable of activating the intracellular receptor of NO, sGC, independently of
endothelial NO have been developed to address the issue of tolerance produced by nitrates.

In view of the promotion of such actions by NO and the side-effects of NO donor
drugs, such as nitrate-tolerance in clinical settings, some research groups, including ours,
have been studying metal-based NO donor drugs that act on the cardiovascular system,
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with a potential action to induce vasorelaxant activity and BP and decrease oxidative stress,
among other effects [45,243–248].

The trans-[Ru(Cl)NO(cyclam)2+ complex has been shown to sustain a more prolonged
hypotensive effect, averaging 15 min, which is almost 20 times the duration of the effects of
SNP, in either normotensive or hypertensive mice [249]. Another study using a ruthenium
complex demonstrated that trans-[RuCl([15]aneN4)NO]2+ induced rat aorta dilatation only
in the presence of a reducing agent by the sGC-cGMP pathway and potassium-channel
activation, which leads to a decrease in cytoplasmic Ca2+ concentration. This compound
releases NO· and NO− species [243,244].

A ruthenium compound that has been extensively studied, called TERPY, also induced
aorta relaxation through sGC-cGMP and potassium-channel pathways, but not sarcoplas-
mic reticulum Ca2+-ATPase activation [245]. Interestingly, TERPY failed to induce vascular
relaxation in rat basilar arteries, probably due to impairment in enzymatic bioactivation
of the NO donor in this vascular bed [246]. This should be pointed out as an important
characteristic as cerebral vasodilation is believed to be the major reason for NO donor-
induced headaches [250]. On the other hand, the relaxation induced by TERPY was similar
in mesenteric resistance arteries from Sham and two-kidney-one-clip hypertensive rats
(2K1C), but not in aorta, probably due to impairment in the potassium-channel activation
induced by TERPY in this last vessel [251,252]. Furthermore, although less potent than
SNP, TERPY induced a long-lasting effect which was greater in 2K1C than in normotensive
rats. This long-lasting effect could be related to the slow release of NO, which could be an
interesting characteristic of TERPY as a potential therapeutic vasodilator [232]. In aortas
from spontaneously hypertensive rats (SHR), the relaxation induced by TERPY was not
different from Wistar control rats, and neither was the amount of NO released by the
compound [233]. Moreover, the effect of TERPY was improved by the presence of endothe-
lium and eNOS in SHR, through uncoupling and hyperphosphorylation of eNOS [253].
Additionally, the hypotensive effect of TERPY was greater in male than in female SHR,
probably due to oxidative stress [254].

Another metal-based drug complexed with ruthenium, RuBPY, which has a nitrite
instead of NO in its moiety, required the presence of the tissue to release NO, showing its
stability in solution. The likely enzyme responsible for this release is sGC. RuBPY induced
relaxation through the NO–cGC pathway in rat aortas [255]. However, in cultured VCMC
from rat aorta, RuBPY was able to induce NO· release that activates K+ channels in an
sGC-independent pathway [256]. On the other hand, RuBPY induced relaxation in rat
mesenteric resistance arteries through NO–sGC–cGMP–PKG-pathway activation, but not
through K+ channels or SERCA triggering [42].

Concerning hypertensive animals, Pereira et al. (2017) investigated the effect of RuBPY
in different arteries in 2K1C rats. The authors observed that the relaxation was similar in
aorta, mesenteric resistance, and coronary arteries between normotensive and 2K1C rats,
although it was smaller in basilar arteries from 2K1C than in normotensive rats. Moreover,
differently from SNP and similar to TERPY, RuBPY did not induce a hypotensive effect in
normotensive rats. Altogether, these data may indicate advantages of RuBPY over SNP,
since it does not induce an effect in normotensive rats, while it did induce coronary artery
relaxation (which may be useful for angina) and a minor effect in the basilar artery (which
may indicate that it does not induce headache) [125]. Furthermore, differently from GTN,
RuBPY did not induce self-tolerance or cross-tolerance with acetylcholine, which could be
another advantage of this NO donor for clinical use [257].

Importantly, the NO donors may have distinct characteristics. Ru(NO)(salenCO2H)Cl
was able to induce vascular relaxation of rat aorta only in the presence of light, possibly due
to photolabilization from the ruthenium nitrosyl [258]. Oishi et al. (2015) have suggested
that cis-[Ru(H-dcbpy-)2(Cl)(NO)] (DCBPY) at low concentration (0.1 µM) is not an NO
generator, but can inactivate ROS and improve endothelial function [259].

Based on promising compounds studied by us and other Brazilian colleagues, our
collaborators have synthetized new metal-based drugs containing the NO molecule to
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induce potential beneficial effects in the cardiovascular system. Many preclinical studies
have been performed to support this concept. An NO donor similar to RuBPY, called Rut-
bpy (Cis-[Ru(bpy)2(SO3)(NO)]PF6) induced stabilization in BP in anesthetized hypotensive
Wistar rats [260]. Cerqueira et al. (2008) studied two related nitrosyl–ruthenium complexes,
named cis-[Ru(bpy)2(SO3)(NO)]PF-6-9 (FONO1) and trans-[Ru(NH3)4(caffeine)(NO)]C13
(LLNO1), which demonstrated a potent vasodilator effect in rabbit corpus cavernosum [261],
corroborating the vasodilator potential of these drugs.

Recently, new nitrosyl–ruthenium compounds, denominated FOR, have been pro-
duced from a simple and easy route and tested in the cardiovascular system and other or-
ganic systems, demonstrating remarkable outcomes. The cis-[Ru(bpy)2(2-MIM)(NO)](PF6)3
(FOR811A) was studied in a murine model of allergic asthma and it decreased the alveolar
collapse and preserved the bronchoconstriction during asthma. In addition, molecular dock-
ing using FOR811A showed a strong interaction with the heme group of cGC [262]. Another
compound, cis-[Ru(NO2)(bpy)2(5NIM)]PF6 complex showed a potential pharmacologi-
cal application as an antioxidant and anti- inflammatory (inhibition of pro-inflammatory
cytokines) in in vitro studies [263].

Finally, a very recent study demonstrated that the new ruthenium-based nitric oxide
donor cis-[Ru(bpy)2(ImN)(NO)]3+ (FOR0811) administered intravenously by bolus infusion
or chronically using subcutaneous implanted osmotic pumps, decreased BP, presenting
a long-lasting effect, and did not demonstrate reflex tachycardia in L-NG-Nitro arginine
methyl ester (L-NAME) hypertensive rats [248]. In addition, FOR0811 induced a reduc-
tion in the low (LF) and very low (VLF) frequency bands. The authors also detected a
vasorelaxant response in aortic rings mediated by the sGC–cGMP pathway after addition
of FOR0811 [248]. Furthermore, FOR0811 evoked relaxation in human corpus cavernosum
and was able to increase cGMP levels, and this effect was either blocked or reversed by a
cGC inhibitor, the 1-H-[1,2,4] oxadiazolo-[4,3-a]quinoxaline-1-one (ODQ) [264]. These re-
sponses elicit the new ruthenium complex as a promising NO donor to treat cardiovascular
dysfunctions. At this moment our research group is concentrating on the study of metal-
based drugs similar to FOR0811 (unpublished data). Notable results on vascular activity
and BP have been revealed, encouraging us to continue the study of these compounds with
a future perspective to their use in humans (Table 2).

Table 2. New chemical classes of NO donors.

No Donor Class Effect Species Tolerance References

(Z)-ethyl
12-nitrooxy-octadec-9-enoate

(NCOE)
Organic nitrate

-Short-lasting hypotension
and bradycardia
-Vasorelaxation

Rat
Does not cause

in vitro
tolerance

[126]

2-nitrate-1,3-dibuthoxypropan
(NDBP) Organic nitrate

-Hypotension, bradycardia,
and bradypnea
-Prevention of the
progression of angiotensin
II-mediated hypertension

Rat
Does not cause

in vitro
tolerance

[228,229,231]

Cyclohexane Nitrate (HEX) Organic nitrate

-Reduction in blood
pressure and heart rate
-Antihypertensive effect in
renovascular hypertension
-Vasorelaxation in cranial
artery

Rat - [235]

1,3-bis (hexyloxy) propan-2-yl
nitrate (NDHP) Organic nitrate

- Reduction in blood
pressure in hypertensive
animals
-Vasorelaxation
-Prevention of the
progression of
hypertension and
endothelial dysfunction

Rat
Does not cause

in vitro
tolerance

[236]
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Table 2. Cont.

No Donor Class Effect Species Tolerance References

[Ru(terpy)(bdq)NO+]3+

(TERPY)
Metal-based drugs

-Vasorelaxation in aorta
and mesenteric resistance
arteries from Sham and
two-kidney-one-clip
hypertensive (2K1C)
-Long-lasting hypotensive
effect in 2K-1C, but not in
normotensive
-Similar vasorelaxation and
released NO in aortas from
Wistar and Spontaneously
Hypertensive Rats (SHR)
- Does not induce
vasorelaxation in basilar
arteries
-Hypotensive effect in SHR

Rat - [231–234,245,
251,252,254]

[Ru(bpy)2(py)(NO2)](PF6)
(RuBPY) Metal-based drugs

-Induced relaxation in
aorta, mesenteric resistance
arteries; coronary arteries
between normotensive and
2K1C rats
-Did not induce
hypotensive effect in
normotensive rats
-Induced coronary artery
relaxation (which may be
useful for angina) and a
minor effect in basilar
artery (which may indicate
that it does not induce
headache).
-NO· release that activates
K+ channels in cultured
VCMC aorta

Rat

Does not cause
in vitro

tolerance (self-
or

cross-tolerance)

[42,125,255–
257]

trans-[Ru(Cl)NO(cyclam)2+ Metal-based drugs

-Long-lasting hypotensive
effect (20 times greater than
SNP) in normotensive and
hypertensive animals

Mouse - [249]

trans-[RuCl([15]aneN4)NO]2+ Metal-based drugs
-Vasorelaxation in aorta
(due to the release of NO·
and NO-species)

Rat - [243,244]

Ru(NO)(salenCO2H)Cl Metal-based drugs -Vasorelaxation in aorta Rat - [258]

Rut-bpy
(Cis-[Ru(bpy)2(SO3)(NO)]PF6 Metal-based drugs

-Stabilization of BP in
anesthetized hypotensive
animals

Rat - [260]

cis-[Ru(bpy)2(SO3)(NO)]PF-6-9
(FONO1) Metal-based drugs -Vasodilation in corpus

cavernosum Rabbit - [261]

trans-
[Ru(NH3)4(caffeine)(NO)]C13

(LLNO1)
Metal-based drugs -Vasodilation in corpus

cavernosum Rabbit - [261]

cis-[Ru(bpy)2(2-
MIM)(NO)](PF6)3

(FOR811A)
Metal-based drugs

-Decrease in alveolar
collapse and prevention of
bronchoconstriction during
asthma

Mouse - [262]

cis-[Ru(bpy)2(ImN)(NO)]3+

(FOR0811)
Metal-based drugs

-Decrease in BP
(long-lasting) with no reflex
tachycardia in L-NG-Nitro
arginine methyl ester
(L-NAME) hypertensive
rats
-Reduction in the low (LF)
and very low (VLF)
frequency bands in rats
-Vasorelaxation in rat aorta
-Vasorelaxation of human
corpus cavernosum

Rat
and
hu-

man
- [248]
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6. Conclusions

In this paper, we briefly reviewed the role of NO in the cardiovascular system, focusing
on its involvement in vasodilation. Based on the important properties of NO, NO donors
were produced and have been used for the treatment of vascular disorders. However,
due to the side effects presented by these donors, particularly vascular tolerance, new
molecules have emerged with the potential to be used in the treatment of cardiovascular
diseases. In this context, new organic nitrates such as NDBP, NCOE, and NDHP, and
especially metal-based drugs with NO in their structure, have been studied by our research
group and collaborators. Among them, TERPY and RuBPY have been widely explored,
which demonstrated robust hypotensive and vasorelaxant responses in several models of
hypertension. In addition, we are currently investigating other new ruthenium complexes
named FOR. These studies have shown very promising results, which lead us to continue
the analyses in an attempt to abolish the harmful effects presented by other NO donors
used in clinical practice.
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