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In this work, we present a theoretical method to determine the line tension of nanodroplets on
homogeneous substrates via decomposing the grand free energy into volume, interface and line
contributions. With the obtained line tension, we check the viability of Young equation and find that the
chemical potential dependence (or equivalently, droplet curvature dependence) of the interface tensions is
crucial for the viability of modified Young equation at the nanometer scale. In particular, the linear
relationship between the cosine of contact angle and the curvature of the contact line, which is often used to
determine the line tension, is found to be incorrect at the nanometer scale.

U
nderstanding on the line tension becomes particularly important because of its relevance to a number of
applications, such as soft lithography1,2, micro- and nanofluidics3 and nucleation4,5. Nevertheless, the
contact line tension, well defined as the excess free energy of a solid-liquid-vapor system per unit length

of a contact line, remains controversial6–8 largely because the direct measurement of the line tension of droplets
has not been possible. There is no agreement among researchers with respect to both the sign and the magnitude
of the line tension. Experimental values in the literature range from 10211 to 1025 J/m, and both positive and
negative signs for the line tension were reported7,9,10. In theoretical studies, however, most of the estimates for the
magnitude of the line tension range from10212 to 10210 J/m, near the lower limit of the experimental values5,7,11.
Recently, even the existence of the line tension is under debate in the literature12.

The uncertainty of the contact line tension also leads to controversy for the viability of modified Young
equation12–14, which relate the apparent contact angle h for a drop/bubble atop of solid substrates and the line
tension t as

cos h~
cvs{cls

clv
{

t

clvr
, ð1Þ

with cij the interface tensions for different interfaces. Even though the modified Young equation is extensively
applied, whether it can hold or not at the nanometer scale has been questioned in recent years, partly because the
original Young equation is virtually impossible to prove experimentally14. For example, Ward and Wu12 suggested
that it is not the line tension but the adsorption effect that can explain the dependence of the contact angle on the
contact line curvature.

In this work, we present a method to determine the line tension accurately via decomposing the grand free
energy of a nanodroplet on a homogeneous substrate into volume, interface and line contributions. By using the
metastable vapor state at the same thermodynamic conditions as the initial state, the free energy cost for the
formation of the nanodroplets can be written as

DV~Vl(vl{vv)zAls({(cvs{cls))zAlvclvztL, ð2Þ

with Vl the volume of the droplet, Aij the area for different interfaces, L the length of the contact line, vi the bulk
free energy density of liquid or vapor. In this work, nanodroplets are modeled as critical nuclei for vapor-to-liquid
phase transition on solid substrates to eliminate the non-equilibrium effect which cannot be neglected for
microscopic droplets15. We chose lattice gas model to describe the systems, and the normal lattice density
functional theory (LDFT)16,17 was used here to determine the stable or metastable states. While for the unstable
critical nuclei (nanodroplets), the constrained LDFT method18,19 was applied here to stabilize the nuclei and
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determine the corresponding energy barrier, namely DV in equation
(2). The physical basis of the constrained LDFT and calculation
details can be found in ref.19. Besides, the volume and interface
contributions to the grand free energy can also be calculated sepa-
rately through different systems using either normal LDFT or con-
strained LDFT (see below), and thus the line tension can be
accurately determined through equation (2). With the accurately
determined line tension, we also checked the viability of modified
Young equation at the nanometer scale.

Results
Before we present our simulation results, we briefly show that the
system with critical nuclei produced from our constrained LDFT is in
thermodynamic equilibrium with the bulk phase (surrounding super-
saturated vapor), therefore eliminating the evaporation effect of
nanodroplets15. The thermodynamic equilibrium is also a prerequi-
site of the applicability of the free energy decomposition mentioned
above: different thermodynamic phases coexist in equilibrium. Using
homogeneous nucleation as an example, we obtained critical nuclei
from constrained LDFT and then determined the Gibbs dividing
interface (see Fig. 1a). The corresponding local density (r) and chem-
ical potential (m) distributions are shown in Fig. 1b and Fig. 1c,
respectively. The radial profiles of m in Fig. 1c indicate that ther-
modynamic equilibrium is achieved between the nanodroplets (crit-
ical nuclei) and the surrounding vapor. Therefore, nanodroplets
studied in this work are modeled as critical nuclei at the given tem-
perature and chemical potential, with advantages of bias free and free
of non-equilibrium effect. Moreover, Fig. 1b indicates that at the
same chemical potential, the local density of the vapor (liquid) region
for a system with a critical nucleus is identical with that of the bulk
vapor (liquid) phase13. This same density profile makes it possible to
calculate separately the volume, interface and line contributions of
the grand free energy from different systems, as shown below.

The volume terms of the grand free energy, vl and vv, are first
determined in bulk systems with normal LDFT calculations,

separately (see Fig. 2a for schematic illustration). Fig. 2b shows the
difference of the free energy density between liquid and vapor bulk
phases obtained from vl 2 vv 5 (Vl 2 Vv)/V, with Vl and Vv the
grand free energy for bulk liquid and vapor phases, respectively. The
coexistence chemical potential for vapor-liquid phase transition was
found to mc 5 23.018,19, at which vl 5 vv (see Fig. 2b).

By using normal LDFT, the value of cvs 2 cls in equation (2) was
then calculated from the difference of interface tensions between
planar vapor-solid and liquid-solid interfaces (see Fig. 2c). We first
simulated adsorption and desorption isotherms for fluids in a simu-
lation box with a planar inert substrate at (100) surface, and obtained
the free energy of the whole system (i.e. Vls and Vvs) at different
chemical potentials. The values of cls and cvs at different fluid-solid
interactions were then determined from the excess grand free energy
with respect to the corresponding bulk phases, namely cls 5 (Vls 2

Vlvl)/Als and cvs 5 (Vvs 2 Vvvv)/Avs. Finally, the variation of cvs 2 cls

as a function of the chemical potential is given in Fig. 2d.
For the vapor-liquid surface tension, we first computed the surface

tension for the planar vapor-liquid surface, which is in equilibrium
state only at the coexistence chemical potential of mc 5 23.0. With
normal LDFT calculations, the free energy difference between this
system and the bulk vapor phase at the same chemical potential DV
was determined, and thus the surface tension for the planar vapor-
liquid interface is calculated from clv 5 (DV2 Vl(vl 2 vv))/Alv, with
vl 2 vv determined before (see Fig. 2b). In lattice model, the surface
tension is weakly direction dependent25. The small difference
between two different orientations is caused by the lattice effect,
and would become negligible at the high temperature we adopted.
The surface tension for the interface at (100) plane is clv

(100) 5 0.1389
at T 5 1.2 (Tc , 1.5).

Using the constrained LDFT, we then computed the vapor-liquid
surface tension for nanodroplets (critical nuclei) in the absence of
substrates (see Fig. 3a for schematic illustration). As the first step, we
simulated critical nuclei at various chemical potentials and deter-
mined the corresponding nucleation barriers DV. Then the surface

Figure 1 | Thermodynamic equilibrium of critical nuclei with surrounding supersaturated vapor. (a) Critical nucleus for homogeneous nucleation and

the fitted Gibbs dividing interface at m 5 22.975. (b, c) Radial distribution of local chemical potential m and density r for the critical nuclei of

homogeneous nucleation. The small pictures on the right and left sides show the corresponding results in bulk vapor and liquid phases at the same

chemical potential.
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tension at a given chemical potential is determined by clv 5 (DV 2

Vl(vl 2 vv))/Alv. Our simulation results show that at a constant
temperature, there exists a one-to-one correspondence between the
chemical potential (m) and the radius of a critical nucleus (R) for the
bulk vapor-to-liquid phase transition (see Fig. 3b), under the bound-
ary condition of R- . ‘ at mc 5 23.0. Therefore, chemical potential
dependence of surface tension is equivalent to the droplet curvature
dependence, at least in the cases of critical nuclei. For growing or

evaporating droplets, which are in a nonequilibrium state, the one-
to-one correspondence between m and R breaks down. However,
Moody and Attard20 show that the local supersaturation (namely
local chemical potential) above a growing droplet can be determined
by the Young-Laplace equation. It implies that the chemical poten-
tial, both global and local, depends on the droplet curvature.

With the one-to-one correspondence between m and R, the surface
tension clv is given in Fig. 3c as a function of R. It is found that the

Figure 2 | The determination of vl 2 vv and cvs 2 cls with normal LDFT. (a, c) Illustration of the systems used to determine (a) vl 2 vv and (c) cvs 2 cls

with normal LDFT. (b) bulk free energy density difference between liquid and vapor phase, determined with vl 2 vv 5 (Vl 2 Vv)/V. (d) The interface

tension difference between vapor-solid and liquid-solid interfaces (cvs 2 cls) determined at different esf and m.

Figure 3 | The determination of critical nuclei for both homogenous and heterogeneous nucleation with constrained LDFT. (a–c) Homogeneous

nucleation to determine the vapor-liquid surface tension clv with constrained LDFT: (a) illustration of the systems used; (b) The relationship between the

chemical potential m and radius of critical nucleus R; (c) clv(R) versus R and clv versus 1/R (inset). The full triangles in (c) represent R obtained from the

equimolar method, and open triangles from the method by Schrader et al13. (d–f) Heterogeneous nucleation on planar substrates: (d) illustration of

the systems used, and critical nucleus at (e) esf 5 0.30 and (f) 0.55. The red line in (e,f) shows the fitted Gibbs dividing interface, and the blue line indicates

the fluid-solid interface at the mid-point between solid substrate and the fluid particles closest.
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relative deviation between clv(R) and clv(?) increases with decreas-
ing R, and reaches ,8% for R 5 4. Note that in this work we used two
methods to define the position of the vapor–liquid interface. One is
the Gibbs dividing surface for the vapor-liquid interfaces with the
fluid density equal to 0.519, from which we could fit the interface
using a spherical hypothesis and obtain the radius of a droplet.
The other is a method used by Schrader et al.13, in which the droplet
radius R is calculated from the volume of a liquid droplet with Vl 5

4/3pR3 and Vl 5 V(r 2 rv)/(rl 2 rv). As shown in Fig. 3c, the two
methods give the same results. The inset of Fig. 3c also shows the
corresponding fitting results of clv(R) from the equation originated
from modified classical nucleation theory, clv(R) 5 clv(‘)(1 2 2d/R
1 s/R2)21,22, giving clv(‘)5 0.1405, the Tolman length d 5 20.009,
and the offset parameter s 5 21.3106. The small value of d is in
agreement with the fact that for the lattice gas the Tolman length is
zero at the coexistence23,24. The observation of the value of clv(?)
close to the value of clv

(100) demonstrates that the temperature we
chosen is sufficiently high to minimize the anisotropy effect of the
lattice model25.

Finally, using constrained LDFT we calculated the free energy
costs for the formation of various critical nuclei on planar substrates
(the vapor-to-liquid heterogeneous nucleation),DV, and determined
the corresponding radius of the critical nuclei (see Fig. 3e,3f for
typical snapshots of critical nuclei and the fitted vapor-liquid inter-
faces). It is found that droplet radii from heterogeneous nucleation
are almost the same for those from homogenous nucleation at the
same chemical potential and temperature (see Fig. 1a, 4e, and 4f).

With the obtained results for the nucleation barrier for nanodro-
plet formations, and the volume and interface contributions to the
grand free energy (see Fig. 2 and Fig. 3), we could determine the line
tension from equation (2). Fig. 4a–e show the obtained line energy tL
as a function of the droplet circumference L 5 2pr for different
values of esf. Good linear relationships are observed from the figures,
indicating that the line tension is chemical potential independent,
namely the line tension can be treated as a constant at a fixed tem-
perature and fluid-solid interaction. The line tension determined
from the slope of the linear regression line is shown in Fig. 4f as a
function of the fluid-solid interaction. The figure shows that the line
tension is always negative26, and reaches a minimal value at esf 5 0.50.

Taking s 5 0.37 nm and eff 5 7.9226 3 10221 J 27, the values of the
line tension obtained in this work is about 10211 J/m. The magnitude
of those results is consistent with some theoretical predictions and
experimental results28,29.

Discussion
Above we showed that all quantities in modified Young equation,
namely equation (1), including the three interface tensions and the
line tension and the apparent contact angle, can be accurately deter-
mined from our calculations. Therefore, we can check the viability of
Young equation at the nanometer scale. In Fig. 5a we give the contact
angle calculated from modified Young equation and those direct
‘measured’ from our calculations (see, e.g., Fig. 3e). Fig. 5a shows
that if and only if the chemical potential dependence of interface
tension (see Fig. 2 and Fig. 3) is correctly taken into account, the
contact angles of nanodroplets from modified Young equation
(equation (1)) agree with those from direct ‘measurement’. If the
chemical potential dependence of the three interface tensions are
ignored (e.g., as in Fig. 5a, we set the three interface tensions constant
to those at mc 5 23.0), contact angles from modified Young equation
would substantially deviate from the measured values from con-
strained LDFT, and the deviation increases with the decrease of the
radius of contact lines, r. Hence, the chemical potential dependence
of interface tensions can not be ignored for the validness of Young
equation at the nanometer scale. This also implies that the linear
relationship between the cosine of a apparent contact angle and
the curvature of a contact line, which was often used in experiments
and simulations to determine the line tension9,11, is no longer valid at
the nanometer scale.

To confirm this point, we determined the line tension alternatively
by using the linear regression line of cosh ,1/r, and the ‘‘apparent’’
line tensions obtained are shown in Fig. 5b. The ‘‘apparent’’ line
tension is about one order of magnitude smaller than the line tension
computed from the method of decomposing the grand free energy
(Fig. 4). For most partial wetting situations, e.g., esf 5 0.40 or larger,
the cosh increases with increasing 1/r, indicating a negative ‘‘appar-
ent’’ line tension. But for the case of esf 5 0.30, cosh decreases with
increasing 1/r, we therefore obtained a positive ‘‘apparent’’ line ten-
sion. The significant deviation of the line tensions from those for the

Figure 4 | The determination of contact line tension. (a–e) The contact line energy tL versus the droplet circumference 2pr at different fluid-solid

interaction strengths of esf : (a) 0.30; (b) 0.40; (c) 0.45; (d) 0.50; (e) 0.55. (f) The obtained contact line tension t versus the fluid-solid interaction esf.

www.nature.com/scientificreports
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method with free energy decomposition (see Fig. 5a,b) indicate that
the linear relationship between the cosine of local contact angle and
local curvature of contact line is incorrect at the nanometer scale.

The deviation from the linear relationship between cosh and 1/r
can be explained from the chemical potential dependence of the three
interface tensions (Fig. 2d and Fig. 3c), namely the interface tension
effect. As to the effect of vapor-liquid surface tension, the increase of
the chemical potential, which induces smaller droplets and a smaller
clv (see Fig. 3c), tends to increase (decrease) the contact angle at
negative (positive) cvs 2 cls. As to the effect of fluid-solid interface
tensions, however, the increase of the chemical potential results in
the decrease of cvs 2 cls (see Fig. 2d), giving rise in the increase of the
contact angle. This fluid-solid interface effect in fact is an adsorption
effect12,30: the fluid-solid interface tension depends on the fluid
adsorption on the substrates, leading to different Young contact
angles at different chemical potentials. The Young contact angle hY

without considering the line tension effects calculated by the original

Young equation, cos hY~
cvs{cls

clv
, is given in Fig. 5c as a function of

droplet curvature (also chemical potential), indicating that the inter-
face tension effect make the contact angle larger. The deviation of
Young contact angle hY(R) relative to hY(‘) (see Fig. 5d) also indi-
cates the more significant influence of the chemical potential for
smaller droplets.

The esf dependence of coshY(‘)2 coshY(R) in Fig. 5d also shows
that the effect of chemical potential alone can not explain the
dependence of the contact angle on the droplet size (also chemical
potential). In other words, the line tension has to be considered. The
apparent contact angle is in fact a result of competition between the
chemical potential dependence of interface tension effect and the line
tension effect: the interface tension effect increases the contact angle,
and the negative line tensions tend to decrease the contact angle. For
example, for the cases of esf . 0.30, the small values of coshY(‘)2
coshY(R) indicate a weak interface tension effect (see Fig. 5d), while
the line tension effect is strong (see Fig. 4f). Thus, the contact angle is

lower for smaller droplets, exhibiting a negative ‘‘apparent’’ line ten-
sion, because the line tension effect overweighs the interface tension
effect (see Fig.5b). But, in other cases (e.g., esf 5 0.30 or smaller)
where the line tension effect becomes weaker than the interface ten-
sion effect, the contact angle may becomes larger for smaller droplets.
That is why we got positive ‘‘apparent’’ line tension at esf 5 0.30 (see
Fig. 5b). More importantly, it is the competitive mechanism that
makes the linear relationship in modified Young equation no longer
valid.

In summary, we presented a method to determine accurately the
line tension for nanodroplets on homogeneous substrates via decom-
posing the grand free energy. The obtained line tension is found to be
chemical potential independent and always negative, reaching a min-
imal value at a moderate fluid-solid attraction. We also checked the
viability of Young equation at the nanometer scale, and found that if
the dependence of interface tensions on the chemical potential is
correctly taken into account, the contact angles of nanodroplets from
our method agree with those from modified Young equation.
However, we show that the extensively used linear relationship
between the cosine of contact angles and the curvature of contact
lines suggested by modified Young equation is in fact incorrect at the
nanometer scale. Detailed inspection shows that the contact angle is
in fact a result of competition between the effects of the chemical
potential dependent interface tension and the effect of the chemical
potential independent line tension.

Methods
For a grand canonical (mVT) ensemble, the grand potential V in lattice model is
expressed as a function of the fluid density distribution via16–19

V~kBT
X

i

ri ln riz 1{rið Þ ln 1{rið Þ½ �{
eff

2

X
i

X
a

ririzaz
X

i

ri wi{mð Þ ð3Þ

where the sums are restricted to fluid sites on the lattice, and a is the vector from a site
i to a nearest neighbor site. In equation (3), ri is the mean density at site i, wi
represents external field, and eff and esf represent the strength of fluid-fluid interaction
and that for fluid-solid interaction, respectively. In order to obtain the information of

Figure 5 | The viability of Young equation and adsorption effect. (a) Comparison of cosh measured from our constrained LDFT calculation (symbols)

and those calculated from the modified Young equation with (solid line) and without (dash line) considering the chemical potential dependence of the

three interface tensions. (b) Obtained line tension from the linear regression of cosh ,1/r. (c) The cosine of Young contact angle determined by original

Young equation versus droplet curvature 1/R. (d) The difference in Young contact angle relative to the value hY at 1/R 5 0 (i.e. mc 5 23.00).
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transition states (critical nucleus), a volume constraint of N0
L~NL with NL

0 the target
number of liquid sites (the given volume of the nucleus) and NL its actual value in our
calculations was added in equation (3), and thus the constrained grand potential VC

can be written as VC~Vzk½N0
L{NL�18,19. With

LVC

Lri
~0 and

LVC

Lk
~0, we get the

density profile via18,19

ri~
1

1z exp (esf
P

a riza{wizmzk Lxi
Lri

)
Vi , ð4Þ

in which xi is defined as xi~
0
1

�
riv0:5
riw0:5

Vi . The local density ri and Lagrange

multiplier k were solved iteratively in our calculation19.
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droplets on solid surfaces: production, imaging, and relevance for current wetting
research. Small 5, 1366–1390 (2009).

15. Butt, H. J., Golovko, D. S. & Bonaccurso, E. On the derivation of Young’s equation
for sessile drops: nonequilibrium effects due to evaporation. J. Phys. Chem. B 111,
5277–5283 (2007).

16. Kierlik, E., Monson, P. A., Rosinberg, M. L., Sarkisov, L. & Tarjus, G. Capillary
condensation in disordered porous materials: hysteresis versus equilibrium
behavior. Phys. Rev. Lett. 87, 055701 (2001).

17. Monson, P. A. Mean field kinetic theory for a lattice gas model of fluids confined in
porous materials. J. Chem. Phys. 128, 084701 (2008).

18. Men, Y., Yan, Q., Jiang, G., Zhang, X. & Wang, W. Nucleation and hysteresis of
vapor-liquid phase transitions in confined spaces: Effects of fluid-wall interaction.
Phys. Rev. E 79, 051602 (2009).

19. Men, Y. & Zhang, X. Physical basis for constrained lattice density functional
theory. J. Chem. Phys. 136, 124704 (2013).

20. Moody, P. M. & Attard, P. Curvature-dependent surface tension of a growing
droplet. Phys. Rev. Lett. 91, 056104 (2003).

21. Dillmann, A. & Meier, G. E. A. A refined droplet approach to the problem of
homogeneous nucleation from the vapor phase. J. Chem. Phys. 94, 3872 (1991).

22. Prestipino, S., Laio, A. & Tosatti, E. Systematic improvement of classical
nucleation theory. Phys. Rev. Lett. 108, 225701 (2012).

23. Fisher, M. P. A. & Wortis, M. Curvature corrections to the surface tension of fluid
drops: Landau theory and a sacling hypothesis. Phys. Rev. B 29, 6252–6260 (1984).

24. Anisimov, M. A. Divergence of Tolman’s length for a droplet near the critical
point. Phys. Rev. Lett. 98, 035702 (2007).

25. Saugey, A., Bocquet, L. & Barrat, J. L. Nucleation in hydrophobic cylindrical pores:
a lattice model. J. Phys. Chem. B 109, 6520–6526 (2005).

26. Djikaev, Y. Histogram analysis as a method for determining the line tension of a
three-phase contact region by Monte Carlo simulations. J. Chem. Phys. 123,
184704 (2005).

27. Jang, J., Schatz, G. C. & Ratner, M. A. Cappillary force in atomic force microscopy.
J. Chem. Phys. 120, 1157–1160 (2004).

28. Pompe, T. & Herminghaus, S. Three-Phase Contact Line Energetics from
Nanoscale Liquid Surface Topographies. Phys. Rev. Lett. 85, 1930–1933 (2000).

29. Errington, J. R. & Wilbert, D. W. Prewetting boundary tensions from monte Carlo
simulation. Phys. Rev. Lett. 95, 226107 (2005).

30. Wang, C. et al. Critical dipole length for the wetting transition due to collective
water-dipoles interactions. Sci. Rep. 2, 358 (2012).

Acknowledgements
This work is supported by National Natural Science Foundation of China (No. 21276007).

Author contributions
Y.W.L. performed most of the numerical simulations. Y.W.L. and X.R.Z. carried out most
the theoretical analysis. Y.W.L., J.J.W. and X.R.Z. contributed most of the ideas and wrote
the paper. All authors discussed the results and commented on the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Liu, Y., Wang, J. & Zhang, X. Accurate determination of the
vapor-liquid-solid contact line tension and the viability of Young equation. Sci. Rep. 3, 2008;
DOI:10.1038/srep02008 (2013).

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc-sa/3.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2008 | DOI: 10.1038/srep02008 6

http://creativecommons.org/licenses/by-nc-sa/3.0

	Title
	Figure 1 Thermodynamic equilibrium of critical nuclei with surrounding supersaturated vapor.
	Figure 2 The determination of &ohgr;l - &ohgr;v and gvs - gls with normal LDFT.
	Figure 3 The determination of critical nuclei for both homogenous and heterogeneous nucleation with constrained LDFT.
	Figure 4 The determination of contact line tension.
	Figure 5 The viability of Young equation and adsorption effect.
	References

