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Background: During early clinical development, prospective identification of a predictive biomarker and valida-
tion of an assay method may not always be feasible. Dichotomizing a continuous biomarker measure to classify
responders also leads to challenges. We present a case study of a prospective–retrospective approach for a con-
tinuous biomarker identified after patient enrollment but defined prospectively before the unblinding of data. An
analysis of the strengths and weaknesses of this approach and the challenges encountered in its practical appli-
cation are also provided.
Methods:HERALD (NCT02134015) was a double-blind, phase 2 study in patients with non-small cell lung cancer
(NSCLC) randomized to erlotinib with placebo or with high or low doses of patritumab, a monoclonal antibody
targeted against human epidermal growth factor receptor 3 (HER3). While the primary objective was to assess
safety and progression-free survival (PFS), a secondary objective was to determine a single predictive biomarker
hypothesis to identify subjects most likely to benefit from the addition of patritumab. Although not identified as
the primary biomarker in the study protocol, on the basis of preclinical results from 2 independent laboratories,

expression levels of the HER3 ligand heregulin (HRG) were prospectively declared the predictive biomarker be-
fore data unblinding but after subject enrollment. An assay tomeasure HRGmRNAwas developed and validated.
Other biomarkers, such as epidermal growth factor receptor (EGFR) mutation status, were also evaluated in an ex-
ploratory fashion. The cutoff value for high vs. lowHRGmRNA levels was set at themedian delta threshold cycle.
Amaximum likelihood analysis was performed to evaluate the provisional cutoff. The relationship of HRG values
to PFS hazard ratios (HRs) was assessed as a measure of internal validation. Additional NSCLC samples were an-
alyzed to characterize HRG mRNA distribution.
Results: The subgroup of patients with high HRG mRNA levels (“HRG-high”) demonstrated clinical benefit from
patritumab treatment with HRs of 0.37 (P = 0.0283) and 0.29 (P = 0.0027) in the high- and low-dose
patritumab arms, respectively. However, only 102 of the 215 randomized patients (47.4%) had sufficient
tumor samples for HRG mRNA measurement. Maximum likelihood analysis showed that the provisional cutoff
was within the optimal range. In the placebo arm, the HRG-high subgroup demonstrated worse prognosis com-
pared with HRG-low. A continuous relationship was observed between increased HRG mRNA levels and lower
HR. Additional NSCLC samples (N = 300) demonstrated a similar unimodal distribution to that observed in
this study, suggesting that the defined cutoff may be applicable to future NSCLC studies.
Conclusions: The prospective–retrospective approachwas successful in clinically validating a probable predictive
biomarker. Post hoc in vitro studies and statistical analyses permitted further testing of the underlying assump-
tions. However, limitations of this analysis include the incomplete collection of adequate tumor tissue and a lack
ilding A-bis, 3590 Diepenbeek, Belgium.
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of stratification. In a phase 3 study, findings are being confirmed, and the HRG cutoff value is being further
refined.
ClinicalTrials.gov Number: NCT02134015.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ideally, predictive biomarkers are prospectively specified in clinical
trials in oncology. However, this path may not always be feasible due
to various challenges encountered during clinical development, includ-
ing difficulties in early identification of a biomarker, or development
and validation of an appropriate assaymethod. In addition, setting a cut-
off for a continuous biomarker can be problematic, and the best ap-
proach is still an open area of debate (Altman et al., 1994; Jiang et al.,
2007; Fridlyand et al., 2013; Hall et al., 2014). Use of a prospective–ret-
rospective approach that is applied to a single predictive biomarker hy-
pothesis has the advantage of avoiding the issue of a high false-positive
rate due tomultiple comparisons whenmultiple biomarker hypotheses
are evaluated on an equal footing in an exploratory fashion (Beckman
et al., 2011); however, there have been few reports published detailing
the real-world implementation of a prospective–retrospective approach
for biomarker identification.

Herein, we present a case in which a continuous biomarker for a
targeted therapy, patritumab, was clinically validated using a prospec-
tive–retrospective approach (Beckman et al., 2011; Simon, 2005) during
a phase 2 study. We also review the challenges faced and the strengths
and weaknesses of the approach taken.

Members of the human epidermal growth factor receptor family
(HER; i.e., epidermal growth factor receptor [EGFR], HER1, HER2,
HER3, and HER4) have been implicated in oncogenesis (Liu and Kern,
2002; Hsieh and Moasser, 2007). Elevated expression levels of HER3
and its ligand heregulin (HRG) are found in many solid tumors, includ-
ing non-small cell lung cancer (NSCLC) (Yi et al., 1997; alMoustafa et al.,
1999; Müller-Tidow et al., 2005). In most cases, HER3-containing
g of the ligand heregulin to HER3 ind
ion initiates the transphosphorylatio
cking sites for PI3K, leading to the act
ctor receptor; PI3K: phosphatidylino
heterodimers are formed following conformational changes in HER3 in-
duced by HRG binding (Carraway et al., 1994; Alroy and Yarden, 1997),
leading to the activation of signaling pathways important for oncogen-
esis (Fig. 1) (Gullick, 1996; Olayioye et al., 2000; Yarden and
Sliwkowski, 2001; Atlas et al., 2003; Tsai et al., 2003; de Alava et al.,
2007; Ueno et al., 2008; Hegde et al., 2013). High HRG expression has
been associated with increased HER3 phosphorylation (Krane and
Leder, 1996; Zhou et al., 2006) and phosphatidylinositol-3-kinase
(PI3K)-mediated signaling (Prigent and Gullick, 1994; Soltoff et al.,
1994; Schoeberl et al., 2010; Shames et al., 2013).

Upregulation and reactivation of HER3 function as escape mecha-
nisms from EGFR inhibition and may play a role in tumor resistance to
EGFR-targeting tyrosine kinase inhibitors (Schoeberl et al., 2010; Xia
et al., 2005; Sergina et al., 2007; Wheeler et al., 2008; Baselga and
Swain, 2009; Garrett et al., 2011). Consistent with this theory, HRG
has been found to reverse sensitivity to EGFR inhibitors in preclinical
models (Motoyama et al., 2002). Complete and sustained HER3 and/or
HRG inhibition may, therefore, inhibit HER3-dependent resistance to
EGFR inhibition and produce a more complete blockade of signaling
from HER family members (Xia et al., 2005; Sergina et al., 2007).

Patritumab is a fully human anti-HER3 monoclonal antibody that
demonstrates antitumor activity when used alone or with anti-EGFR in-
hibitors in preclinical cancer models (Freeman et al., 2009). Patritumab
inhibits HRG-mediated HER3 signaling by binding to the extracellular
domain of HER3 (thus preventing HRG from binding) and promoting
the internalization and degradation of the receptor (Freeman et al.,
2008; Treder et al., 2008a, 2008b).

Patritumab was assessed in the phase 2 HERALD study in which pa-
tients with advanced NSCLC were randomized to either patritumab in
uces a conformational change that allows for receptor dimerization of HER3with HER fam-
n of HER3 at specific tyrosine residues by the kinase of its heterodimeric partner. (C) The
ivation of other molecules further downstream in the PI3K–Akt pathway. EGFR: epidermal
sitol-3-kinase.
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combination with erlotinib or placebo with erlotinib (von Pawel et al.,
2014). While patritumab had been previously studied in a phase 1
study as a monotherapy in patients with solid tumors refractory to
prior treatments (LoRusso et al., 2013), a predictive biomarker for re-
sponse to patritumab had not yet been identified before initiation of
the phase 2 study. Therefore, the phase 2 study had a secondary objec-
tive of defining a biomarker for a primary biomarker hypothesis
(Beckman et al., 2011), based on preclinical data available after patient
enrollment was completed in the clinical study and prior to data
unblinding and statistical analysis (a prospective–retrospective ap-
proach (Simon, 2005)).

2. Materials and Methods

2.1. Study Design

Patientswere eligible for enrollment in theHERALD study if they had
histologically confirmed stage IIIB/IV NSCLC with measurable disease
(per Response Evaluation Criteria in Solid Tumors guidelines, version
1.1) and documented disease progression or recurrence on at least 1
prior chemotherapy treatment. Other eligibility criteria have been pre-
viously presented (von Pawel et al., 2014). Approximately 215 patients
were randomized to 1 of 3 arms: high-dose patritumab (18mg/kg intra-
venously [IV] every 3 weeks [q3w]) with erlotinib (150 mg/day orally
[PO]), low-dose patritumab (18 mg/kg IV loading dose, followed by
9mg/kg q3w)with erlotinib (150mg/day PO), or placebowith erlotinib
(150mg/day PO). Stratification factors include histology subtypes (ade-
nocarcinoma vs. squamous vs. other) and best response to prior therapy
(complete response or partial response vs. stable disease vs. progressive
disease).

The primary objectives of the study were to assess safety and
progression-free survival (PFS) in the intent-to-treat (ITT) population.
A secondary objective was to identify and test a single primary predic-
tive biomarker hypothesis. The study protocol was approved by the in-
stitutional review boards of the participating institutions. All patients
provided written informed consent, including consent to provide
tumor tissue to test for biomarkers predictive of patritumab response.

2.2. Biomarker Assays

Patients were required to provide a fresh tumor sample prior to
treatment or to make available archived tumor tissue in order to have
the potential predictive biomarkers for patritumab assessed. A blood
sample for pharmacogenetic assessment was also collected pretreat-
ment from each patient.

Mutations in the EGFR gene were analyzed in formalin-fixed
paraffin-embedded (FFPE) tissue and ethylenediaminetetraacetic acid
plasma samples using the Qiagen EGFR RGQ PCR Kit (Germantown,
MD) on the Qiagen Rotor-Gene Q 5plex HRM (Germantown, MD) in-
strument. The method was validated, and analyses were performed by
Covance Central Laboratory Services (Indianapolis, IN, and Geneva,
Switzerland). The Qiagen EGFR RGQ PCR Kit detected mutations on
exon 18 (G719A, G719S, G719 C), exon 20 (T790M, S768I), and exon
21 (L858R, L861Q), as well as exon 19 deletions and exon 20 insertions.

An immunohistochemistry (IHC) assaywas developed and validated
tomeasureHER3expression in FFPE tissue byMosaic Laboratories (Lake
Forest, CA). HER3 expression was detected using a mouse anti-HER3
monoclonal antibody. Two lung cancer tissues were used as controls,
and 2 cell lines (1 known to be negative and 1 known to be positive
for HER3 expression) were used as quality control qualifiers. HER3 IHC
staining was evaluated by a pathologist on a semiquantitative scale,
and an H-score was calculated based on the percentage of cells staining
at 4 intensity levels.

A validated quantitative sandwich immune assay was used to mea-
sure levels of the soluble p85 form of HER3 in serum. The sandwich
assay used antibody reagents raised against p85 HER3 recombinant
protein. Bound HER3was detected with biotinylated mouse antihuman
HER3 antibody followed by peroxidase-conjugated streptavidin, visual-
ized with a tetramethylbenzidine substrate solution. The method was
validated and samples were analyzed by Intertek Pharmaceutical Ser-
vices (San Diego, CA).

HRG mRNA expression was evaluated using a quantitative reverse
transcription polymerase chain reaction (qRT-PCR) assay that was de-
veloped and validated by MolecularMD (Portland, OR). Total mRNA
was extracted from FFPE tissue using Qiagen RNeasy FFPE (German-
town, MD), and cDNA was obtained from reverse transcription of the
mRNA. Levels of mRNA fromHRG and 3 reference genes were evaluated
using qRT-PCR. The average PCR efficiency waswithin 90% to 110%, and
linearity was≥0.99. Intra-assay and interassay precisionwas evaluated
with 6 different FFPE samples that were started from mRNA extraction
from FFPE samples. The samples were analyzed by MolecularMD.

2.3. Prospective–Retrospective Approach for a Single Predictive Biomarker
Hypothesis

The original intent in the HERALD study was to conduct a stratified,
randomized phase 2 study that tested a single predictive biomarker hy-
pothesis as a primary objective, as well as its efficacy in the full ITT pop-
ulation (Beckman et al., 2011). The single predictive biomarker
hypothesis was required to avoid multiple statistical comparisons,
which could contribute to false-positives and result in the inability to re-
produce results in subsequent studies (Beckman et al., 2011; Simon,
2005).

At the start of the study, however, there were still a number of pos-
sible biomarker hypotheses and few validated assays available to mea-
sure potential analytes (e.g., HER3 expression and activation or HRG
expression). We were therefore unable to declare the predictive bio-
marker as a primary end point in the clinical protocol. Instead a second-
ary objective was declared to define and test a predictive biomarker
hypothesis to identify patient populations more likely to benefit from
patritumab treatment. Therefore, the prospective–retrospective ap-
proach was used (Simon, 2005). The single predictive biomarker hy-
pothesis was to be prospectively declared, in this case prior to the
unblinding of the clinical data but after study initiation, and was to be
tested regardless of the results from the ITT population analysis
(Beckman et al., 2011).While this was a secondary objective, other pre-
dictive biomarkers were designated exploratory.

2.4. Statistical Analysis

The primary analysis for PFS used a stratified log-rank linear trend
test for the dose–response relationship. This was followed by pairwise
comparisons of each patritumab and erlotinib combination therapy
and the control arm using the stratified log-rank test and accounting
for the stratification factors at randomization. Kaplan–Meier curves
were generated for PFS and used to calculate medians and 95% confi-
dence interval (CI) for each treatment group.

Applying the prospective–retrospective approach, the key second-
ary analysis for PFS was performed for biomarker-positive patients fol-
lowing the same method described previously to compare the
combination of patritumab plus erlotinib with the control arm. A
biomarker-positive patient was prospectively defined as a patient
with HRG mRNA expression above the cutoff, which was specified as
the median delta threshold cycle (ΔCt) value in the blinded sample set.

Hazard ratios (HRs) at incremental cutoff values for HRG mRNA
from the study were also assessed as an exploratory analysis. In
assessing other potential HRG mRNA cutoff values, a maximum likeli-
hood approach was used to identify optimal cutoff values (Altman
et al., 1994). The continuous HRG mRNA values were dichotomized,
and the cutoff value that resulted in the HR value with lowest P-value
was selected as optimal based on this approach and compared with
the provisional cutoff at the median.



Fig. 2.Distribution of HRGmRNA in the HERALD study.ΔCt: median delta threshold cycle;
Q: quartile.
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To assess the distribution of HRGmRNA in a broader NSCLC popula-
tion, 300 NSCLC tumor samples, in FFPE (n= 200; purchased from var-
ious commercial vendors) and as RNA (n = 100; provided by National
Hospital Organization Kyushu Cancer Center, Fukuoka, Japan), were an-
alyzed by MolecularMD using the validated qRT-PCR method.

Sensitizing mutations in EGFR are associated with improved clinical
response to EGFR inhibitors (Paez et al., 2004; Pao et al., 2004; Sequist
et al., 2008; Yang et al., 2008). To assess the potential for interaction
with sensitizing EGFRmutations thatmay not have been detected in pa-
tients with unknown EGFR mutation status and could potentially con-
found the results (Polley et al., 2013), simulations (N = 10,000) were
performed using re-sampling without replacement, assuming a 10%
EGFR-sensitizing mutation prevalence based on published incidence
rates of EGFR mutation in NSCLC patients and utilizing the EGFR muta-
tion results from tissue sampleswithin the study (Paez et al., 2004; Yang
et al., 2008; Lynch et al., 2004) (i.e., out of 101 patritumab-treated pa-
tients with unknown EGFR status based on tissue alone, it was assumed
that 10 patients would have sensitizing EGFR mutations). The HRs esti-
mated for each scenario were summarized to characterize the potential
effect that EGFR-sensitizingmutations could have on theHR observed in
this study.

3. Results

3.1. Single Predictive Biomarker Hypothesis

At the start of the study there were still a number of possible predic-
tive biomarker hypotheses and analytes. Therefore, we prospectively
declared a single predictive biomarker hypothesis as a secondary objec-
tivewithout specifying the biomarker ormeasurement. Identification of
the biomarker evolved during the course of the study.

3.2. Predictive Biomarker Selection

Since our target population was patients with NSCLC, we defined a
predictive biomarker as one that could be measured in serum or in
FFPE tumor tissue collected pretreatment to ensure the feasibility for fu-
ture large scale studies and the applicability to clinical practice.

HRG expression was considered as a potential biomarker for
patritumab efficacy. To assess HRG levels, a qRT-PCRmethodwas devel-
oped. An IHC-based assay was evaluated but was found to lack selectiv-
ity for low vs. high levels of HRG in sample FFPE tissue slides.
Assessment of HRG protein levels by Western blot was also considered,
but it was determined that this approach would not be feasible for a
large scale clinical study.

HER3 expression was also evaluated as a candidate biomarker. Pa-
tients with high levels of HER2 expression have higher rates of response
to treatment with the HER2 inhibitor trastuzumab. It was hypothesized
that a similar correlation might be observed between high levels of
HER3 expression in tumors and improved response to patritumab treat-
ment (Slamon et al., 1987; Mass et al., 2005). Therefore, an IHC assay
was developed and validated to measure HER3 expression in FFPE tis-
sue. While activated HER3 (evaluated by levels of phosphorylated
HER3 [pHER3])was also considered potentially relevant, it was not pos-
sible to validate an IHC method for assessing pHER3 in FFPE tissue. An
assay method for soluble HER3 was also developed and validated.

After the HERALD study was initiated, results from preclinical stud-
ies measuring HER3, pHER3, and HRG levels by Western blot assay de-
termined that HRG protein expression was the most relevant
biomarker for predicting response to patritumab (Schneider et al.,
2014; Yonesaka et al., 2014). In 50 tumor cell lines, HRG and HER3 ex-
pression levels were found to be variable and not correlated with each
other. When cell lines were categorized into those with high HRG ex-
pression (HRG-high) and lowHRG expression (HRG-low) using a cutoff
equal to the median of the blinded sample data, HRG-high cell lines
were significantly more sensitive to patritumab treatment compared
with HRG-low cell lines, both in vitro (P = 0.002) and in tumor xeno-
graft models. Protein expression analysis provided a sensitivity of
83.3% and specificity of 100% for correlating HRG-positive cell lines
with sensitivity to patritumab treatment in vitro and a sensitivity of
71.4% and specificity of 100% in tumor xenograft models. In addition,
HRG-high cell lines were observed to have activated HER3 and AKT,
whose levels were reduced with patritumab treatment, and specific
knockdown of HRG expression using siRNA led to reduced sensitivity
to patritumab treatment. In contrast, levels of HER3 expression or acti-
vation were not found to correlate with sensitivity to patritumab
treatment.

These findings led to the amendment of the statistical analysis plan
of the HERALD study to state that HRGwould be the primary predictive
biomarker for the study and to specify that PFS in this single subgroup
would be evaluated irrespective of the outcome in the ITT population.
As there was no clinically feasible assaymeasuring HRG protein expres-
sion,HRGmRNAwas employed as a surrogate. The hypothesis thus stat-
ed that patients with higher HRG mRNA levels in their tumors would
derive greater benefit from treatment with patritumab. The cutoff be-
tween HRG-high and HGR-low subgroups was prospectively defined
as the median measured on blinded samples before database lock.

3.3. HRG Levels and Efficacy in the HERALD Study

In total, 215 patients were randomized in the HERALD study; 212
patients received at least 1 dose of study treatment and were included
in the ITT population. FFPE samples were collected in all patients, but
only 103 patients provided a sufficient tumor sample for HRG mRNA
measurement (101 patients in the ITT population). HRG biomarker dis-
tribution from the HERALD study is shown in Fig. 2. The median ΔCt
value (first, third quartile) was 3.9 (2.7–5.0) and was used as the cutoff
value between HRG-high and HRG-low subgroups, as predefined in the
statistical analysis plan. Patient demographics and baseline disease
characteristics were generally similar between the ITT population and
the subset of HRG-high patients (n= 51), although a higher proportion
of patients in the ITT population had unknown EGFR mutation status
(70.3% vs. 54.9%, respectively) (Supplemental Table S1). Among pa-
tientswith known EGFRmutation status, 6.6% of patients in the ITT pop-
ulation and 8.7% of patients in the HRG-high subgroup had EGFR-
sensitizing mutations. Patient demographics and baseline disease char-
acteristics were also similar between the HRG-high and HRG-low pa-
tients (n = 40; data not shown).

No PFS benefit was observed for patritumab plus erlotinib compared
with placebo plus erlotinib in the ITT population, with HRs (95% CI) of
0.98 (0.67–1.42) in the high-dose arm and 0.77 (0.52–1.13) in the
low-dose arm (Supplemental Table S2). HRG-high patients treated
with patritumab and erlotinib, however, had significantly improved
PFS compared with patients treated with erlotinib alone, with HRs
(95% CI) of 0.37 (0.16–0.85) in the high-dose arm and 0.29



Fig. 3. Progression-free survival in HRG-high and HRG-low patients in placebo and
patritumab arms. HRG: heregulin.

Fig. 4.Distribution ofHRGmRNA innon-small cell lung cancer samples.ΔCt:median delta
threshold cycle; Q: quartile.

Table 1
Hazard ratios for various cutoff values of HRG based on data from the HERALD study.

Cutoff for
HRG-high (ΔCt)
group

Number
of events

HR (pooled patritumab dose vs.
placebo) for PFS in HRG-high group

Log-rank
P-value

2.7 (first quartile) 24 (18) 0.180 0.0039
3.0 33 (24) 0.177 0.0009
3.5 46 (36) 0.283 0.0009
3.9 (median) 51 (41) 0.324 0.0013
4.5 65 (50) 0.490 0.0190
5.0 (third quartile) 76 (58) 0.561 0.0429

ΔCt: median delta threshold cycle; HR: hazard ratio; HRG: heregulin; PFS: progression-
free survival.
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(0.13–0.66) in the low-dose arm (von Pawel et al., 2014). In HRG-low
patients, no PFS benefit was observed, which were similar to results
from the ITT population, with HRs (95% CI) of 0.91 (0.39–2.09) and
0.92 (0.39–2.22) in the high- and low-dose arms, respectively. In addi-
tion to the evidence suggesting that a high level of HRG expression
may be predictive of clinical benefit from patritumab treatment, an ex-
ploratory analysis of PFS in HRG-high and HRG-low patients in the
patritumab and placebo arms suggested that a high level of HRG expres-
sion may also be a negative prognostic factor in patients treated with
single-agent erlotinib treatment (Fig. 3). HRG-high patients treated
with placebo plus erlotinib demonstrated poorer PFS than HRG-low pa-
tients treated with placebo plus erlotinib.

HER3 protein expression in tissue and soluble HER3 levels were also
evaluated, and, in contrast to results with HRG presented previously, no
correlation was observed between HER3 or soluble HER3 levels and
clinical benefit (data not shown). Since EGFR results were not available
for all patients, simulationswere performed to assesswhether an imbal-
ance in patients with sensitizing EGFRmutations could have biased our
results. The results of these simulations (N= 10,000, each representing
probability weighted possible distributions of the sensitizingmutations
in the patients with unknown EGFR mutation status) showed that the
distribution of possible HRs still resulted in a significant clinical re-
sponse for patritumab (upper limit of HR b 0.45, upper limit of P-
value b 0.03); therefore, it is unlikely that our results are an artifact
from unbalanced undetected EGFR mutations (Supplemental Fig. S1).

3.4. HRG Distribution

HRG distribution was also assessed in FFPE and RNA samples for pa-
tients with NSCLC. The distribution shown in Fig. 4 shows a Gaussian
distribution with a median ΔCt value (first, third quartile) of 4.1
(2.9–5.6), similar to what was observed in the HERALD study popula-
tion. In particular, there is no clear evidence of a bimodal distribution
that might have given evidence of a natural cutoff at the intersection
of 2 separate Gaussian curves as suggested by Shames et al. in squamous
cell head and neck cancer (Shames et al., 2013).

HRG demonstrated a continuous relationship between increased
HRG mRNA expression (i.e., lower ΔCt) and greater clinical benefit in
terms of PFS (Table 1), internally validating HRG as a predictive bio-
marker for clinical benefit with patritumab treatment (Simon et al.,
2009). While the median HRG mRNA value was the prespecified cutoff
for this clinical study, the potential for optimum HRG cutoff values
was also explored with maximum likelihood methods. Because this
analysis suggested a broad optimum range of values consistent with
the initial cutoff of 3.9, that value was retained. Further refinement of
the cutoff value for HRG-high vs. HRG-low subgroupswill be considered
during development of a companion diagnostic and after further clinical
assessment in the initial part of the 2-part phase 3 study (see below).
4. Discussion

After study initiation, a validated assay method to measure HRG
mRNA expression from FFPE tissuewas developed to assess a single pri-
mary biomarker hypothesis, which stated that patients with high HRG
mRNA expression levels would more likely benefit from the addition
of patritumab. The results confirmed that patients with advanced
NSCLC and high levels of HRG mRNA expression showed significant
clinical benefit for treatment with patritumab plus erlotinib compared
with patients receiving erlotinib monotherapy. Interestingly, levels of
HRG mRNA expression also appear to be a prognostic biomarker in pa-
tients who were treated with erlotinib monotherapy. This is consistent
withmolecular studies suggesting that HRG upregulation is a resistance
mechanism to tyrosine kinase inhibitors and chemotherapy (Hegde
et al., 2013; Zhou et al., 2006; Baselga and Swain, 2009; Xia et al., 2013).

Given the challenges faced at the onset of the study, the use of a pro-
spective–retrospective approach for this phase 2 study was valuable in
provisionally validating HRG mRNA expression levels as a predictive
biomarker for patritumab efficacy. These challenges included the possi-
bility of having to evaluatemultiple biomarkers and the existence of few
validated assays at the start of the study. Preclinical study results be-
came available during the clinical phase 2 study and showed that HRG
protein expression is predictive of preclinical patritumab efficacy in
cell lines and mouse tumor xenograft models. The finding that HRG—but
not HER3 expression—is a predictive biomarker for patritumab clinical
efficacy is consistent with the relationship between the HER3 receptor
and its ligand and themechanismof action underlying patritumab activity.
Activation of the HER3 pathway appears to be driven by increased HRG
expression (Ueno et al., 2008; Zhou et al., 2006; Schoeberl et al.,
2009, 2010; Shames et al., 2013), which is associated with therapeutic
resistance to a variety of agents, including those inhibiting the PI3K
pathway (Zhou et al., 2006; Xia et al., 2013; Sato et al., 2013). These
observations indicate that HRG activity is a key regulator of HER3 signaling
and support that patritumab inhibits HRG-mediated HER3 activation
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(Freeman et al., 2008; Treder et al., 2008a, 2008b). Additionally, high
HRG expression may result in a decrease in the apparent levels of mem-
brane surface HER3 detectable through IHC owing to the internalization
of the receptor (Hettmann et al., 2010). Low levels of this membrane
surface receptor were not well detected by an IHC assay method,
which may also explain why HER3 expression levels appear uncorrelated
with patritumab efficacy in our study.

Strengths of this analysis include that the biomarker assay was ana-
lytically validated, the data were from a randomized clinical trial, and
the hypothesis was prospectively stated prior to data unblinding
(Khleif et al., 2010). The fact that a single biomarker was identifiedmin-
imized the potential for Type I error, which can be encountered with
multiple comparisons (Beckman et al., 2011). Internal validation was
provided through exploratory analyses, which showed that decreasing
ΔCt values (i.e., increasing HRG mRNA expression levels) showed a
trend for improved clinical benefit (i.e., lower HR) for patients treated
with patritumab plus erlotinib compared with placebo plus erlotinib.

Themaximum likelihood analysis showed that themedianΔCt value
was within the range of optimal ΔCt values resulting in the lowest P-
value for the HRs. An initial provisional choice of the median value ap-
pears to be a reasonable approach for continuous biomarkers with
unimodal distributions, where the cutoff value is not already defined,
since it provides the largest sample size for subgroup comparisons.
However, subsequent validation and iterative refinement of any provi-
sional cutoff against clinical data will always be required as a key
component of companion diagnostic development for continuous bio-
markers (Fridlyand et al., 2013). Importantly, the distribution of HRG
mRNA observed in the HERALD study was unimodal and similar to the
distribution observed in commercial samples; thus, it is likely to be rep-
resentative of patients with NSCLC. The effort to translate this research
assaymethod to a companion diagnostic assay is also an important con-
sideration after the identification of a predictive biomarker. Optimizing
an assay method for these purposes may result in changes to the de-
fined cutoff value, the amount of tumor tissue required, and other logis-
tical aspects of clinical trial conduct.

Despite samples being obtained from most patients, only 103 sam-
ples (i.e., b50% of samples) could ultimately be analyzed for HRG
mRNA, resulting in relatively small numbers of patients in the HRG-
high and HRG-low subgroups (Khleif et al., 2010). The protocol allowed
patients to enter the study if they had an available specimen, allowing
them to begin therapy promptly. But it is clear from our results that a
quality check of the specimens should have been required before enroll-
ment, despite the possible resultant delays in beginning therapy. As the
AACR-FDA-NCI Cancer Biomarkers Collaborative states, absence of high-
quality biospecimens is one of the most significant roadblocks to devel-
oping and validating biomarkers (Mandrekar and Sargent, 2009). The
tumor samples were collected from patients prior to treatment and
prior to the selection of the primary biomarker hypothesis or the valida-
tion of the HRG assay method. Therefore, it was impossible to stratify
the patient population by HRG status. In the absence of stratification
andwith fewer than half of the tumor samples ultimately being suitable
for biomarker measurement, the sample size was not sufficiently large
enough to assure that confounding factors did not bias the results
(Patterson et al., 2011). In this case, simulations to assess the impact
of potential interactions for various significant factors, such as undetect-
ed EGFR mutations, were an important mechanism to further qualify
the robustness of clinical results when a predictive biomarker was not
used in stratification. A large percentage of patients in the HERALD
study had an unknown EGFR mutation status (70.3%), and sensitizing
EGFR mutations were less prevalent (6.6%) than might be expected
among patients with known EGFR mutation status and based on the
published literature (~10% incidence rate (Paez et al., 2004; Yang
et al., 2008)). This suggests the possibility that the group of patients
with unknown EGFR mutation status may have had a high percentage
of sensitizing EGFR mutations, potentially leading to an imbalance in
EGFR sensitizing mutations in the HRG-high subgroup between the
arms of the HERALD study. However, potential imbalances in EGFRmu-
tation status were simulated based on tissue results and found to have
been unlikely to have biased the results. Further, the patient demo-
graphics and disease characteristics of the HRG-high subgroup were
similar to that of the overall ITT population. Finally, EGFR mutation sta-
tus was also assessed by plasma measurements (data not shown), re-
ducing the percentage of patients with unknown EGFR mutation
status to approximately 30%, with no apparent imbalance in EGFR-sen-
sitizing mutations. Nonetheless, the presence of confounding interac-
tions cannot be fully dismissed.

In addition, while a general biomarker hypothesis was stated in the
protocol, the specific biomarker (i.e., HRG mRNA) and a description of
the validated assay were defined only in the statistical analysis plan.
An alternative approach would have been to amend the protocol once
the preclinical data and assay became available and to formally elevate
the single predictive biomarker hypothesis to a second primary end
point (Beckman et al., 2011; Simon, 2005). As the HRGmRNA assay be-
came available close to study completion, the protocol was not
amended to specify the HRG subgroup analysis as the secondary prima-
ry end point due to the extra time and costs such an approach would
have necessitated. However, this decision diminished the perceived
credibility of the results in some instances, and the trade-off for omitting
this administrative step may therefore have not been optimal, despite
the development time it saved.

Due to the caveats in this prospective–retrospective approach and
the potential for confounders in the observed effect size, a 2-part
phase 3 study (HER3 Lung) will be conducted (NCT02134015) (Paz-
Ares et al., 2014). Part A of the study will enroll patients with any
level of HRG mRNA expression, and the statistical analysis will assess
HRG-high and HRG-low biomarker groups for clinical benefit as mea-
sured by PFS to confirm the results of the HERALD study. The HRG
cutoff will be further refined based on the clinical benefit observed
in part A and in the HERALD study, using maximum likelihood
methods (Altman et al., 1994; Jiang et al., 2007). This refined cutoff
will then be applied in the pivotal part B, which will enroll HRG-
high patients only, per revised criteria. Within part B, HRG-high pa-
tients will be further stratified into 2 levels of HRGmRNA expression.
If part B is positive and the drug is registered, the information about
these strata may be available to further inform physician and patient
choices.
5. Conclusions

While early identification of a predictive biomarker before study ini-
tiation would have been ideal, this prospective–retrospective approach
still allowed the clinical validation of the predictive biomarker HRG for
patritumab. Further ex vivo studies conducted to assess the biomarker
distributions on NSCLC tissues assisted in our understanding of how to
extrapolate these data to other NSCLC populations. In addition, the ex-
ploratory analyses that allowed internal validation of the biomarker
by assessing alternative cutoff values and the impact of potential con-
founding by various factors were useful to qualify the observed results.
Although not implemented in this study, based on this experience, we
recommend that future prospective–retrospective studies (1) be
amended to specify the predictive biomarker hypothesis as a primary
objective in the clinical study protocol when the specific predictive bio-
marker is identified and (2) ensure a process for the evaluation of viable
tumor samples at the time of enrollment. For instance, slides from
collected FFPE tissue could be stained with hematoxylin and eosin
and evaluated for sufficient tumor tissue immediately upon receipt,
which could preclude the problems encountered with tumor sample
quality. Patients with inadequate samples would not be eligible for
the clinical study. The turnaround time for this evaluation would
have to be rapid, however, to avoid patients having to wait for
therapy.
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