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ABSTRACT

Objective: With the growing demand for sharing clinical trial data, scalable methods to enable privacy protec-

tive access to high-utility data are needed. Data synthesis is one such method. Sequential trees are commonly

used to synthesize health data. It is hypothesized that the utility of the generated data is dependent on the vari-

able order. No assessments of the impact of variable order on synthesized clinical trial data have been per-

formed thus far. Through simulation, we aim to evaluate the variability in the utility of synthetic clinical trial

data as variable order is randomly shuffled and implement an optimization algorithm to find a good order if var-

iability is too high.

Materials and Methods: Six oncology clinical trial datasets were evaluated in a simulation. Three utility metrics

were computed comparing real and synthetic data: univariate similarity, similarity in multivariate prediction ac-

curacy, and a distinguishability metric. Particle swarm was implemented to optimize variable order, and was

compared with a curriculum learning approach to ordering variables.

Results: As the number of variables in a clinical trial dataset increases, there is a pattern of a marked increase in

variability of data utility with order. Particle swarm with a distinguishability hinge loss ensured adequate utility

across all 6 datasets. The hinge threshold was selected to avoid overfitting which can create a privacy problem.

This was superior to curriculum learning in terms of utility.

Conclusions: The optimization approach presented in this study gives a reliable way to synthesize high-utility

clinical trial datasets.

Key words: data synthesis, privacy enhancing technologies, data sharing, clinical trial transparency, secondary use

INTRODUCTION

It is important for analysts and researchers to get access to high-

quality individual-level data for secondary purposes (such as for

building statistical and machine learning models). In the case of clin-

ical trials, the reanalysis of data from previous studies can provide

new insights compared with the original publications.1 Secondary

analysis has produced informative research results including on drug

safety, evaluating bias, and replication of studies, and for meta-anal-

ysis,2 with the most common purposes being new analyses of the

treatment effect and the disease state.3 Also, there has been strong

interest in making more clinical trial data available for secondary

analysis by academia, the pharmaceutical industry, and regulators.4–9

However, data access remains a challenge. For example, an ex-

amination of trials registered on ClinicalTrials.gov found that only

15% of trials launched in 2019 plan to share data.10 An analysis of

the success rates of getting individual-level data for research projects
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from authors found that the percentage of the time these efforts

were successful varied significantly and was generally low at 58%,11

46%,12 14%,13 and 0%.14 Some researchers note that getting access

to datasets from authors can take from 4 months to 4 years.14

One reason for this challenging environment is increasingly strict

data protection regulations: a recent National Academy of Medicine

and Government Accountability Office report highlights privacy as

presenting a data access barrier for the application of AI and ma-

chine learning in healthcare.15 While patient (re)consent is one legal

basis for making data available for secondary purposes, it is often

impractical to get retroactive consent under many circumstances

and there is significant evidence of consent bias.16

Anonymization is another approach for addressing privacy con-

cerns when making clinical trial data available for secondary analy-

sis. However, there have been repeated claims of successful

reidentification attacks on anonymized data,17–23 eroding public

and regulator trust in this approach.23–32

To solve this problem, there is growing interest in using and dis-

closing synthetic data instead. There are many use cases where syn-

thetic data can provide a practical solution to the data access

problem.33,34 In fact, it was recognized some time ago that synthetic

data are a key approach for data dissemination compared with more

traditional disclosure control methods.35 Furthermore, data synthe-

sis has been highlighted as a key privacy enhancing technology to

enable data access for the coming decade.36

Multiple researchers have noted that synthetic data does not

have an elevated identity disclosure (privacy) risk because there is no

unique or one-to-one mapping between the records in the synthetic

data with the records in the original data.35,37–43 Therefore, our fo-

cus in this article will be on ensuring that the synthesized data has

sufficient utility, which is generally defined as the ability to replicate

patterns and conclusions that were in the original data from the syn-

thetic data.

Classification and regression trees44 have been proposed for data

synthesis when implemented in a sequential manner.45 Using a scheme

similar to sequential imputation,46,47 trees are used quite extensively

for the synthesis of health and social sciences data.48–56 With these

types of models, a variable is synthesized by using the values earlier in

the sequence as predictors. Conceptually, sequential synthesis is simi-

lar to modeling multiple outcome variables using classifier chains57

and regressor chains.58 Compared with deep learning synthesis meth-

ods that require large datasets,37,59–61 sequential decision trees work

well for small datasets, such as clinical trial data, and work well with

heterogenous variable types (such heterogeneity remains an area of re-

search using other synthesis methods).62

It is known that the order of the variables can influence the accu-

racy of model chains.63 The dependence of the synthetic data utility

on the order that the variables are synthesized in is also a recognized

issue64 but has not been investigated in depth. For sequential data

synthesis, variable order is important because each variable’s gener-

ative model is fitted using only the variables before it in the order.

When the preceding variables are weak predictors of subsequent

variables, the synthesized values will have low utility, and synthesis

errors will propagate, and potentially be amplified, through the

chain. If the utility is dependent on variable order, then an arbitrary

factor would effectively be driving nontrivial variation in the quality

of synthesized data.

One approach to address this problem is to select the highest util-

ity dataset among those generated through multiple random variable

orders. However, this would not ensure that the utility meets accept-

able threshold levels, and it is an inefficient way to search for a good

utility variable order. One can instead model the dependence among

the variables and select the variable order accordingly. However, de-

pendence does not imply directionality, which is important for

selecting an order.

The purpose of the current study is to assess the variation in the

utility of synthetic clinical trial data generated using sequential deci-

sion trees, and if the variation is high, to optimize the order to meet

data utility thresholds. In such a case, the optimal selection of vari-

able order will ensure more consistent results and better data utility.

MATERIALS AND METHODS

Our methods had 2 main components. The first was to simulate and

assess the variation in the utility of synthetic data due to variable or-

der when using sequential techniques. This analysis would allow us

to draw empirically supported conclusions about the extent to

which variable order is indeed a problem. The second component

was to evaluate an optimization algorithm that would target a

threshold level of utility in the generated data. In that way we would

have stronger assurances that variable order would not degrade util-

ity in an arbitrary manner.

In the following sections we describe the clinical trial datasets

and their sources, the variable order simulation process, the data

utility metrics that we used, and the optimization method we used

and its evaluation.

Sources of clinical trial data
To perform our simulations, we need access to clinical trials data.

The following discussion presents the criteria and considerations for

identifying usable datasets for our analysis. However, it also high-

lights the challenges in getting access to clinical trial datasets for this

type of research project.

We defined the following criteria when selecting a data source

for the clinical trial datasets:

• Access should be provided to individual-level patient data (in-

stead of documents or summary statistics). The individual data is

needed to perform the simulations.
• The datasets should be downloaded. We have access to signifi-

cant high-performance computing CPU and GPU capacity to en-

able us to perform the simulations in a reasonable amount of

time and with negligible incremental costs. Alternatively, any

data source that only allows access to data in a virtual secure en-

clave would need to provide comparable cost-effective high-per-

formance computing capacity for us to perform the study.
• The datasets should be readily available to other researchers to

enable replication and extension of the current analysis.
• Relative time from request to data access, and incremental costs

would also be relevant factors in selecting data sources.

Three data sources for clinical trial datasets were examined: (1)

regulatory authorities (ie, the European Medicines Agency, Health

Canada, and the Food and Drug Administration); (2) individual

investigators; and (3) data sharing platforms, namely the Yale Uni-

versity Open Data Access project,65 Project Data Sphere,66 clinical-

studydatarequest.com,67 and Vivli.68 In Supplementary Appendix

A, we provide a review of potential data sources and assess them

with respect to our previous criteria.

We concluded that, relative to other options, the Project Data

Sphere (PDS) data sharing platform met our criteria, while other

options would not have met all of our criteria or would not have
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been practical for our purposes: we were able to download

individual-level patient datasets within days of making the request

to run the simulations on our own high-performance computing in-

frastructure, other researchers can readily request the same data un-

der the same conditions, and there would be no incremental costs.

PDS has holdings of oncology clinical trial datasets sponsored by in-

dustry and public funders.

We selected 6 studies that could be downloaded from PDS, en-

suring that we had variability in the number of patients, the number

of variables within the range typical of clinical trials, disease areas,

and therapeutic interventions. This would allow for a broader gener-

alization of the results.

Datasets
We performed our simulations on the 6 oncology clinical trial data-

sets from PDS as summarized in Table 1. We considered the screen-

ing criteria, demographic variables, medical history, baseline

characteristics, and the endpoints in this analysis.

Simulation and synthesis processes
For the simulations, we repeated the synthesis 1000 times for each

dataset, and each time randomly shuffling the variable order that

was used in the sequential tree generation process. The method we

used to generate synthetic data is called conditional trees,73 although

Table 1. Summary of the 6 oncology trials used in the analysis with the National Clinical Trial number and the primary sponsor indicated, as

well as the number of patients and variables used in the synthesis

Dataset Individuals Variables

Total

Binary/

Categorical

Discrete/

Continuous

Trial 1 (NCT00041197): National Cancer Institute

Tests if postsurgery receipt of imatinib could reduce the recurrence of GISTs. Imatinib is an

Food and Drug Administration approved protein-tyrosine kinase inhibitor for treating cer-

tain cancers of the blood cells. This drug is hypothesized to be effective against GIST as

imatinib inhibits the kinase which experiences gain of function mutations in up to 90% of

GIST patients.69 At the time of this trial the efficacy of imatinib for GISTs as well as the

optimal dosage for treatment of GISTs was unknown.

773 129 71

(55)

58

(45)

Trial 2 (NCT01124786): Clovis Oncology

Most pancreatic cancer patients have advanced inoperable disease and potentially metastases.

At the time of this trial the first line therapy for patients with inoperable disease was gemci-

tabine monotherapy. One transporter (hENT1: human equilibrative nucleoside trans-

porter-1) has been identified as a potential predictor of successful treatment via

gemcitabine.

This trial compares standard gemcitabine therapy to a novel fatty acid derivative of gemcita-

bine. This is hypothesized to be superior to gemcitabine in metastatic pancreatic adenocar-

cinoma patients with low hENT1 activity as it exhibits anticancer activity independent of

nucleoside transporters like hENT1, while gemcitabine seems to require nucleoside trans-

porters for anticancer activity.

367 88 24

(27.2)

64

(72.3)

Trial 3 (NCT00688740): Sanofi

This phase 3 trial compares adjuvant anthracycline chemotherapy (fluorouracil, doxorubicin,

and cyclophosphamide) with anthracycline taxane chemotherapy (docetaxel, doxorubicin,

and cyclophosphamide) in women with lymph node positive early breast cancer.

746 239 148

(61.9)

91

(38.1)

Trial 4 (NCT00113763): Amgen

This was a randomized phase 3 trial examining whether panitumumab, when combined with

best supportive care, improves progression-free survival among patients with metastatic

colorectal cancer, compared with those receiving best supportive care alone.70,71 Patients

included in the study had failed other chemotherapy options available at the time of the

study. Participants were enrolled between 2004 and 2005.

463

(sponsor only

provided 370

in the dataset)

59 22

(37.2)

37

(62.8)

Trial 5 (NCT00460265): Amgen

This was also a randomized phase 3 trial on panitumumab but among patients with meta-

static and/or recurrent squamous cell carcinoma of the head and neck. The treatment

group received panitumumab in addition to other chemotherapy (cisplatin and fluoroura-

cil), while the control group received cisplatin and fluorouracil as first-line therapy.72 Par-

ticipants were enrolled between 2007 and 2009.

657

(sponsor only

provided 520 in

the dataset)

401 162

(40.3)

239

(59.6)

Trial 6 (NCT00119613): Amgen

This was a randomized and blinded Phase 3 trial aimed at evaluating whether “increasing or

maintaining hemoglobin concentrations with darbepoetin alfa” improves survival among

patients with previously untreated extensive-stage small cell lung cancer. The treatment

group received darbepoetin alfa with platinum-containing chemotherapy, whereas the con-

trol group received placebo instead of darbepoetin alfa.

600

(sponsor only

provided 479 in

the dataset)

382 82

(21.4)

300

(78.6)

Values are n (%). Variables are classified as either binary/categorical or ordered discrete/continuous. Dates are converted to relative days and therefore are con-

sidered continuous.

GIST: gastrointestinal stromal tumor.
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other tree algorithms could also be used. A summary of the algo-

rithm is provided in Figure 1, and additional implementation and

data preparation details are included in Supplementary Appendix B.

When a fitted model is used to generate data, we sample from the

predicted terminal node in the tree to get the synthetic values.

Evaluating synthetic data utility
Data utility is broadly defined as the ability to replicate patterns and

conclusions that were in the original data from the synthetic data.

The type of results that should be examined will depend on the data

uses. For example, a statistical analysis of the data will require dif-

ferent utility evaluations and benchmarks than using the data to test

statistical software.

A recent review identified 7 types of utility assessments for syn-

thetic data.74 Our focus here is on analytic uses of the data and

therefore we examine general metrics comparing real and synthetic

data analysis results. These metrics are not workload aware, but

they reflect common data analysis tasks and are used often within

the data synthesis and machine learning community.

For each simulation iteration, the synthetic data utility was esti-

mated using 3 metrics, as summarized in El Emam et al34: compari-

sons of univariate distributions, “all-models” comparisons of

multivariate prediction accuracy, and distinguishability. The former

2 reflect a broad spectrum of common statistical analysis on clinical

datasets. The latter is an omnibus comparison of multivariate distri-

butions using a binary classifier,75,76 and is equivalent to the dis-

criminator function used to evaluate (and train) performance in

generative adversarial networks (an architecture of deep artificial

neural networks).77

Univariate comparisons

We first compared the univariate distributions between the real and

synthetic datasets on all variables. The comparison of univariate dis-

tributions as a utility metric is common in the synthesis litera-

ture.37,78 For that purpose we utilized the Hellinger distance.79 This

has been shown to behave in a consistent manner as other distribu-

tion comparison metrics in the context of evaluating disclosure con-

trol methods when comparing original and transformed data.80 It

also has the advantage of being bounded between 0 and 1, which

makes it easier to interpret. We computed the median Hellinger dis-

tance across all variables for each iteration during the simulation.

Comparing multivariate predictions

The second metric was a measure of multivariate prediction accu-

racy. It tells us the extent to which the prediction accuracy of syn-

thetic data models is the same as the models from the real data.81,82

The comparison of prediction model accuracy has been used, for ex-

Figure 1. A description of the sequential data synthesis process using classification and regression trees. Although any set of classification and regression meth-

ods can be used in principle.
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ample, to compare the prediction of hospital readmissions between

real and synthetic data59 and to predict treatment arms from a large

synthetic clinical study dataset.83

We built general boosted regression models,84 taking each vari-

able as an outcome to be predicted by all of the other variables.

Hence, we built “all multivariate models” for the synthetic and real

datasets. For each model 10-fold cross validation was used to com-

pute the area under the receiver-operating characteristic curve

(AUROC)85 as a measure of model accuracy. We then compared the

synthetic data and the real data accuracy by computing the relative

absolute difference in the median AUROC measures for each data-

set. Because AUROC requires a discrete variable, we discretized all

continuous outcome variables using univariate k-means.86

Distinguishability

The third utility metric is based on propensity scores.87,88 The real

and synthetic datasets are pooled, and a binary indicator is assigned

to each record depending on whether it is a real data record or a syn-

thetic data record. A binary classification model is then constructed

to distinguish between the real and synthetic records where the origi-

nal variables are predictors and the binary indicator variable is the

outcome. A 10-fold cross-validation is used to compute the propen-

sity score (the predicted probability). The specific classification tech-

nique we use is generalized boosted models.89

The distinguishability score is computed as the mean square dif-

ference of the predicted probability from 0.5, which is the value

where it is not possible to distinguish between the 2 datasets:87

d ¼ 1 N

P
i
ðpi�0:5Þ2= (1)

where N is the size of the synthetic dataset and pi is the propensity

score for observation i.

If the 2 datasets are the same, then there will be no distinguish-

ability between them. One reason for such a result would be if the

synthetic data generator was overfit and effectively recreated the

original data. In such a case the propensity score of every record will

be close to or at 0.5, in that the classifier is not able to distinguish

between real and synthetic data, and d approaches 0. If the 2 data-

sets are completely different, then the classifier will be able to distin-

guish between them. In such a case the propensity score will be

either 0 or 1, with d approaching 0.25.

Across all 1000 simulation runs, we examined the median and

95% confidence interval on each dataset for the 3 utility metrics

(the 2.5th percentile and the 97.5th percentile). This will indicate

how stable the utility of the datasets are as the variable order is shuf-

fled.

Because the generation of synthetic data is stochastic, there will

be confounding variability in the utility metrics due to the synthesis

process itself. Therefore, we average this out by generating 50 syn-

thetic datasets for each of the 1000 variable orders, compute the

utility metrics, and take the average of these 50 values to represent

the value for that variable order. That way, we can factor out the

impact of the stochastic synthesis process from the variability that

we are interested in measuring. We did not observe meaningful fluc-

tuations in that average when we used 100 or 150 generated data-

sets, and therefore the 50 iterations were deemed to be

representative.

Curriculum learning
As a baseline method to defining an appropriate order for variables

in sequential synthesis, we examined a curriculum learning

approach.90 For machine learning tasks, it is hypothesized that start-

ing the training with easier or more general examples, and then con-

tinuing on to the more complex ones accelerates convergence and

improves model accuracy. In the context of sequential data synthe-

sis, it was argued that curriculum learning would better capture the

dependence among the attributes.61

To operationalize this we discretized all continuous variables us-

ing univariate k-means.86 Variables with fewer categories were put

first in the order because they were deemed to be simpler. That cur-

riculum learning order was evaluated as the baseline order, and all

utility metrics were computed for that (note that the synthesis was

performed on the original data and not the discretized values).

Particle swarm optimization
To optimize on the variable order we used a particle swarm algo-

rithm.91,92 This uses a search heuristic to find the global optimum

without requiring the objective function to be continuous. For the

objective function we computed the utility metrics and used a hinge

loss function that was being minimized.93 The hinge loss considers

the utility metric to be 0 if it is below a threshold. For example, the

distinguishability loss is 0 if distinguishability is below 0.05. The

threshold ensures that we do not overfit the generated trees to the

data. The overall loss for each of the utility metrics is therefore:

loss1 ¼ maxð0;d � 0:05Þ

loss2 ¼ maxð0;h� 0:1Þ

loss3 ¼ maxð0; a� 0:1Þ

(2)

where h is the Hellinger distance and a is the median relative abso-

lute AUROC difference. A compound loss was also computed as the

unweighted sum of all 3 losses as an optimization criterion:

loss4 ¼ maxð0; d � 0:05Þ þmaxð0; h� 0:1Þ þmaxð0; a� 0:1Þ (3)

Therefore, in total the optimization was evaluated with 4 differ-

ent loss functions.

RESULTS

We present 3 sets of graphs showing the different utility scores

across all 6 trials.

Figure 2 shows the results across the 6 trials for the Hellinger dis-

tance. While there is a little bit of variation, in general the distance

was relatively low and the variation within a narrow range.

Figure 3 has the results for the multivariate prediction models

with the AUROC accuracy results. Although trial 4 has the most

variation. This trial had the fewest variables and this may have cre-

ated more instability in prediction performance relative to the other

trials, hence the wider variation (although the amount of variation

in this case is not that large).

In Figure 4, we see nontrivial variation in the distinguishability

score. Specifically, trials 3, 5, and 6 show a large amount of varia-

tion due to variable order. The unoptimized (default) variable order

does not necessarily capture the dependencies among the variables,

and therefore in a sequential synthesis process, a particular variable

may have been poorly modeled by the variables before it in the se-

quence. These poorly synthesized variables are then easier for a dis-

criminator to use to distinguish between the real and synthetic

datasets. This inability to capture dependencies is more pronounced

the more variables there are in a dataset, as is the case with trials 3,

5, and 6.
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The differences among the 3 utility metrics are not surprising be-

cause they are measuring different things, and they are also influ-

enced by outliers differently. However, it is clear that the larger the

number of variables there are in the dataset, the greater the variabil-

ity in the distinguishability score is. There was no discernable rela-

tionship between the proportion of categorical vs continuous

variables and the utility outcomes.

The curriculum learning baseline order results are shown in Ta-

ble 2. Compared with the median values that were observed during

the simulation, curriculum learning was not consistently better than

the random median result, and was not consistently lower than our

utility thresholds (used in the loss metrics).

After optimization, we show the results in Table 3 for optimizing

on distinguishability (loss1). An example illustrating how the opti-

mization has affected the ordering of variables is provided in Supple-

mentary Appendix C, in which we show the original ordering and

the ordering after optimization that produced the result in Table 3.

The results for the Hellinger distance loss, relative absolute AUROC

Figure 2. The Hellinger distance median value and 95% confidence intervals for the 6 clinical trial datasets. This is a value between 0 and 1, with lower values indi-

cating that the univariate distributions of the real and synthetic variables are similar. In general, values in the lowest decile (�0.1) would be indicative of reason-

able similarity.

Figure 3. The relative absolute difference in area under the receiver-operating characteristic curve (AUROC) median value and 95% confidence intervals for the 6

clinical trial datasets. This is a value between 0 and 1, with lower values indicating that the multivariate models built using the real and synthetic datasets are sim-

ilar. In general, values in the lowest decile (�0.1) would be indicative of reasonable similarity.
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difference loss, and the compound loss are included in Supplemen-

tary Appendix D.

We can make 3 observations. The first is that optimization on

the Hellinger distance and the relative absolute AUROC difference

do not ensure that the utility meets the threshold for the other utility

metrics. The second is that with distinguishability as the main loss

(loss1) we meet the threshold values for the other utility metrics. The

third observation is that the results for optimizing on the distin-

guishability loss (loss1) are the same as for the compound loss

(loss4). When we checked the optimal orders, they were also the

same when using distinguishability loss and compound loss. The op-

timization on the compound loss is more computationally intensive

than just for distinguishability. Given that the results are the same

across all 6 trials, then a strong case can be made for only optimizing

on the distinguishability metric.

Additional details on the performance of the optimization ap-

proach compared with random search is included in Supplementary

Appendix E.

DISCUSSION

Summary
Our results indicate that the variation in the data utility of synthe-

sized clinical trial data using (unoptimized) sequential trees was

impacted significantly by the variable order, after accounting for

natural variation due to the stochastic nature of data synthesis.

The variability in utility was more pronounced as the number of

variables increased, meaning that some orders will result in quite

poor utility results on some of the key utility metrics. The number

of patients did not seem to play a prominent role in affecting the

variation in data utility, although our datasets did err on the small

side.

Optimization using the particle swarm algorithm combined with

a distinguishability hinge loss reliably found the variable orders that

ensure that the utility metrics are below an acceptable threshold

level across multiple utility metrics. This optimization strategy also

had better utility than a curriculum learning approach. Particle

swarm optimization was faster than a random search for an accept-

able variable order. Therefore, we recommend implementing this

optimization strategy when using sequential synthesis techniques.

Furthermore, using a curriculum learning strategy to set the order of

the variables did not ensure that the utility was consistently accept-

able across datasets and utility metrics, and therefore that approach

is not recommended.

Figure 4. The distinguishability score median value and 95% confidence intervals for the 6 clinical trial datasets. This is a value between 0 and 0.25, with lower val-

ues indicating that the overall real and synthetic datasets are not distinguishable from each other by a discriminative model. In general, values in the lowest quin-

tile (�0.05) would be indicative of reasonable nondistinguishability.

Table 2. Utility results for the curriculum learning variable order

Trial Distinguishability Hellinger AUROC

1 0.114 0.0147 0.002

2 0.064 0.026 0.001

3 0.2 0.011 0.003

4 0.034 0.03 0.059

5 0.101 0.019 0.012

6 0.232 0.023 0.008

AUROC: area under the receiver-operating characteristic curve.

Table 3. Utility results after the optimal variable order was selected

with optimization on distinguishability

Trial Distinguishability Hellinger AUROC

1 0.0113 0.0118 0.0019

2 0.033 0.027 0.001

3 0.049 0.017 0.0026

4 0.02 0.0204 0.0584

5 0.044 0.0135 0.0118

6 0.0388 0.0277 0.009

AUROC: area under the receiver-operating characteristic curve.
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Practical implications
Sequential trees as a method for data synthesis have the advantage

in that they can work with datasets with few patients as well as for

very large datasets (this is a feature of decision trees in general),

datasets that are heterogeneous in the variable types (eg, combining

continuous and high-cardinality categorical variables), and for data-

sets with significant missingness. These are common characteristics

of many real health datasets. While the impact on datasets with few

variables will be smaller, there would be minimal downside to the

optimization of variable order every time a clinical trial dataset is

synthesized using sequential trees. And our results suggest that this

optimization should be performed on a hinge loss function based on

the distinguishability metric.

Order-optimized sequential trees can therefore be good methods

for the synthesis of clinical trial data. Other methods, such as deep

learning models that are also being applied to the synthesis of health

data, do not scale down well to the small datasets typically encoun-

tered with clinical trials.

For data custodians sharing synthetic data, providing data utility

metrics as part of the documentation accompanying the synthetic

data would be desirable. This allows the data users to validate that

the overall utility is acceptable. The key utility metric is distinguish-

ability, but other univariate and multivariate utility metrics, as de-

scribed in this article, would also be informative.

Research contributions
The contributions of this work are the following: (1) we empirically

demonstrate that variable order has an impact on synthetic clinical

trial data utility for a sequential synthesis method commonly used

on health data, (2) we propose and evaluate a method for optimally

selecting the variable order, and (3) this is the first study to examine

optimal synthesis for clinical trial datasets. Given the growing de-

mand for access to clinical trial data, this can be another technique

to make such data broadly available to researchers. Further research

can expand the loss functions to include privacy metrics, and opti-

mize other hyperparameters (eg, tree depth).

Limitations
Our empirical analysis was performed on oncology clinical trial

datasets. There is no intrinsic reason to believe that the therapeutic

area covered by a dataset would impact the results. The main driver

of utility variation was the number of variables being synthesized.

There will be nononcology clinical trial datasets with many varia-

bles, and nonclinical trial datasets which have many variables. Con-

sequently, these findings should generalize outside oncology and to

nonclinical trial data.

Three clinical trials (numbers 4, 5, and 6) had some records miss-

ing. They were all from the same sponsor, in which they consistently

provided only 80% of the data. It is not clear whether this was a

measure to protect patient privacy, or if there was another reason

for these omissions (eg, these were screening failure patients). Given

that we did not find the number of patients or observations to be a

driver of the outcomes we were interested in, the impact on our

results is expected to be limited.

Our utility metrics were not workload aware. Future studies

could further evaluate the optimization strategy presented here on

replications of published research analyses.

We did not examine the privacy risks from optimizing sequential

synthesis. These risks can be controlled by adjusting the threshold in

the loss function, and therefore privacy considerations would not

take away from the importance of dealing with the arbitrary utility

impacts of variable order.

CONCLUSIONS

There is growing demand to access clinical trial data. Data synthesis

is one way to address this demand and simultaneously satisfy pri-

vacy concerns. The objective of this study was to evaluate and opti-

mize the variable order for sequential synthesis of clinical trial data,

with the loss being a measure of synthetic data utility. Sequential

synthesis is commonly used for health and social science datasets,

and it is suited to synthesizing small datasets such as clinical trial

data. Furthermore, it can handle heterogeneous inputs and missing-

ness well.

Through a simulation on oncology trial data we found that vari-

able order affected utility, and more so with a higher number of var-

iables in a dataset. Particle swarm optimization was able to identify

variable permutations that ensure consistent data utility. Optimized

sequential synthesis can provide a reliable way to synthesize clinical

trial data.
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