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Abstract: Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease mainly involving
synovial inflammation and articular bone destruction. RA is a heterogeneous disease with diverse
clinical presentations, prognoses and therapeutic responses. Following the first discovery of rheuma-
toid factors (RFs) 80 years ago, the identification of both anti-citrullinated protein antibodies (ACPAs)
and anti-carbamylated protein antibodies (anti-CarP Abs) has greatly facilitated approaches toward
RA, especially in the fields of early diagnosis and prognosis prediction of the disease. Although
these antibodies share many common features and can function synergistically to promote disease
progression, they differ mechanistically and have unique clinical relevance. Specifically, these three
RA associating auto-antibodies (autoAbs) all precede the development of RA by years. However,
while the current evidence suggests a synergic effect of RF and ACPA in predicting the development
of RA and an erosive phenotype, controversies exist regarding the additive value of anti-CarP Abs.
In the present review, we critically summarize the characteristics of these autoantibodies and focus
on their distinct clinical applications in the early identification, clinical manifestations and prognosis
prediction of RA. With the advancement of treatment options in the era of biologics, we also discuss
the relevance of these autoantibodies in association with RA patient response to therapy.

Keywords: rheumatoid factors; anti-citrullinated protein antibodies; anti-carbamylated protein
antibodies; rheumatoid arthritis

1. Introduction: Overview of Autoantibodies in Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a systemic inflammatory disorder that mainly involves
articular inflammation. Approximately 0.5% to 1% of the population worldwide is af-
fected by the disease, which may result in joint destruction and disability [1]. In addition,
approximately 40% of patients present with extra-articular manifestations, complicating
disease progression and mortality [2]. Autoantibodies isolated from patient serum and
synovial fluid play critical roles in the pathogenesis of RA [3]. According to the literature,
70–80% of patients with RA are positive for autoantibodies (autoAbs), such as rheuma-
toid factors (RFs) and anti-citrullinated protein antibodies (ACPAs) [4]. Although they
are not necessarily present in all patients, antibodies reacting with self-antigens, includ-
ing immunoglobulins and posttranslational modified (PTM) protein epitopes, have been
known for over 80 years to exist in RA [3]. With the advancement of our knowledge on the
correlation of autoAbs and RA, these antibodies have become critical biomarkers widely
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utilized in clinical practice for disease prediction and diagnosis and may assist in choosing
therapeutic regimens, as depicted in Figure 1.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 19 
 

 

of autoAbs and RA, these antibodies have become critical biomarkers widely utilized in 
clinical practice for disease prediction and diagnosis and may assist in choosing therapeu-
tic regimens, as depicted in Figure 1. 

 
Figure 1. Evolution of rheumatoid arthritis (RA) and its correlation with RA-associated autoantibodies. Among at-risk 
populations, antigen exposure from the mucosal area helps form T-cells and assists in the induction of RA-associated 
autoantibodies many years before the onset of RA. The development of RA, however, requires further autoantibody mat-
uration, including epitope spreading, isotype switching, avidity maturation and antibody glycosylation, before they are 
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be utilized to assist in RA diagnosis, to predict disease course, to guide treatment and possibly to prevent or delay RA 
development before its onset. 
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the presence of RF is associated with a more severe and erosive RA phenotype. Compel-
lingly, utilizing an analytical ultracentrifuge technique, Kunkel and his colleagues later 
discovered that RF is an antibody to antigen–antibody complexes [7,8]. Moreover, scien-
tists discovered that RF targets antigenic epitopes within the crystallizable fragment (Fc) 
region of immunoglobulin G (IgG) and is present in various isotypes [9]. Although the 
specificity of RF for RA is only approximately 60–70% and the conditions required to 
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classification criteria for RA [11] and considered the paradigm of autoAb clinical signifi-
cance in RA. 

The identification of ACPAs can be traced back to 1964, when Nienhuis and Man-
dema reported anti-perinuclear factors within the sera of RA patients [12]. Approximately 
30 years later, Hoet and colleagues characterized them with regard to their reactivity to-
ward citrullinated peptides [13]. Following the discovery of multiple protein candidates 
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for the development of RA [24]. Indeed, autoantibodies against carbamylated protein 
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and other posttranslated modified epitopes, such as anti-hinge antibodies, have attracted 
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Figure 1. Evolution of rheumatoid arthritis (RA) and its correlation with RA-associated autoanti-
bodies. Among at-risk populations, antigen exposure from the mucosal area helps form T-cells and
assists in the induction of RA-associated autoantibodies many years before the onset of RA. The
development of RA, however, requires further autoantibody maturation, including epitope spreading,
isotype switching, avidity maturation and antibody glycosylation, before they are pathogenically
transformed. As our understanding of autoantibodies advances, the application of the autoantibodies
may be utilized to assist in RA diagnosis, to predict disease course, to guide treatment and possibly
to prevent or delay RA development before its onset.

RFs were the first autoAb reported in RA. They were described by Waaler in 1940 as
factors with hemagglutinating activity in the serum of a patient with RA [5] and named
by Pike in 1949 for their associations with RA [6]. Subsequent studies have revealed
that the presence of RF is associated with a more severe and erosive RA phenotype.
Compellingly, utilizing an analytical ultracentrifuge technique, Kunkel and his colleagues
later discovered that RF is an antibody to antigen–antibody complexes [7,8]. Moreover,
scientists discovered that RF targets antigenic epitopes within the crystallizable fragment
(Fc) region of immunoglobulin G (IgG) and is present in various isotypes [9]. Although
the specificity of RF for RA is only approximately 60–70% and the conditions required
to break tolerance to IgG are not yet fully understood [10], RF was included in the 1987
ACR classification criteria for RA [11] and considered the paradigm of autoAb clinical
significance in RA.

The identification of ACPAs can be traced back to 1964, when Nienhuis and Mandema
reported anti-perinuclear factors within the sera of RA patients [12]. Approximately
30 years later, Hoet and colleagues characterized them with regard to their reactivity
toward citrullinated peptides [13]. Following the discovery of multiple protein candidates
eligible for peptidyl arginine deiminase (PAD) citrullination, “RA citrullinome”, referring
to the collection of hundreds of citrullinated proteins identified in the serum and synovial
fluid of RA patients, was introduced to the field of RA research in recent decades [14–18].
With its superb diagnostic specificity, immunopathogenic relevance and excellent clinical
correlations [19–22], ACPAs were included in the 2010 American College of Rheumatology
(ACR)/European League Against Rheumatism (EULAR) RA classification criteria [23].
Alongside the classical RA autoAb RF, ACPA was also considered an important hallmark
of the disease in the past decade.

In recent years, growing evidence has supported that proteins resulting from PTMs,
other than citrullination, are also capable of triggering autoimmune responses important
for the development of RA [24]. Indeed, autoantibodies against carbamylated protein
(anti-CarP Ab), acetylated proteins, malondialdehyde, malondialdehyde-acetaldehyde
and other posttranslated modified epitopes, such as anti-hinge antibodies, have attracted
attention due to their clinical significance and their potential use in refining RA diagnosis
and care [3,11,25–27]. Among them, anti-CarP Ab, described in 2011 [28], is perhaps one of
the best studied anti-PTM autoantibodies.

The pathogenic roles of RA-associated autoAbs have been critically reviewed by us
and other researchers [22–29]. In this review, we summarize the three most important
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RA-associated autoAbs, namely, RF, ACPA and anti-CarP Ab, regarding their distinct
characteristics and clinical applications in the early diagnosis and prognosis prediction of
RA. Moreover, with the advancement of treatment options, we also discuss the relevance
of these autoAbs in choices of therapeutic regimens and clinical outcomes.

2. Characteristics of RF, ACPA and anti-CarP Ab

The function of an antibody is governed by the specific antigen it recognizes and
the specific isotype determine by its crystallizable fragment (Fc) region. We first examine
differences and similarities among RA-associated autoAbs for antibody characterization.

2.1. Rheumatoid Factors

Rheumatoid factors, despite their name, are not specific to RA. In fact, RFs are com-
monly produced during immunizations and secondary immune responses to infections
to aid in pathogen removal [30–32]. Other rheumatic conditions, such as systemic lupus
erythematosus, Sjogren’s disease and sarcoidosis, are also associated with the presence of
RF [33]. Among healthy individuals, moreover, the presence of RF increases with age and
exceeds 25% among elderly individuals over the age of 85 [34]. In contrast to the physio-
logical RFs in healthy individuals, RFs isolated from RA patients have been reported to be
relatively monoreactive, possessing higher affinity, harboring more somatic mutations, and
utilizing more heterogeneous V-genes and more frequently become isotype switched [35].
Although a spectrum of immunoglobulins, including IgG, IgA, IgM and IgE, are all found
among RFs, IgM, comprising the majority of RF isotypes in RA, is detected in 60–80% of
RA patients, followed by IgA and IgG [36,37].

Interestingly, while it is generally believed that RF targets the CH2-CH3 Fc portion
of IgGs [38], a recent study reported by Maibom-Thomsen et al. showed that RF does
not interact with native IgGs in their soluble form when they are not bound to their
corresponding antigens [39]. Through further mass spectrometry analysis, it was found
that the binding of antibodies to pathogen surfaces likely induces a conformational change
and exposes the RF epitopes within the Fc region (Figure 2) [39]. This novel finding
provided an opportunity for a better understanding of the antibody structures and the
functional physiology of antibodies in the human body.Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 19 
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Figure 2. Schematic diagram illustrating the exposure of RF epitopes and posttranslational modi-
fication of peptide targets for autoantibody interactions in rheumatoid arthritis. (A) The epitopes
of RFs reside in the Fc portion of IgG mostly in the CH2/CH3 or the CH3/CH3 groove. Recent
evidence has suggested that conformational changes via altered Fc glycosylation, physicochemical
treatment, antigen binding, or physical adsorption onto a hydrophobic surface promote the exposure
of RF epitopes on circulating IgGs. (B) Citrullinated peptides are generated by the enzymatic activity
of peptidylarginine deiminase (PAD), converting arginine to citrulline in the presence of calcium.
(C) Carbamylation is the conversion of a lysine to homocitrulline upon the binding of cyanate in the
form of isocyanic acid to lysine, without enzymatic catabolism. Urea and thiocyanate catabolized by
myeloperoxidase (MPO) are important sources of cyanate.
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2.2. Anti-Citrullinated Protein Antibodies

As depicted in Figure 2, citrullination is an enzymatic reaction mediated by PAD that con-
verts arginine to citrulline. Keratin, fibrinogen, vimentin, fibronectin, α-enolase and 78-kDa
glucose-regulated protein (GRP78) are well-known substrates for citrullination [14–18,40]. With
the expanding collection of citrullinated proteins identified from the synovial fluid and
serum of patients with RA, the term “RA citrullinome” has been introduced in recent
decades [14–18]. However, despite its name, the spectrum of epitopes recognized by AC-
PAs is not limited to the “RA citrullinome” but also to peptides that undergo other PTMs,
including carbamylation and acetylation [41,42]. Overlapping reactivity is commonly be-
lieved to explain the broad reactivity of ACPAs. Recently, Li and colleagues discovered that
one-third of ACPAs recognize only monotargets, with limited overlapping reactivity [43].
Further evidence suggests that the majority of ACPAs in the sera of RA patients reacting
to citrulline side chains have no functional role [44]. In fact, only ACPAs interacting or
cross-reacting with citrulline and proximal amino acid side chains of articular proteins dis-
play arthritogenic capacity [44]. Additionally, the diversity and avidity of ACPAs toward
citrullinated peptides have been noted to change and evolve over time. Kongpachith and
colleagues found that somatic hypermutations accumulating during affinity maturation by
clonally related B cells alter the antibody paratope to mediate “epitope spreading” and the
polyreactivity of the ACPA response in patients with RA [45].

Similarly to the broad spectrum of RF isotypes, enrichment of IgA and IgG ACPA,
particularly IgG1, occurs in the serum of RA patients and precedes the development of the
disease [37,46–48]. Nevertheless, while glycosylation of the antigen-binding fragment (Fab)
was estimated to be approximately 14% among global IgGs [49], more than 80% of citrulline-
reactive B cells were found to contain glycosylation sites in their variable domains [50],
and the variable domains of more than 90% of ACPAs indeed carried glycans [51]. This N-
linked glycosylation in the Fab portion has been shown to critically predict the development
of RA [52]. Glycosylation of the Fc fragment is also a unique feature of ACPAs [46,53].
Specifically, increasing core fucosylation and decreasing galactosylation and sialylation
have been observed in the Fc fragment of ACPAs, directing molecular interactions and
functions of ACPAs [46,53].

ACPAs, as compared to the classic RA antibody RF, have a superior diagnostic speci-
ficity and can be detected in approximately two-thirds of RA patients [19,20]. While 1–3%
of healthy subjects may also test positive for ACPAs, their levels are usually in the lower
range. Moreover, in comparison to the ACPAs isolated from the RA patients, those found
in healthy individuals usually recognize a narrow spectrum of citrullinated antigens with
altered avidities [43,54–56].

2.3. Anti-Carbamylated protein Antibodies

Anti-CarP Ab is another well-studied RA-related autoantibody. In contrast to citrul-
lination, carbamylation is a nonenzymatic PTM of proteins that requires the presence of
cyanate (Figure 2). Upon the binding of cyanate in the form of isocyanic acid to the ε-NH2
group side chain of lysine, homocitrulline is produced via the carbamylation reaction [57].
Nevertheless, under physiological conditions, the level of cyanate is generally too low
to efficiently induce carbamylation. As urea is a source of cyanate, the level of cyanate
in patients with elevated blood urea nitrogen and renal dysfunctions may be increased,
promoting carbamylation [58]. Additionally, cyanate can be derived from the transforma-
tion of thiocyanate mediated by myeloperoxidase (MPO). Under chronic inflammatory
conditions, MPOs may be released from neutrophils to enhance carbamylation [57].

Carbamylated alpha-1 anti-trypsin, fibrinogen, vimentin, alpha-enolase and GRP78
are some of the targets of anti-CarP Ab identified in the sera of patients with RA [57,59–62].
The avidity of ACPAs is considered low, and the even lower avidity of anti-CarP Abs
suggests that despite proper class switching, no or little avidity maturation occurs at the
time of the latter’s production [63,64]. Notably, anti-CarP Ab is found in nearly 45% of early
RA patients positive for ACPAs, possibly because of close similarity between citrulline
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and homocitrulline [28,65,66]. Regardless, a large proportion of ACPA and anti-CarP Abs
that interact only with citrullinated or carbamylated proteins can also be found alongside
those that cross-react with one another in the serum of double-positive RA patients [42].
Through the investigation of a small RA cohort, Shi et al. reported a median percentage of
noncross-reactive anti-CarP Ab as high as 70% [42]. Nonetheless, MC Lu discovered that
while there was a positive correlation of ACPA with anti-GRP78 antibody in patients with
RA. Similar correlation was not seen with anti-CarP GRP78 antibody [62]. Taken together,
these findings suggest that anti-CarP Abs and ACPAs are not the same.

Specifically, the sensitivity of anti-CarP Ab is 18–26% and 27–46% prior to and af-
ter RA diagnosis, respectively, and its specificity is approximately 90% and above in
RA [67]. Approximately 8–16% of ACPA-negative patients test positive for anti-CarP
Ab [28,65]. Although anti-CarP Abs can also be found in healthy individuals and in other
rheumatic conditions [68–72], the prevalence of anti-CarP Ab in RA patients is relatively
high [71,73,74]. Similar to that of ACPA, isotypes of anti-CarP Ab display a broad spectrum.
IgA, IgM and IgGs, including IgG1, IgG2, IgG3 and IgG4 anti-CarP Ab have all been
discovered in patients with RA [73]. Specifically, anti-CarP IgG comprises all anti-CarP IgG
subclasses, and IgA can be found in nearly 45% of RA patients, whereas anti-CarP IgM
was detected in only 16% [73].

3. Risk Factors for the Production of RF, ACPA and Anti-CarP Ab
3.1. Genetic Risk Factors

Genetic background is an important factor influencing the development of RA. There
is an estimated 40–50% familial risk among seropositive RA patients with strong risk
noted in first-degree relatives [75]. In addition to the high correlation for RF reported
among identical twins with RA [76], a number of studies have identified differences in
genetic components between RA patients positive or negative for RF [77,78]. However,
controversies were noted, as some studies demonstrated that RA patients, regardless of
the presence of RF, may harbor similar human leukocyte antigen (HLA) susceptibility
alleles [79,80].

A conserved amino acid sequence at positions 70 and 74 within the HLA-DRB1
molecule, namely, the “shared epitope (SE)”, is a leading genetic risk factor for ACPA-
positive RA [81]. Furthermore, a dose effect of SE alleles on risk of RA among ACPA-
positive RA patients was documented by Huizinga and others [82]. Utilizing paired
samples of presymptomatic individuals, Kissel and others recently discovered that SE
alleles are associated with ACPA Fab glycosylation in the predisease phase [83]. In addition
to SE, the protein tyrosine phosphatase nonreceptor type 22 risk allele displays a synergistic
action along with the SE alleles [84]. Furthermore, single-nucleotide polymorphisms and
long noncoding RNAs are associated with the presence of ACPAs in RA patients [85,86].
Tumor necrosis factor (TNF) receptor-associated factor 1 C5 region, TNF-α-induced protein,
CD40, C-C motif chemokine ligand 2, antisense noncoding RNA in the INK4 locus, and
peptidyl arginine-deiminase 4 are some of the well-documented genetic factors linked to
ACPA-seropositive RA [81].

In contrast, the genetic risk for anti-CarP Ab is less known. While HLA-DR3 is found
more commonly in individuals with ACPA-negative RA than in the healthy population [87],
HLA-DR3 is also associated with RA cases positive for anti-CarP Ab and negative for
ACPA [88].

3.2. Environmental Risk Factors
3.2.1. Tobacco Smoking

The significance of tobacco smoking as a risk factor for RA has been well accepted [89,
90]. Interestingly, although smoking has been associated with all seropositive RA [54], it
is known to be associated with the presence of RF, even in the absence of RA [91]. Large
population studies and twin studies have described the association between smoking and
ACPA positivity [92], with a dominant risk being in individuals positive for SE [92,93].
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Aside from the inflammatory changes in the lungs subsequently causing activation of
PADs [94], in the setting of SE, smoking confers a risk of high ACPA levels and suggests a
distinct mechanism of ACPA production different from that of RF [91,95].

Moreover, smoking is suspected to promote carbamylation in patients with RA. While
smoking has been demonstrated to promote MPO-mediated conversion of thiocyanate to
cyanate [96], the level of anti-CarP Ab, however, was not significantly higher [68]. Perhaps
critical factors (genetic or environmental exposures) other than carbamylation alone are
required for the induction of anti-CarP Ab.

3.2.2. Microbial Triggers

As RF is physiologically important to enhance immune complex clearance, to assist
B cell uptake for antigen presentation and to facilitate complement fixation, an increased
level of RF has been detected in individuals with chronic or indolent infection, including
hepatitis B or C virus infection or infective endocarditis [97,98]. Nonetheless, the production
of RF under such conditions typically ceases following resolution of the infection. Due
to the action of bacterial pore-forming virulence and calcium ionophores in triggering
calcium influx and generating nontolerized neocitrullinated epitopes [99–101], the role
of periodontitis-causing bacteria and intestinal microbiota in ACPA-associated RA was
recently summarized [102–106]. Although infection is likely to trigger the release of MPO
from activated neutrophils during infection episodes, no direct evidence has linked acute
infection to anti-CarP Ab-positive RA, and the risk of infection in autoantibody-mediated
RA is still under investigation.

4. Predictive Values of RF, ACPA and Anti-CarP Ab in the Diagnosis of
Presymptomatic RA Patients

Although not necessarily required for the development of RA, autoAbs can readily
be found many years before the onset of symptomatic disease in the evolution model of
RA [107–109]. During the presymptomatic phase of the disease, B cells undergo a series
of selection, expansion, epitope spreading and antibody maturation processes [22,29],
providing physicians an opportunity for early detection and prevention of the disease.

4.1. Rheumatoid Factor

The detection of RFs in the form of IgM, IgA, and IgG was found to predate the
onset of RA by years across patients of various ethnicities [110–112]. Interestingly, their
appearance in serum is sequential before the diagnosis of RA: IgM RF first, followed by
IgA RF, and finally IgG RF [112,113]. In a Danish cohort study, healthy individuals with
elevated RF levels had up to 26-fold higher long-term risk of RA and up to 32% 10-year
absolute risk of developing RA [110]. Moreover, the positive predictive value (PPV) for
RF ranges from 36–97%, with most values falling between 70% and 80%; the negative
predictive value (NPV) is 69–95% [114].

4.2. Anti-Citrullinated Protein Antibodies

Similar to RF, ACPAs can be detected in serum samples up to 14 years before the onset
of articular symptoms of RA and precede the presence of IgM RF by up to a decade [115].
Careful investigation of pre-RA blood donors and blood samples collected from patients
before their diagnosis suggested that an increase in the level of ACAP can generally be
found 1–3 years prior to the onset of symptoms [115,116]. In addition to the occurrence
of ACPAs, the relevance of antibody levels and characteristics have been discussed in the
prediction of RA development [117–120]. For example, while the PPV for the development
of RA within a period of 2–6 years ranges from 30% to 70%, the best PPVs were those
with higher antibody levels or those positive for both ACPA and RF [120,121]. In a study
analyzing 260 IgM-RF-negative patients with early arthritis, the PPV of a positive ACPA
test was 91.7% after a one-year follow-up [122].

In 2010, Van der Woude et al. discovered an excess amount of citrullinated epitopes
recognizable by ACPA in the sera of pre-RA patients [123], reporting that the ACPAs
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isolated from those who were later confirmed to have RA recognized considerably more
citrullinated targets [123]. Utilizing citrullinated peptide tetramers, a similar phenomenon
was also reported recently by Kongpachith and colleagues [45]. Leaving a trail during the
process of antibody maturation, the amount of ACPA epitope spreading was increased in
the presymptomatic phase, predicting progression to RA [124,125]. Moreover, N-linked
glycosylation in the Fab segment of ACPA is known to be critical in predicting RA develop-
ment [52]. By studying a subset of first-degree relatives of indigenous North American RA
patients, Hafkenscheid et al. discovered that extensive glycosylation of the IgG ACPA V
domain predisposed individuals to the development of RA [52]. Altered glycosylation in
the Fc portion as well as decreasing galactosylation and increasing fucosylation of serum
ACPA IgG1 are also reported to precede the onset of RA [46].

4.3. Anti-Carbamylated Protein Antibodies

Similarly, anti-CarP Ab, which can be detected before the onset of RA, is also applica-
ble in the setting of preclinical screening [25,126–129]. In fact, anti-CarP Ab can be detected
more than a decade prior to the onset of RA, at approximately the same time as ACPA and
before IgM RF can be detected [126,130]. Specifically, in comparison with those targeting
carbamylated fibrinogen, the level of anti-CarP Ab screening against carbamylated fetal calf
serum is more associated with future RA diagnosis according to Brink’s observation [129],
who reported sensitivities of 13.9% and 42.2% for anti-CarP Ab in presymptomatic indi-
viduals and after the development of RA, respectively. Moreover, Pecani et al. recently
reported a PPV of 88% and an NPV of 60% for anti-CarP Ab in RA patients [131].

4.4. Additive Values of the RF, ACPA and Anti-CarP Ab

Additive values of RF and ACPA in predicting the development of RA have been re-
ported by Dahlqvist et al. and have been reproducibly confirmed [114,132]. In comparison
to controls, the specificity for future development of classifiable RA with the combination
of both ACPA and RF of any isotype can reach as high as 99% (Table 1) [112].

In 2015, Shi et al. analyzed sera derived from patients in the Leiden Early Arthritis
Clinic cohort and reported a sensitivity and specificity of 44% and 89% for anti-CarP Ab
in RA, respectively. Interestingly, these researchers observed that triple positivity for RF,
ACPAs and anti-CarP Ab was almost exclusively present in RA and not found in other
forms of arthritis [133]. However, investigating 1062 patients with early arthritis and
following them up for two years, Regueiro and colleagues analyzed these three autoAbs
and discovered that the association of anti-CarP Ab with RA was notably weaker than that
of ACPA and RF [134]. In addition, they found only a mild increase in sensitivity when
combining anti-CarP Ab into the diagnosis of RA compared with the current 2010 RA
guidelines of counting ACPA and RF [134]. Specifically, the inclusion of anti-CarP Ab in
the combined positivity criterion, namely, ACPA or RF or anti-CarP Ab, only resulted in an
additional increase of 2.2% in sensitivity, but with a cost of 8.1% loss in specificity over the
existing ACPA or RF positivity criterion [134]. Recently, Verheul et al. performed a meta-
analysis utilizing 12 relevant articles and discovered that triple positivity for anti-CarP Abs,
ACPAs and RF contributes a higher specificity (98–100%) but lower sensitivity (11–39%)
in RA [27]. Furthermore, Regueiro and colleagues evaluated the potential of combining
the three antibodies for improving current RA classification among patients with early
arthritis [11]. They reported that the presence of the antibodies together favors predictive
characteristics for RA, with a PPV of 96.1%, which is better than the classification criterion
currently available (PPV = 88.8%) [11]. Due to the remaining controversy regarding
whether it is beneficial to include anti-CarP Abs, debate over the value of combining the
three autoAbs is ongoing [11,26].
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Table 1. Comparison of the characteristics and clinical significances between rheumatoid factors, anti-citrullinated protein
antibodies and anti-carbamylated protein antibodies.

Rheumatoid Factor Anti-Citrullinated
Protein Antibodies

Anti-Carbamylated
Protein Antibodies

Year of
Discovery 1940s 1964 2011

Characteristics of the Autoantibody
Antigenic
Targets - target the antigenic epitopes within

the Fc region (CH2 and CH3) of IgG
- conformation changes may be

required for epitope exposure

- react with a variety of
citrullinated antigens

- partially cross-react with peptides
undergone carbamylation
and acetylation

- react with a variety of
carbamylated antigens,
homocitrulline

- partially cross-react with peptides
undergone citrullination

Isotypes - IgM > IgG > IgA - mainly IgG and IgA - mainly IgG and IgA

Characteristics - limited N-glycosylation
- limited somatic hypermutations
- limited class switching

- extensive N-glycosylation
- extensive somatic hypermutations
- extensive class switching

- extensive class switching
- limited avidity maturation

Clinical Significance
Role in RA
Diagnosis - included in the 1987 ACR

classification criteria for RA
- included in the 2010 ACR/EULAR

RA classification criteria

- included in the 2010
ACR/EULAR RA classification
criteria

- not included in any RA
classification criteria

- potentially beneficial for those
negative of RF and ACPA

Sensitivity for RA - RF: 41–66% for early RA and
62–87% for RA

- ACPA: 41–66% for early RA and
41–77% for RA

- double positive: 33–57% for RA

- anti-CarP Ab: 18–26% prior to and
27–46% after RA diagnosis

- triple positivity: 11–39%

Specificity for RA
- RF: 43–96% for RA - ACPA: 88–98% for RA

- double positive: 91–99%
- anti-CarP Ab: 93–97% for RA
- triple positivity: 98–100%

Other Conditions with
Increased Antibody
Titer

- other autoimmune diseases
- chronic infections/inflammations
- aging
- smoking

- mucosal dysbiosis
- tobacco smoking
- other autoimmune diseases

- renal diseases
- chronic inflammations
- cardiovascular disease
- other autoimmune diseases

Clinical Presentations - more extraarticular manifestations
- aggressive and erosive joint disease

- more severe structural damage,
radiographic progression and
poorer response to therapy

- more severe joint damage in those
negative for ACPA

Treatment
Response - the level of RF parallels the decrease

of disease activity
- RF positivity possibly predicts better

clinical response in those receiving
rituximab and tocilizumab

- aggressive treatment with higher
MTX dosing or triple therapy
may be beneficial for ACPA RA

- ACPA positivity cases possibly
response to tocilizumab,
rituximab, abatacept and
tofacitinib better than those
negative of ACPA

- Abatacept seem beneficial for those
positive for anti-CarP Ab

RA, rheumatoid arthritis; RF, rheumatoid factors; ACPA, Anti-citrullinated protein antibody; anti-CarP Ab, Anti-carbamylated protein antibody;
ACR, American College of Rheumatology; EULAR, European League Against Rheumatism; MTX, Methotrexate; Fc-crystallizable fragment.

5. Monitoring RA Disease Activity and Progression with RF, ACPA and Anti-CarP Ab
5.1. Rheumatoid Factor

Before the introduction of other autoAbs, RF alone, particularly IgM and IgA isotypes
at high titers, had been a well-known factor predicting more aggressive and erosive joint
disease with a higher prevalence of extraarticular manifestations [98,135]. Moreover, the
presence of IgM RF in patient sera renders clinical remission less achievable. In fact, a
recent study reported that RF is associated with early methotrexate (MTX) failure due to
inefficacy in patients with early RA [136].
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Some studies have shown that the level of RF can decrease following proper immune
suppressant treatment [137,138]. In a review by Ingegnoli et al., a progressive decrease in
the level of RF was reported to parallel the decrease in disease activity noted in RA patients
who underwent treatments, including conventional disease-modifying anti-rheumatic
drugs (DMARDs) and various different biologics, including infliximab, etanercept, adal-
imumab, rituximab, and abatacept or tocilizumab [98]. However, there are conflicting
results when utilizing RF to predict the response to therapeutic regimens and limit its clini-
cal application [137,138]. For example, high levels of serum RF are reasonable predictors for
a better response to B cell-depleting therapy. Indeed, most patients positive for RF exhibit
a moderately better response to rituximab than those who are negative [139]. Nevertheless,
the response to anti-TNF varies significantly. While some studies claimed that RF positiv-
ity before therapy predicted a favorable response, others reported opposite findings [98].
Evidence gathered from systematic reviews and meta-analyses of clinical trials and obser-
vational studies, including 14 studies of rituximab treatment and 6 studies of tocilizumab
treatment, revealed that RF positivity at initiation predicts a better clinical response [140].
There is, however, no association between RF and response to abatacept [140].

5.2. Anti-Citrullinated Protein Antibodies

While the clinical significance and the immunopathogenesis of RF and ACPA were
well elucidated, no tailored treatments are preferentially recommended for seropositive
RA patients or those with high ACPA specifically [141]. According to the long-term study
of the BeSt strategy trial, despite a greater extent of radiological articular damage, patients
positive for ACPA achieved a reduction in disease activity that was identical to those who
were negative [142]. Follow-up studies by Dekkers and Jonsson suggested that short-term
remission or different EULAR responses in newly diagnosed RA were not affected by
either ACPA or RF positivity among patients who underwent MTX monotherapy [143,144].
Although the presence of ACPA does not seem to add much to the prediction of a treatment
response to MTX, reports have suggested some differences in the magnitude of the response
influenced by treatment dosing. Indeed, Wevers-de Boer and Crepaldi suggested that
higher starting doses of MTX were more effective than lower doses in treating seropositive
than seronegative RA patients [145,146]. Furthermore, Seegobin et al. further proposed
that triple therapy with MTX, cyclosporine and prednisolone is more effective in reducing
disease activity solely in ACPA-positive early RA patients [147].

A recent study utilizing head-to-head comparisons in a real-world setting was con-
ducted to compare the impact of seropositivity (ACPA and RF positive) on drug discontin-
uation and the effectiveness of various biologics in patients with RA [148]. Analyzing a
pooled of 16 observational RA registries, including 27,583 eligible patients, Courvoisier
et al. found seropositivity to be associated with longer drug retention and decreased
disease activity for rituximab and abatacept. In addition, there were slight associations
between seropositivity and effectiveness for tocilizumab but not TNF inhibitors [148]. A
similar observation was also made by Bugatti, who examined each study in detail [149].
Although rituximab and abatacept have been shown to partially reduce the level of ACPA
in RA patients in close association with a reduction of disease activity [150,151], Cambridge
et al. discovered that there was no increase in the level of ACPA prior to or during relapse
following initial response [152]. Hence, the role of ACPA as a biomarker for disease activity
hence is still questionable [29,153].

Following the introduction of Janus kinase inhibitors to the treatment of RA, interest
in how seropositivity predicts its treatment response has emerged. Recently, Bird et al.
analyzed 3061 patients pooled from five RA cohorts and discovered that those who were
positive for both ACAP and RF were more likely to achieve clinical response with tofacitinib
than those who were negative for both autoAbs [154]. Additionally, patients who were
positive for ACPA, regardless of RF status, were more likely to achieve disease remission or
low disease activity than seronegative patients when treated with tofacitinib 10 mg twice
daily [154]. More studies are required to draw definitive conclusions.
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5.3. Anti-Carbamylated Protein Antibodies

Anti-CarP Ab is detected in up to 45% of RA patients, though its presence was found
in only 16–30% of those negative for ACPA [28]. Despite conflicting results, the majority
of studies agree that the presence of anti-CarP Ab is associated with a higher degree of
disease activity and significantly more disability over time in patients with RA [74,128,155].
Recently, more severe radiological progression was reported in patients positive for anti-
CarP IgG, specifically among those negative for ACPA. This indicates a role of anti-CarP
Ab as a unique and relevant serological marker for RA patients negative for ACPA [28,156].

Kumar et al. recently reported a correlation between anti-CarP positivity at baseline
and a reduction in disease activity within the first six months of treatment among 60 RA
patients treated with abatacept [157]. However, the predictive role of anti-CarP Ab in
response to RA treatment in other treatments has not been extensively investigated. More
research appears to be needed to determine the usefulness of anti-CarP Ab for monitoring
RA disease activity and therapeutic response.

6. Summary and Future Prospects

Studies on RA-associated autoAbs not only facilitate our understanding of disease
immunopathogenesis but also, as summarized in Table 1, have allowed these molecules
to be adopted clinically as biomarkers for disease diagnosis and outcome prediction and
for directing medication choice. In fact, because RA-associated autoAbs appear before the
onset of disease, multiple living and pharmacological strategies have been proposed and
tested to delay or prevent RA development [158–160]. Finckh et al. specifically highlighted
cases associated with genetic factors, such as SE, and patients with systemic autoimmunity
associated with ACPA-positive RA for arthritis prevention [161]. In the ADJUST trial,
treatment with abatacept was able to postpone the progression of arthritis by modulating T-
cell responses in some early-stage ACPA-positive RA patients [162]. The results also reveal
that the progression of undifferentiated arthritis and very early RA can be therapeutically
manipulated in a proportion of patients [162]. Moreover, the ongoing STAPRA trial, StopRA
study and APIPPRA trial aim to prevent progression of the disease among patients with
high titers of ACPA or ACPA and RF IgM utilizing atorvastatin, hydroxyquinone and
abatacept before the onset of RA [159]. Discontinuation of smoking and eradication of
mucosal infection are some modifiable risk factors worth pursuing [163–165]. With the
introduction of RF, ACPA, anti-CarP Ab and upcoming novel autoAbs, these clinically
available biomarkers are of value in assisting in the diagnosis and treatment of patients
with RA.
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ACPA anti-citrullinated protein antibody
ACR American College of Rheumatology
Anti-CarP Ab Anti-carbamylated protein antibody
AutoAb autoantibody
DMARDs disease-modifying anti-rheumatic drugs
EULAR European League Against Rheumatism
Fab antigen-binding fragment
Fc crystallizable fragment
GRP78 78-kDa glucose-regulated protein
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HLA human leukocyte antigen
IgG immunoglobulins G
MPO myeloperoxidase
MTX methotrexate
NPV negative predictive value
PAD peptidyl arginine deiminase
PPV positive predictive value
PTM post-translational modified
RA rheumatoid arthritis
RF rheumatoid factor
SE shared epitope
TNF tumor necrosis factor
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