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Simple Summary: Due to its high refractoriness to therapies, glioblastoma brain tumour is frequently
used as a model to develop new therapeutic approaches. Many of these treatments may target the
microtubular network of the cell, also considering that tubulin post-translational modifications (PTMs)
are markers of tumour plasticity. The two-dimensional (2D) culture systems are now being replaced
by three-dimensional (3D) systems capable of mimicking in vivo conditions. In this work, spheroids
were developed from C6 rat glioma cells (RGCs) using two 3D systems: liquid marbles (LMs) or
hanging drops (HD) and analysed in terms of the morphology and behaviour of the two main tubulin
PTMs, tyrosinated α-tubulin (Tyr-T) and acetylated α-tubulin (Ac-T). RGCs spontaneously formed
spheroids more rapidly in the LM than in the HD system. An increase in Tyr-T and Ac-T was observed
in both the HD and LM system during IVC, with the highest values shown in LM spheroids. In
conclusion, the present work shows that the LM 3D system boosts the induction and maintenance
of a high plasticity state in glioma cells and could provide a novel approach to set up a biological
system to evaluate new anticancer therapies and advance knowledge on glioblastoma.

Abstract: Glioblastoma is a brain tumour frequently used as an experimental model to exploit
innovative therapeutic approaches due to its high lethality and refractoriness to therapies. Part of
these innovative anticancer therapies address cytoskeletal microtubules (MTs) since specific tubulin
post-translational modifications (PTMs) are considered markers of tumour plasticity. In vitro studies,
which traditionally employ two-dimensional (2D) culture systems, are now being replaced by three-
dimensional (3D) systems that more closely mimic in vivo physiological conditions and allow a
better understanding of the signalling between cells. In this work, we compared 2 liquid base 3D
methods for the generation of spheroids from C6 rat glioma cells (RGCs) using 30 µL of liquid
marble (LM) or the hanging drops (HDs), which contained 2 different cell numbers (5000 or 15,000).
After 24 or 48 h of in vitro culture (IVC), the morphology of the spheroids was observed and the
behaviour of the two main tubulin PTMs, tyrosinated α-tubulin (Tyr-T) and acetylated α-tubulin
(Ac-T), was evaluated by fluorescence and Western blot (WB). RGCs spontaneously formed spherical
agglomerates more rapidly in the LM than in the HD system. Cell density influenced the size of
the spheroids, which reached a larger size (> of 300 µm Ø), with 15,000 cells compared to 5000 cells
(150 µm Ø). Moreover, an increase in Tyr-T and Ac-T was observed in both the HD and LM system
from 24 to 48 h, with the highest values shown in the 48 h/LM spheroids of 5000 cells (p < 0.05). In
conclusion, by comparing the morphology and microtubular architecture of spheroids from C6 rat
glioma cells developed by LM or HD methodology, our findings demonstrate that the use of a fumed
silica microbioreactor boosts the induction and maintenance of a high plasticity state in glioma cells.
RGCs cultured in LM express levels of tubulin PTMs that can be used to evaluate the efficacy of new
anticancer therapies.
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1. Introduction

Glioblastoma multiforme (GBM) is the most common and aggressive malignant pri-
mary brain tumour in humans, characterized by the highest lethality and the lowest life
expectancy [1]. One peculiarity of GBM, which often underlies the ineffectiveness of thera-
peutic treatments, is the ability of cancer cells to invade surrounding brain tissues, thus
emphasizing the key role of the interaction between cellular elements and the extracellular
matrix [2,3]. In the last decades, studies of different types of tumours, including GBM,
have mainly been performed with 2D cell culture systems, given the simple establishment
of culture conditions, the high reproducibility, and the low cost [4,5]. However, 2D cell
cultures show some limitations due to their inability to reproduce some tumour characteris-
tics, such as the three-dimensionality and interaction with the extracellular matrix. Starting
from the assumption that cells are organized within tissues in a 3D structure that affects
both cell–cell and cell–extracellular matrix interactions, we have recently seen a significant
increase in in vitro 3D cellular models [6,7]. In this sense, replicating the complex structural
organization of the brain in vitro, moving from traditional 2D to 3D models, would help
to better understand the invasion mechanisms of GBM cells [8,9]. Further, 3D systems
can be scaffold-based, in which cells grow on an artificial 3D structure, or scaffold-free,
when cells produce their own extracellular matrix and grow in a 3D manner [10]. Among
the scaffold-free 3D systems, spheroids represent one of the best studied 3D models in
recent years. Spheroids are made of cellular aggregates that can grow in suspension or be
included in a 3D matrix [11]. Many types of mammalian cells can aggregate and differen-
tiate into 3D multicellular spheroids when cultured in suspension or in a non-adhesive
environment. Compared to conventional monolayer cultures, multicellular spheroids better
resemble real tissues in terms of their structural and functional properties. Many progenitor
cells show significantly enhanced viability and functional performance when grown as
spheroids [12]. Multicellular spheroids are ideal building units for tissue reconstruction
or to better understand tumour evolution in vitro. Current methods to produce spheroids
are the results of studies that started in 1906 with the hanging drops (HDs) tissue culture
approach described by Ross Harrison (1906) in an attempt to recapitulate organogenesis in
culture. Among the different systems, four major liquid-based methods are used to culture
cancer cell spheroids: (i) the rotary wall vessel and spinner flask systems use rotary devices
to constantly keep cells in suspension for aggregation into spheroids with random sizes;
(ii) the hanging drop array methods use gravitational-mediated aggregation of cells in the
apex region of drops hanging from a plate; (iii) cells are dropped in a non-adhesive well
and spontaneously aggregate to form a compacted spheroid with a well-defined size; and
(iv) microfluidic devices where the cells are placed in microchannels with a free perfusion
system, allowing the distribution of oxygen and nutrients, and the elimination of metabolic
waste [13]. Regular bacteriological-type Petri dishes and certain ELISA 96-well plates made
of non-adhesive plastics are suitable for the generation of spheroids [14]. Comparisons
between liquid-based 3D culture methods for the generation of spheroids, showing their
limitations and advantages, have previously been reported in detail [15–17].

These experimental 3D models have seen widespread use in recent years for the screen-
ing of new therapeutic approaches. This aspect is fundamental considering glioblastoma,
which is endowed with high refractoriness to chemotherapy treatments [18]. It is well
known that many anticancer drugs target the cellular cytoskeleton and the microtubular
network [19–22]. The microtubular network in glioblastoma cells sparks interest both from
the point of view of experimental therapeutic approaches and from the point of view of
tumour cell biology [11,23]. Recently, we carried out studies on 2D models on the content,
distribution, and interaction with motor proteins of the most widespread PTM tubulins in
rat glioblastoma cells [24,25]. In these papers, it was shown that tyrosinated and acetylated
tubulin were among the most abundant PTM tubulins in C6 cells. In the past years, some 3D
models have already been tested in the study of glioblastoma [26–29]. Most of these studies
were conducted on the brain biopsies of patients with glioblastoma, from which, using
Mem-agar or Matrigel, spheroids were obtained [28,30–32]. Here, for the first time, we
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propose a protocol to obtain spheroids of C6 RGCs by encapsulation in super-hydrophobic
microbioreactors. The microbioreactors, defined as liquid marbles (LMs), are formed by
enveloping cells suspended in a drop of medium with hydrophobic-treated fumed silica
powder, with particle size of 1 µm, to form an elastic shell with fine pores [33]. Fumed
silica particles adhere to the surface of the medium drop, isolating the liquid core from
the supporting surface while allowing optimal gas exchange between the interior liquid
and the surrounding environment. The coating material acts as a confined space, which is
non-adhesive and allows cells to freely interact with each other [34]. Such a protocol has
previously been shown to support the growth of living microorganisms, tumour spheroids,
fibroblasts, red blood cells, embryonic stem cells, and oocytes [34–38]. The advantages
of the proposed system include the transparent nature of the LM, which allows for easy
visual assessment of the cells; low cost; self-repairing ability of the LM coating; low cell
culture medium consumption; high reproducibility; and gas permeability. The present
study compared the morphology and microtubular architecture of spheroids from C6 rat
glioma cells developed by the LM or HD methodology. Considering that some tubulin
post-translational modifications (PTMs) are predominant in glioblastoma cells [36], we
characterized the behaviour of tyrosinated α-tubulin (Tyr-T) and acetylated α-tubulin
(Ac-T) in HD and LM RGC spheroids.

2. Materials and Methods

All reagents used in this study were purchased from commercial sources. In detail,
primary antibodies and secondary AP-conjugated antibodies were purchased from Sigma
Aldrich and Millipore, now Merck Millipore (Merck KGaA, Darmstadt, Germany). The
Alexa Fluor secondary antibodies were purchased from Thermo Fisher Scientific (Thermo
Fisher, Waltham, MA, USA). The commercial origin of the other chemicals is specified in
the text.

2.1. Cell Culture

Undifferentiated C6 RGCs (American Type Culture Collection, Rockville, MD, USA)
were initially cultured in monolayers as previously indicated [25,39,40]. Briefly, cells were
grown in phenol-red-free RPMI-1640 medium supplemented with 10% heat-inactivated
foetal calf serum, 2 mM L-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin
on culture plates and placed in a 95% air–5% CO2 humidified incubator at 37 ◦C. The 2D
culture of RGCs was then used to make 3D cell cultures for subsequent analyses.

2.2. 3D Cell Culture

Cells were grown with two different 3D techniques, hanging drops (HDs) or liquid
marble (LM), to generate glioma tumour spheroids. Once cells reached a 70–80% confluence
in the 2D system, they were detached with 1 mL of 5 mM PBS/EDTA and transferred to
a 15 mL Falcon tube. A 20 µL aliquot of the suspension was taken and added to 20 µL
of Trypan Blue to identify the dead cells. Cells were counted with a counting chamber
(Burker’s chamber) under a light microscope. To obtain the experimental cell number (5000
and 15,000), they were centrifuged at 1000 rpm for 4 min, the supernatant was removed by
inversion, and the cells were resuspended in fresh medium to make up the volume. The
number of cells (5000 and 15,000) were selected on the bases of previous experiments in
our laboratory. For both the HD and LM techniques, drops with a volume of 30 µL were
used containing the final number of 5000 (dilution 1:3) and 15,000 cells. Therefore, groups
with different cell densities, lengths of IVC, and 3D systems were created.

2.2.1. Hanging Drops (HDs)

To set up suspended drops, non-adherent Petri dishes with a diameter of 30 mm were
used. The bottom of each plate was used as a hydration chamber to reduce the phenomenon
of evaporation by placing 2 mL of PBS inside. The lid of the Petri dish was turned upside
down and 5 drops of 30 µL each were placed on its bottom, sufficiently spaced from each
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other, and containing 5000 or 15,000 cells. The plate lid was then inverted and placed
on the lower chamber filled with PBS. In this way, a “pending drop” was formed, and
the aggregation of cells was induced because they were pushed towards the bottom of
the drop by gravity. The plates were then placed for 24 or 48 h in a 95% air/5% CO2
humidified incubator.

2.2.2. Liquid Marble (LM)

The formation of LM requires the use of super-hydrophobic powders. For our studies
we used a powder consisting of treated fumed silica (CAB-O-SIL TS-530, Cabot, Italy),
characterized by a superhydrophobic surface. The powder adheres to the cell suspension
and thus constitutes a low moisture coating. A CAB-O-SIL TS-530 powder bed, with a
particle size of 1 µm, was set up in a Petri dish. A single drop of 30 µL, containing 5000 or
15,000 cells, was dispensed on the powder bed. The plate was gently rotated in a circular
motion (rolling) to ensure that the dust particles completely covered the surface of the
liquid drop and formed a “liquid marble”. The marbles were collected using a 1000 µL tip,
cut on the edge, to adapt it to the diameter of the marble. Each LM was placed inside a non-
adhering 30 mm2 Petri dish and 4 of these, containing a single marble, were placed inside a
90 mm2 Petri dish, which was used as a hydration chamber, to reduce the phenomenon of
evaporation. PBS was placed inside to cover the entire surface. The plates containing LM
were then incubated at 37 ◦C/5% CO2/95% humidity for 24 or 48 h, respectively.

The spheroids obtained with the 2 3D systems (HD or LM) were manually evaluated
for their degree of clustering and an estimation of the diameters using the ImageJ freeware
(NIH, Bethesda, MD, USA) and then collected for subsequent immunocytochemistry and
Western blot analysis. The diameter of 20 spheroids was measured for each experimental
group; the number of samples was selected on the basis of previous works [15,41,42].

2.3. Immunofluorescence and Confocal Microscope Acquisition

The HD and LM spheroids grown in vitro were fixed in a solution containing 2%
paraformaldehyde and 0.1%, Triton-X-100 for 20 min at 4 ◦C. Immunofluorescence was
performed as previously described [25,43,44]. Briefly, to highlight the main tubulin PTMs,
the following primary antibodies were used: anti-total α-tubulin (dil.1:800, catalog # T6199,
clone DM1A); monoclonal anti-tyrosine α-tubulin (1:800, catalog # T9028; clone, TUB-1A2)
anti-acetylated α-tubulin (1:800; catalog # T7451; clone 6-11B-1), with overnight incubation.
After incubation, the spheroids were washed in PBS/2% FCS for 15 min. As secondary
antibodies, anti-mouse FITC/TRITC-AlexaFluor 488/594 were used. Subsequently, the
spheroids were washed and mounted on a slide in a medium containing 50% glycerol,
2.5 mg/mL sodium azide, and 1 mg/mL blue from Hoechst 33342, using Vaseline bearings
to prevent the compression of the samples. Images were obtained with a confocal laser
scanning microscope from Leica (TCS SP5 DMI 6000CS, Leica Microsystems GmbH, Wetzlar,
Germany) using a 40/60× oil objective. FITC was excited at 488 nm and emission was
detected between 510 and 550 nm. TRITC was excited at 568 nm and emission was detected
between 585 and 640 nm. Images of 1024 × 1024-pixel resolution, 8 bits depth, were
acquired. All images were acquired with constant settings of the confocal microscope
(Pinhole [airy] 1.00; Frame-Average 1; Line-Average 4; Laser Line UV (405) 21.00%; Laser
Line Visible (543) 40.00%; Laser Line Visible (488) 32.00%). Five replicates from all the
groups of HD and LM were analysed.

2.4. Western Blot (WB)

WB was performed as previously described [40,43]. Briefly, we collected spheroids
from about 40/50 HD and from LM, after 24 or 48 h of IVC. The spheroids were then placed
in lysis buffer (5 mM TRIS HCl, 2 mM EGTA, 0.1 mM phenyl-methyl-sulfonyl fluoride,
pH 8.0) and a protease inhibitor was added. For each sample, the total protein concentration
was determined, and 100 µg protein aliquots for each lane were loaded and separated in
10% SDS-PAGE gels, and then transferred to nitrocellulose membranes. These were then



Biology 2022, 11, 492 5 of 15

incubated overnight at 4 ◦C with the following primary antibodies: (1) total anti-α-tubulin
(monoclonal, clone DM1A, 1:500); (2) anti α-tubulin tyrosine (monoclonal, clone TUB-1A2,
1:500); and (3) anti-acetylated α-tubulin (monoclonal, clone 6-11B-1, 1:500). After a few
washes, the membranes were incubated for 1 h at 37 ◦C with the secondary anti-mouse
antibodies conjugated with alkaline phosphatase. Blots were detected with a chromogen
(NBT/BCIP). The optical density of the bands was evaluated using the ImageJ software, on
three blots for each tubulin (total alpha, tyrosinated, and acetylated). The optical density
values of the blot bands obtained for the total alpha, tyrosinated, and acetylated tubulins
were normalized with respect to the optical density of the β-actin loading control bands.

2.5. Statistical Analysis

After analysis of the homogeneity of variance by Levene’s test, data were analysed
by the ANOVA general linear model followed by Tukey’s post hoc comparison with
the statistical software program Statgraphic Centurion XV (version 15.2.06 for Windows;
StatPoint, Inc., Herndon, VA, USA). A probability of p ≤ 0.05 was considered the minimum
level of significance. All results are expressed as mean ± SD.

3. Results
3.1. Morphology Features of Spheroids

The analysis of spheroid formation allowed an evaluation of the features of the
two microbioreactors by varying the concentration of the cells and the length of IVC.
LM displayed more rapid cell aggregation after 24 h of incubation compared to the HD
technique (Figure 1). In the HD spheroids, evident cytoplasmic prolongations between the
spheroids were observed (Figure 1A), both in drops containing 5000 and 15,000 cells, while
these cytoplasmic intercellular extensions were completely absent in the LM drop system
(Figure 1B). After 24 h, in the HD culture system, the compactness of the cells was lower
than at 48 h, when more compact aggregates were observed. However, at 48 h, similar cell
clustering was observed, and the spheroid morphology was equivalent in the 2 systems
(Figure 2). During the early stages of culture, cells assumed and maintained a spherical
conformation, showing a coherent original phenotype, which instead tended to change
during the prolonged culture, with a flattening of the peripheral cells (Figures 1 and 2).

Figure 1. HD and LM spheroids. After 24 h of IVC, evident cytoplasmic prolongations (black arrows)
between the spheroids were observed in HD containing 15,000 cells (A) in comparison with LM
15,000 cell spheroids (B) where the cytoplasmic processes disappeared. Bar = 100 µm. Images were
manually analysed by Image J and are representative of replicates (n = 5) of each group.
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Figure 2. Microscopic observation of the spheroids after 48 h of IVC from drops containing 15,000 cells.
(A) HD spheroid; (B) LM spheroid. Bar = 100 µm. Images were manually analysed by Jmage J and
are representative of replicates (n = 5) of each group.

As shown in Figure 3, the diameters of the spheroids depended on the cell number and
length of incubation, with the spheroids obtained with 15,000 cells reaching 400 and 500 µm
in HD and LM, respectively, after 48 h of IVC. The number of spheroids per drop also
changed during the time of incubation in both the HD and LM systems: 15–20 spheroids
formed after 24 h of culture, while 3–6 spheroids were observed after 48 h, due to the growth
and aggregation of smaller spheroids. The coefficients of variation of all experimental
groups are reported in Supplementary Materials Table S1.

Figure 3. Clustering during IVC of C6 RGCs using the HD or LM techniques: evaluation of the
diameter of spheroids at 24 and 48 h of IVC. 5 K = 5000 cells; 15 K = 15,000 cells. HD = hanging
drops; LM = liquid marble. The data represent the mean ± standard deviation (SD) (n = 20).
Significant differences among groups were assessed by the ANOVA general linear model followed
by Tukey’s post hoc comparisons. Different letters indicate a significant difference (p < 0.05) between
groups; lowercase letters refer to differences within the HD group, uppercase letters to the LM group.
A vs. B = p < 0.05; a vs. b = p < 0.05.
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3.2. Immunofluorescence Staining

A qualitative analysis was carried out using immunofluorescence. Using the anti-
total α-tubulin antibody, the three-dimensional aspect of the spheroid was highlighted,
with a defined cell agglomerate and good fluorescence immunoreactivity, especially in the
peripheral part of the spheroid, while in the inner part, the fluorescence intensity was less
marked (Figure 4).

Figure 4. Fluorescence with total anti α-tubulin. The 3D shape and the cellular aggregate forming
the spheroid are visible under confocal microscope examination. Bar = 50 µm.

Tyr-T and Ac-T labelling showed that in both culture systems (LM and HD), immunore-
activity did not show differences in the intensity or distribution throughout the spheroid,
even if it did not have evident immunoreactivity in the inner part of the cellular aggregate.
Regardless of the cell concentration or length of IVC, Tyr-T was especially evident around
the nucleus and in the emergence of cellular processes, particularly at the periphery of
the spheroids. Ac-T was evidently distributed along the cellular process; this pattern
was more evident in HD spheroids at 24 and 48 h, compared to LM spheroids, whose
compactness did not allow any observation of cytoplasmic extensions (Figures 5 and 6).
Immunostaining with antibodies against tyrosinated and acetylated tubulin revealed an
appreciable immunoreactivity in the mitotic spindles of the spheroid cells, which was
particularly noticeable at the periphery of the 3D system (Figure 7).
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Figure 5. Immunofluorescence for Tyr-T in the 15,000 cell concentration spheroids. In the left col-
umn, HD spheroids at 15000/24–48 h (A,B). In the right column, confocal pictures of LM spheroids
at 15,000/24–48 h (C,D) of IVC. Detectable immunoreactivity can be observed both at the perinu-
clear level and in the emergence of cytoplasmic prolongation (arrows). Bar = 25 µm. 15 = 15,000.
HD = hanging drops; LM = liquid marble. Five replicates from all the groups of HD and LM
were analysed.

3.3. Western Blot (WB)

Quantification of the three tubulin PTMs (total alpha, tyrosinated, and acetylated) was
performed by evaluation of the optical density of the WB bands with the ImageJ software
on three blots for each tubulin. Both the 3D system (HD or LM) and time of IVC (24 or 48 h)
significantly affected the levels of total alpha tubulin in the entire set of samples (p = 0.01
and p < 0.001, respectively) while the cell concentration was not significant (p = 0.086).
A significant difference in the optical density between the HD and LM spheroids was
observed at 24 h with 5000 cells and at 48 h with 15,000 cells (p < 0.001 in both cases).
Differences between groups within the HD set and within the LM set are shown in the first
graph of Figure 8B. In parallel, both the 3D system (HD or LM) and time of IVC (24 or 48 h)
significantly affected the levels of tyrosinated tubulin in the entire set of samples (p < 0.001
and p = 0.001, respectively) while the cell concentration was not significant (p = 0.291).
A significant difference in the optical density (p < 0.001) was observed between HD and
LM spheroids at both time points (24 and 48 h) and cell concentrations (5000 and 15,000).
Differences between groups within the HD set and within the LM set are shown in the
second graph of Figure 8B. Quantification of the acetylated tubulin again showed that both
the 3D system (HD or LM) and time of IVC (24 or 48 h) significantly affected the levels
of acetylated tubulin in the entire set of samples (p < 0.001 and p = 0.001, respectively)
while the cell concentration approached significance (p = 0.059). Nevertheless, a significant
difference in the optical density between HD and LM spheroids was observed only at 48 h
with 15,000 cells (p < 0. 035). No difference was observed between groups within the HD
set while differences within the LM set are shown in the third graph of Figure 8B.
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Figure 6. Representative images of immunofluorescence for Ac-T of spheroids at the 15,000-cell
concentration. In the left column, from the top to bottom, confocal microscopic observations of HD
spheroids at 15,000/24–48 h (A,B). In the right column, confocal examination of LM spheroids at
15,000/24–48 h (C,D). Numerous cytoplasmic extensions are detectable (arrows), especially in the
peripheral region, where the cells are less attached to each other in the HD spheroids. LM spheroids
appear with more compact spheroidal structures with variable sizes, and cytoplasmic processes are
mostly absent or barely visible. Bars = 30 µm. Five replicates from all the groups of HD and LM
were analysed.

Figure 7. Tyr-T and Ac-T immunofluorescence staining displayed a detectable immunoreactivity for
Tyr-T and Ac-T in the mitotic spindles of dividing cells (arrows). Bar = 25 µm.
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Figure 8. (A) Western blot analysis of tubulin PTMs on HD and LM spheroids. Equal protein loading
was ascertained using a β-actin antibody. (B) Graphs representing the quantification of the optical
density of the bands after normalization against β-actin (mean ± standard deviation (SD); n = 20, for
spheroids at 24 h IVC, and n = 3–6 for spheroids at 48 h IVC). Each column is the expression of the
mean of three analysed blots. Dark and white columns represent HD and LM spheroids, respectively.
Differences among groups were assessed by the ANOVA general linear model followed by Tukey’s
post hoc comparisons. Different lowercase letters indicate significant differences between groups
within the HD set, and uppercase letters within the LM set: a vs. b = p < 0.05; a vs. c = p < 0.05;
b vs. c = p < 0.05; A vs. B = p < 0.05; A vs. C = p < 0.05; B vs. C = p < 0.05. Asterisks (*) indicate a
difference between LM and HD at each time point and cell quantity (p < 0.05). 15 k = 15,000 cells;
5 k = 5000 cells. HD= hanging drop; LM = liquid marble.

4. Discussion

The results obtained in the present study demonstrate that fumed silica micro-bioreactors
are a robust and cost-effective method for the generation of C6 rat glioma spheroids in terms
of morphological changes, 3D cell rearrangements, and the acquisition and maintenance
of high plasticity. These observations extend previous evidence indicating that the 3D
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microenvironment may have a profound influence on cell phenotype and plasticity [45,46].
A simple and reproducible method for generating multicellular clustering is a prerequisite
for spheroid-based applications. The general criteria for selecting the most suitable method
include production efficiency, spheroid size uniformity, possible damage or influence
on cellular physiology, convenience, and suitability for subsequent applications. Cell
aggregation is due to mechanical forces that are generated within the different systems and
varies between methods.

The HD technique was initially developed to culture stem cell embryoid bodies and
has been extensively used for 3D culture conditions due to its simplicity. In fact, to prepare
a HD culture, cell suspension drops (30 µL) are deposited onto the underside of the lid of
a tissue culture dish. When the lid is inverted, drops are held in place by surface tension
and this creates a microgravity environment in each drop that concentrates the cells, which
then form single spheroids at the free liquid–air interface. We observed that in the first
24 h of IVC in this system, RGCs tend to settle in the conical region of the semi-rigid
surface, producing cytoplasmic extensions, and the possible limited force of gravity forms
loose-aggregated clusters (Figure 1). This method allows large production of spheroids and
easy control of their size. However, it is labour intensive due to its multistep process, and
there is a risk of cell damage in case of media evaporation, requiring constant monitoring
of the culture medium.

The LM culture system described in this study provides a non-adherent liquid surface
at the bottom that integrates the merits of the spinning and stationary methods, which
possibly induce rapid cell aggregation. Moreover, the concave bottom, spherical shape,
and internal water flow of each liquid marble allow cells to settle onto the bottom of
the liquid marble. In the LM system, on the other hand, the spherical shape makes
gravity-driven cell aggregation more intense. Furthermore, in the sphere, small vibrational
movements intensify the gravity. Different advantages have been discovered as the reported
method does not require specialized equipment or training. Other advantages include the
low cost, self-repairing ability of the LM coating, low cell culture medium consumption,
high reproducibility, and high gas permeability. Furthermore, the silica nanoparticles are
biocompatible, very chemically stable, and due to their transparency, permit constant cell
monitoring. The scaffold-free approach for 3D cell culture compartmentalization using LM
can serve as a suitable screening platform for compounds and only requires a small volume
of liquid.

Encapsulation in super-hydrophobic microbioreactors has previously been shown
to support the growth of stem cells [34,37] and lung cancer stem cells [47]. Liu and col-
laborators [47] compared monolayer cells and spheroids generated in multi-well plates
and cultured in LM and observed that the 3D nano-environment promotes in vitro tumour
spheroid formation from single or multiple cancer stem cells. Compared to monolayer
cells, the spheroids that formed in the LM were more tightly packed and more sensitive to
hypoxia conditions, which indicates better gas exchange and an enhanced viability under
the treatment of chemotherapeutic drugs and small interfering RNA. In our previous study,
ultrastructural analysis of pluripotent cells derived from epigenetically erased fibroblasts
suggested that the use of the a liquid marble micro-bioreactor not only encourages cell
aggregation, but also boosts the formation and stable maintenance of morphological prop-
erties previously described in pluripotent cells derived by [48]. It is well known that culture
parameters, including the cell type, seeding density, medium composition, and length of
incubation, can influence cell aggregation and spheroid formation. These parameters are
determinants of the cell aggregation efficiency and the uniformity of the spheroid size and
shape. Our results showed how both parameters (seeding density and time of incubation)
influenced cell clustering. Indeed, in both systems, larger spheroids were observed when
the seeding density or time of incubation was increased and in the LM compared to the
HD system. Previous studies using cancer lung cells showed how cells cultured in an LM
microbioreactor had different levels of e-cadherin expression compared to those cultured
in a monolayer [47]. The different methods used to achieve the growth and compaction
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of spheroids certainly influence the microtubular composition pattern of the glioblastoma
cells. The confocal analysis of the spheroids generated with the LM system showed an
actual sphere because of the flat-bottom layer present during the culture in non-adherent
culture plastic dishes. Cells inside the spheroid showed a compact configuration and
maintained a constant phenotype. Moreover, cells localized in the external section of the
spheroids showed a different grade of mitotic cell replication, which indicates the high
viability of the glioma cells cultured in this system. Fluorescence confocal microscope
observation showed good immunoreactivity for the two tubulin PTMs examined in this
work (Tyr-T and Ac-T). These results confirm a previous work, where it was observed, for
the first time, that Tyr-T and Ac-T are the most abundant tubulin modifications in RGC
in a 2D system [40,43]. Moreover, the distribution of the two tubulin PTMs was clearly
visible in the 3D cultured cells. Tyr-T was most appreciable around the nucleus and in the
emergence of the cell process while Ac-T was detectable along the cell extensions. The
most interesting data on tubulin PTMs in the present work, however, relate to the Western
blot and the quantification of the bands. For the first time, in fact, the behaviour and
quantification of PTMs of these tubulins in C6 RGCs grown in systems, such as HD and
LM spheroids, were investigated. The data derived from WB showed a certain dynamism
expressed by the increased levels of Tyr-T and also the cytoskeletal stability displayed
by the level of Ac-T. It is well known that the microtubular physiology is regulated by
the presence of tubulin PTMs, which make microtubules more dynamic or more stable.
Indeed, the same microtubule can be “mixed” along the protofilament, with an alternation
of traits rich in Tyr-T, a widely considered marker of microtubular dynamism [49], and
traits with greater abundance of Ac-T, considered a marker of stable microtubules [50].
Depending on the biological structure, these two tubulin PTMs can prevail over each other.
Here, we observed that during the growth of the spheroids in both LM and HD systems, an
increase in the Tyr-T could be appreciated. Usually, this behaviour is appreciable in those
biological structures where rapid adaptation and continuous elongation of the microtubules
are required [51]; it is typical of continuously evolving structures, as these spheroids seem
to be capable of growing and changing their spatial disposition over time. As the hours
pass, and with the increase in the size of the spheroids, we detected a significant increase in
Ac-T, which indicates the tendency of the organoid to stabilize and consolidate its spherical
structure. Indeed, it was reported that Ac-T increases in curved structures subjected to
bending, giving them greater resistance [52,53].

The use of LM microbioreactors allows the scaling down of experiments and is there-
fore amenable for high-throughput applications and to study the effect of paracrine/autocrine
signalling of the rich environment established within the microbioreactor.

5. Conclusions

In conclusion, by comparing the morphology and microtubular architecture of spheroids
from C6 rat glioma cells developed by the LM or HD methodology, our findings demon-
strate that the use of the fumed silica microbioreactor boosts the induction and maintenance
of a high plasticity state in glioma cells. The proposed in vitro 3D culture system provides
an appropriate in vitro culture technique for studying glioblastoma, inducing distinctive
3D cell rearrangement and specific cell–cell interactions. Considering that the establish-
ment of appropriate 3D in vitro culture systems for studying cancer and other biological
processes is of general importance, we believe that the fumed silica microbioreactors may
represent a notable tool for advancing knowledge on glioblastoma. The expression levels of
tubulin PTMs under these conditions can be used to evaluate the efficacy of new anticancer
therapies. The transparent and gas-permeable LM will be valuable in a wide range of
research fields, where spheroid cultures, in situ monitoring, and high-throughput drug
sensitivity tests are needed.
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